# include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); void test01 ( int n ); void test02 ( int n ); double *discrete_cdf_to_xy ( int n1, int n2, double cdf[], int n, double u[], int *seed ); double *get_discrete_pdf_data1 ( int n1, int n2 ); double *get_discrete_pdf_data2 ( int n1, int n2 ); void get_discrete_pdf_size1 ( int &n1, int &n2 ); void get_discrete_pdf_size2 ( int &n1, int &n2 ); double *r8mat_copy_new ( int m, int n, double a1[] ); void r8mat_scale ( int m, int n, double s, double a[] ); double r8mat_sum ( int m, int n, double a[] ); void r8mat_write ( string output_filename, int m, int n, double table[] ); double *r8vec_uniform_01_new ( int n, int *seed ); double *set_discrete_cdf ( int n1, int n2, double pdf[] ); void timestamp ( ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for DISCRETE_PDF_SAMPLE_2D. // // Discussion: // // This program is an example of how discrete sample or density data // can be used to define a PDF (probability density function). // // In this function and the functions it calls, we assume that we have // data for an array of 20 by 20 square subcells of the unit square. // We wish to derive a PDF that will allow us to sample an arbitrary // number of points from this region. // // In particular, we intend to use the discrete data to generate a PDF // which we will then use to generate sample points. // // Roughly speaking, we have kept track of how many fish we caught in // each part of a lake, and now we want to simulate catching N fish // under the same conditions. // // The statistics for each simulation should be governed by the discrete // PDF, but with random variation. In other words, the actual number // of points taken from each subregion is random, and the actual location of // each point in a subregion is random, but over many simulations, the // statistics of the sample points should reproduce the statistics of // the original discrete sample that defined the PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 December 2012 // // Author: // // John Burkardt // { int n; timestamp ( ); cout << "\n"; cout << "DISCRETE_PDF_SAMPLE_2D:\n"; cout << " C++ version\n"; cout << " Generate sample data using a discrete PDF.\n"; n = 1000; test01 ( n ); test02 ( n ); // // Terminate. // cout << "\n"; cout << "DISCRETE_PDF_SAMPLE_2D:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void test01 ( int n ) //****************************************************************************80 // // Purpose: // // TEST01 looks at a 20x20 region. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 December 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of sample points to be generated. // { double *cdf; string filename; int n1; int n2; double *pdf; int seed; double *u; double *xy; cout << "\n"; cout << "TEST01\n"; cout << " Consider data skewed toward the upper left corner of the unit square.\n"; cout << " Generate " << n << " samples\n"; // // Get the dimensions of the PDF data. // get_discrete_pdf_size1 ( n1, n2 ); cout << " PDF data is on a " << n1 << " by " << n2 << " grid.\n"; // // Construct a PDF from the data. // pdf = get_discrete_pdf_data1 ( n1, n2 ); // // "Integrate" the data over rows and columns of the region to get the CDF. // cdf = set_discrete_cdf ( n1, n2, pdf ); // // Choose N CDF values at random. // seed = 123456789; u = r8vec_uniform_01_new ( n, &seed ); // // Find the cell corresponding to each CDF value, // and choose a random point in that cell. // xy = discrete_cdf_to_xy ( n1, n2, cdf, n, u, &seed ); // // Write data to a file for examination, plotting, or analysis. // filename = "test01.txt"; r8mat_write ( filename, 2, n, xy ); cout << "\n"; cout << " Wrote sample data to file \"" << filename << "\".\n"; // // Free memory. // delete [] cdf; delete [] pdf; delete [] u; delete [] xy; return; } //****************************************************************************80 void test02 ( int n ) //****************************************************************************80 // // Purpose: // // TEST02 looks at a 12x8 region. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 December 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of sample points to be generated. // { double *cdf; string filename; int n1; int n2; double *pdf; int seed; double *u; double *xy; cout << "\n"; cout << "TEST02\n"; cout << " Consider data suggested by the shape and density of Iowa.\n"; cout << " Generate " << n << " samples\n"; // // Get the dimensions of the PDF data. // get_discrete_pdf_size2 ( n1, n2 ); cout << " PDF data is on a " << n1 << " by " << n2 << " grid.\n"; // // Construct a PDF from the data. // pdf = get_discrete_pdf_data2 ( n1, n2 ); // // "Integrate" the data over rows and columns of the region to get the CDF. // cdf = set_discrete_cdf ( n1, n2, pdf ); // // Choose N CDF values at random. // seed = 123456789; u = r8vec_uniform_01_new ( n, &seed ); // // Find the cell corresponding to each CDF value, // and choose a random point in that cell. // xy = discrete_cdf_to_xy ( n1, n2, cdf, n, u, &seed ); // // Write data to a file for examination, plotting, or analysis. // filename = "test02.txt"; r8mat_write ( filename, 2, n, xy ); cout << "\n"; cout << " Wrote sample data to file \"" << filename << "\".\n"; // // Free memory. // delete [] cdf; delete [] pdf; delete [] u; delete [] xy; return; } //****************************************************************************80 double *discrete_cdf_to_xy ( int n1, int n2, double cdf[], int n, double u[], int *seed ) //****************************************************************************80 // // Purpose: // // DISCRETE_CDF_TO_XY finds XY points corresponding to discrete CDF values. // // Discussion: // // This program is given a discrete CDF function and a set of N random // values U. Each value of U corresponds to a particular (I,J) subregion // whose CDF value just exceeds the value of U. Inside that subregion, // we pick a point at random - this is equivalent to assuming the PDF // is constant over the subregion. // // This function is part of an example program, for which various // assumptions have been made. In particular, the region is the unit // square, and the subregions are formed by a 20 by 20 grid of equal // subsquares. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 January 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, the number of rows and columns of data. // // Input, double CDF[N1*N2], the CDF values associated with each // subcell. A particular ordering has been given to the subcells so that the // CDF is a monotonoe function when the subcells are listed in that order. // // Input, int N, the number of sample points. // // Input, double U[N], N random values. // // Input/output, int *SEED, a seed for the random // number generator. // // Output, double DISCRETE_CDF_TO_XY[2*N], the sample points. // { double high; int i; int j; int k; double low; double *r; double *xy; xy = new double[2*n]; low = 0.0; for ( j = 0; j < n2; j++ ) { for ( i = 0; i < n1; i++ ) { high = cdf[i+j*n1]; for ( k = 0; k < n; k++ ) { if ( low <= u[k] && u[k] <= high ) { r = r8vec_uniform_01_new ( 2, seed ); xy[0+k*2] = ( ( double ) ( i ) + r[0] ) / ( double ) n1; xy[1+k*2] = ( ( double ) ( j ) + r[1] ) / ( double ) n2; delete [] r; } } low = high; } } return xy; } //****************************************************************************80 double *get_discrete_pdf_data1 ( int n1, int n2 ) //****************************************************************************80 // // Purpose: // // GET_DISCRETE_PDF_DATA1 returns the value of the discrete PDF function in each cell. // // Discussion: // // Cell (I,J) extends from // // (I-1) * H < Y < I * H // (J-1) * H < X < J * H // // We have data for each cell, representing the integral of some PDF // over that cell. The function pdf(x,y) must be nonnegative. However, // we don't impose any other conditions on it. // // The array PDF(:,:) contains the integral of pdf(x,y) over each cell, // or, almost as good, simply a sample or average value. // // We load the array PDF, and then we normalize it so that the sum of // all the entries is 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 December 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, the number of rows and columns of data. // // Output, double GET_DISCRETE_PDF[N1*N2]. PDF(I,J) is the discrete PDF // for the cell (I,J), normalized so that the sum over all cells is 1. // { double *pdf; double pdf_save[20*20] = { 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0001, 0.0001, 0.0002, 0.0002, 0.0002, 0.0003, 0.0003, 0.0003, 0.0003, 0.0003, 0.0002, 0.0002, 0.0002, 0.0002, 0.0001, 0.0001, 0.0001, 0.0000, 0.0000, 0.0001, 0.0002, 0.0003, 0.0004, 0.0004, 0.0005, 0.0006, 0.0006, 0.0006, 0.0006, 0.0006, 0.0005, 0.0005, 0.0004, 0.0003, 0.0003, 0.0002, 0.0001, 0.0000, 0.0000, 0.0002, 0.0003, 0.0005, 0.0006, 0.0008, 0.0009, 0.0009, 0.0010, 0.0010, 0.0010, 0.0009, 0.0008, 0.0008, 0.0007, 0.0006, 0.0004, 0.0003, 0.0002, 0.0000, 0.0000, 0.0003, 0.0005, 0.0008, 0.0010, 0.0012, 0.0014, 0.0015, 0.0015, 0.0015, 0.0015, 0.0014, 0.0013, 0.0011, 0.0010, 0.0008, 0.0006, 0.0005, 0.0003, 0.0000, 0.0000, 0.0004, 0.0009, 0.0013, 0.0016, 0.0019, 0.0021, 0.0023, 0.0023, 0.0023, 0.0021, 0.0020, 0.0018, 0.0016, 0.0013, 0.0011, 0.0009, 0.0007, 0.0004, 0.0000, 0.0000, 0.0007, 0.0014, 0.0020, 0.0025, 0.0030, 0.0033, 0.0034, 0.0034, 0.0033, 0.0031, 0.0028, 0.0025, 0.0022, 0.0018, 0.0015, 0.0012, 0.0009, 0.0006, 0.0000, 0.0000, 0.0011, 0.0021, 0.0031, 0.0039, 0.0045, 0.0049, 0.0051, 0.0050, 0.0047, 0.0043, 0.0039, 0.0034, 0.0029, 0.0024, 0.0019, 0.0015, 0.0011, 0.0007, 0.0000, 0.0000, 0.0017, 0.0033, 0.0048, 0.0060, 0.0069, 0.0074, 0.0074, 0.0072, 0.0066, 0.0059, 0.0052, 0.0045, 0.0037, 0.0031, 0.0025, 0.0019, 0.0014, 0.0009, 0.0000, 0.0000, 0.0025, 0.0050, 0.0073, 0.0091, 0.0104, 0.0109, 0.0107, 0.0101, 0.0091, 0.0080, 0.0068, 0.0057, 0.0047, 0.0038, 0.0030, 0.0023, 0.0017, 0.0011, 0.0000, 0.0000, 0.0038, 0.0075, 0.0110, 0.0136, 0.0153, 0.0157, 0.0151, 0.0138, 0.0121, 0.0104, 0.0087, 0.0071, 0.0058, 0.0046, 0.0036, 0.0027, 0.0019, 0.0012, 0.0000, 0.0000, 0.0055, 0.0110, 0.0160, 0.0198, 0.0218, 0.0219, 0.0205, 0.0182, 0.0155, 0.0129, 0.0106, 0.0085, 0.0068, 0.0053, 0.0041, 0.0031, 0.0022, 0.0014, 0.0000, 0.0000, 0.0077, 0.0154, 0.0224, 0.0276, 0.0299, 0.0293, 0.0266, 0.0229, 0.0190, 0.0154, 0.0123, 0.0098, 0.0077, 0.0059, 0.0045, 0.0034, 0.0024, 0.0015, 0.0000, 0.0000, 0.0100, 0.0202, 0.0295, 0.0362, 0.0385, 0.0368, 0.0324, 0.0271, 0.0219, 0.0174, 0.0137, 0.0107, 0.0082, 0.0063, 0.0048, 0.0035, 0.0025, 0.0016, 0.0000, 0.0000, 0.0120, 0.0244, 0.0356, 0.0432, 0.0455, 0.0426, 0.0366, 0.0298, 0.0236, 0.0184, 0.0143, 0.0110, 0.0084, 0.0064, 0.0048, 0.0035, 0.0025, 0.0016, 0.0000, 0.0000, 0.0134, 0.0266, 0.0382, 0.0461, 0.0480, 0.0445, 0.0376, 0.0301, 0.0235, 0.0181, 0.0139, 0.0106, 0.0081, 0.0061, 0.0046, 0.0033, 0.0023, 0.0015, 0.0000, 0.0000, 0.0151, 0.0261, 0.0362, 0.0436, 0.0447, 0.0412, 0.0347, 0.0276, 0.0214, 0.0164, 0.0125, 0.0095, 0.0072, 0.0054, 0.0041, 0.0029, 0.0021, 0.0013, 0.0000, 0.0000, 0.0174, 0.0220, 0.0295, 0.0349, 0.0361, 0.0333, 0.0281, 0.0225, 0.0175, 0.0134, 0.0102, 0.0078, 0.0059, 0.0044, 0.0033, 0.0024, 0.0017, 0.0010, 0.0000, 0.0000, 0.0097, 0.0152, 0.0200, 0.0235, 0.0244, 0.0227, 0.0193, 0.0156, 0.0122, 0.0094, 0.0072, 0.0055, 0.0041, 0.0031, 0.0023, 0.0017, 0.0012, 0.0007, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000 }; double scale; double total; pdf = r8mat_copy_new ( n1, n2, pdf_save ); // // Normalize to get an integral of 1. // total = r8mat_sum ( n1, n2, pdf ); cout << "\n"; cout << " PDF data sums to " << total << "\n"; scale = 1.0 / total; r8mat_scale ( n1, n2, scale, pdf ); return pdf; } //****************************************************************************80 double *get_discrete_pdf_data2 ( int n1, int n2 ) //****************************************************************************80 // // Purpose: // // GET_DISCRETE_PDF_DATA2 returns the discrete PDF data array. // // Discussion: // // Cell (I,J) extends from // // (I-1) * H < Y < I * H // (J-1) * H < X < J * H // // We have data for each cell, representing the integral of some PDF // over that cell. The function pdf(x,y) must be nonnegative. However, // we don't impose any other conditions on it. // // The array PDF(:,:) contains the integral of pdf(x,y) over each cell, // or, almost as good, simply a sample or average value. // // We load the array PDF, and then we normalize it so that the sum of // all the entries is 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 December 2012 // // Author: // // John Burkardt // // Parameters: // // Input, integer ( kind = 4 ) N1, N2, the number of rows and columns // of PDF data. // // Output, real ( kind = 8 ) PDF(N1,N2). PDF(I,J) is the discrete PDF // for the cell (I,J), normalized so that the sum over all cells is 1. // { double *pdf; double pdf_save[20*20] = { 10.0, 20.0, 10.0, 10.0, 20.0, 10.0, 30.0, 10.0, 10.0, 10.0, 10.0, 50.0, 25.0, 30.0, 10.0, 25.0, 30.0, 40.0, 30.0, 20.0, 10.0, 20.0, 30.0, 40.0, 25.0, 30.0, 20.0, 10.0, 40.0, 200.0, 50.0, 40.0, 10.0, 30.0, 60.0, 40.0, 20.0, 30.0, 40.0, 10.0, 75.0, 100.0, 100.0, 30.0, 25.0, 25.0, 90.0, 30.0, 75.0, 15.0, 20.0, 10.0, 75.0, 50.0, 40.0, 10.0, 100.0, 25.0, 25.0, 80.0, 25.0, 50.0, 50.0, 10.0, 25.0, 25.0, 15.0, 10.0, 25.0, 25.0, 10.0, 10.0, 100.0, 50.0, 50.0, 10.0, 10.0, 10.0, 5.0, 100.0, 50.0, 50.0, 10.0, 10.0, 10.0, 10.0, 25.0, 50.0, 10.0, 50.0, 10.0, 50.0, 25.0, 25.0, 25.0, 10.0 }; double scale; double total; pdf = r8mat_copy_new ( n1, n2, pdf_save ); // // Normalize to get an integral of 1. // total = r8mat_sum ( n1, n2, pdf ); cout << "\n"; cout << " PDF data sums to " << total << "\n"; scale = 1.0 / total; r8mat_scale ( n1, n2, scale, pdf ); return pdf; } //****************************************************************************80 void get_discrete_pdf_size1 ( int &n1, int &n2 ) //****************************************************************************80 // // Purpose: // // GET_DISCRETE_PDF_SIZE1 returns the dimension of the discrete PDF data // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 December 2012 // // Author: // // John Burkardt // // Parameters: // // Output, int &N1, &N2, the number of rows and columns // of data. // { n1 = 20; n2 = 20; return; } //****************************************************************************80 void get_discrete_pdf_size2 ( int &n1, int &n2 ) //****************************************************************************80 // // Purpose: // // GET_DISCRETE_PDF_SIZE2 returns the dimension of the discrete PDF data // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 December 2012 // // Author: // // John Burkardt // // Parameters: // // Output, int &N1, &N2, the number of rows and columns // of data. // { n1 = 12; n2 = 8; return; } //****************************************************************************80 double *r8mat_copy_new ( int m, int n, double a1[] ) //****************************************************************************80 // // Purpose: // // R8MAT_COPY_NEW copies one R8MAT to a "new" R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8's, which // may be stored as a vector in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A1[M*N], the matrix to be copied. // // Output, double R8MAT_COPY_NEW[M*N], the copy of A1. // { double *a2; int i; int j; a2 = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a2[i+j*m] = a1[i+j*m]; } } return a2; } //****************************************************************************80 void r8mat_scale ( int m, int n, double s, double a[] ) //****************************************************************************80 // // Purpose: // // R8MAT_SCALE multiplies an R8MAT by a scalar. // // Discussion: // // An R8MAT is an array of R8 values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 December 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double S, the scale factor. // // Input/output, double A[M*N], the matrix to be scaled. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = a[i+j*m] * s; } } return; } //****************************************************************************80 double r8mat_sum ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8MAT_SUM returns the sum of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 January 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], the array. // // Output, double R8MAT_SUM, the sum of the entries. // { int i; int j; double value; value = 0.0; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { value = value + a[i+j*m]; } } return value; } //****************************************************************************80 void r8mat_write ( string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(24) << setprecision(16) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int *seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; int i4_huge = 2147483647; int k; double *r; if ( *seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } r[i] = ( double ) ( *seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 double *set_discrete_cdf ( int n1, int n2, double pdf[] ) //****************************************************************************80 // // Purpose: // // SET_DISCRETE_CDF sets a CDF from a discrete PDF. // // Discussion: // // Here, we proceed from cell (1,1) to (2,1) to (20,1), (1,2), (2,2)...(20,20). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 December 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, the number of rows and columns of data. // // Input, double PDF[N1,N2], the discrete PDF for the cell (I,J), // normalized so that the sum over all cells is 1. // // Output, double CDF[N1,N2], the discrete CDF for the cell (I,J). // The last entry of CDF should be 1. // { double *cdf; int i; int j; double total; cdf = new double[n1*n2]; total = 0.0; for ( j = 0; j < n2; j++ ) { for ( i = 0; i < n1; i++ ) { total = total + pdf[i+j*n1]; cdf[i+j*n1] = total; } } return cdf; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }