# include # include # include # include # include # include using namespace std; # include "disk_grid.hpp" //****************************************************************************80 double *disk_grid ( int n, double r, double c[2], int ng ) //****************************************************************************80 // // Purpose: // // DISK_GRID computes grid points inside a disk. // // Discussion: // // The grid is defined by specifying the radius and center of the circle, // and the number of subintervals N into which the horizontal radius // should be divided. Thus, a value of N = 2 will result in 5 points // along that horizontal line. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 November 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of subintervals. // // Input, double R, the radius of the circle. // // Input, double C[2], the coordinates of the center of the circle. // // Input, int NG, the number of grid points, as determined by // DISK_GRID_COUNT. // // Output, double DISK_GRID[2*NG], the grid points inside the circle. // { double *cg; int i; int j; int p; double x; double y; cg = new double[2*ng]; p = 0; for ( j = 0; j <= n; j++ ) { i = 0; x = c[0]; y = c[1] + r * ( double ) ( 2 * j ) / ( double ) ( 2 * n + 1 ); cg[0+2*p] = x; cg[1+2*p] = y; p = p + 1; if ( 0 < j ) { cg[0+2*p] = x; cg[1+2*p] = 2.0 * c[1] - y; p = p + 1; } for ( ; ; ) { i = i + 1; x = c[0] + r * ( double ) ( 2 * i ) / ( double ) ( 2 * n + 1 ); if ( r * r < pow ( x - c[0], 2 ) + pow ( y - c[1], 2 ) ) { break; } cg[0+2*p] = x; cg[1+2*p] = y; p = p + 1; cg[0+2*p] = 2.0 * c[0] - x; cg[1+2*p] = y; p = p + 1; if ( 0 < j ) { cg[0+2*p] = x; cg[1+2*p] = 2.0 * c[1] - y; p = p + 1; cg[0+2*p] = 2.0 * c[0] - x; cg[1+2*p] = 2.0 * c[1] - y; p = p + 1; } } } return cg; } //****************************************************************************80 int disk_grid_count ( int n, double r, double c[2] ) //****************************************************************************80 // // Purpose: // // DISK_GRID_COUNT counts the grid points inside a disk. // // Discussion: // // The grid is defined by specifying the radius and center of the circle, // and the number of subintervals N into which the horizontal radius // should be divided. Thus, a value of N = 2 will result in 5 points // along that horizontal line. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 November 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of subintervals. // // Input, double R, the radius of the circle. // // Input, double C[2], the coordinates of the center of the circle. // // Output, int DISK_GRID_COUNT, the number of grid points inside // the circle. // { int i; int j; int ng; double x; double y; ng = 0; for ( j = 0; j <= n; j++ ) { i = 0; x = c[0]; y = c[1] + r * ( double ) ( 2 * j ) / ( double ) ( 2 * n + 1 ); ng = ng + 1; if ( 0 < j ) { ng = ng + 1; } for ( ; ; ) { i = i + 1; x = c[0] + r * ( double ) ( 2 * i ) / ( double ) ( 2 * n + 1 ); if ( r * r < pow ( x - c[0], 2 ) + pow ( y - c[1], 2 ) ) { break; } ng = ng + 1; ng = ng + 1; if ( 0 < j ) { ng = ng + 1; ng = ng + 1; } } } return ng; } //****************************************************************************80 double *disk_grid_fibonacci ( int n, double r, double c[] ) //****************************************************************************80 // // Purpose: // // DISK_GRID_FIBONACCI computes Fibonacci grid points inside a disk. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 October 2013 // // Author: // // John Burkardt // // Reference: // // Richard Swinbank, James Purser, // Fibonacci grids: A novel approach to global modelling, // Quarterly Journal of the Royal Meteorological Society, // Volume 132, Number 619, July 2006 Part B, pages 1769-1793. // // Parameters: // // Input, int N, the number of points desired. // // Input, double R, the radius of the circle. // // Input, double C[2], the coordinates of the center of the circle. // // Output, double DISK_GRID_FIBONACCI[2*N], the grid points. // { double *g; double gr; double gt; int i; double phi; const double pi = 3.141592653589793; double r0; r0 = r / sqrt ( ( double ) ( n ) - 0.5 ); phi = ( 1.0 + sqrt ( 5.0 ) ) / 2.0; g = new double[2*n]; for ( i = 0; i < n; i++ ) { gr = r0 * sqrt ( ( double ) ( i + 1 ) - 0.5 ); gt = 2.0 * pi * ( double ) ( i + 1 ) / phi; g[0+i*2] = c[0] + gr * cos ( gt ); g[1+i*2] = c[1] + gr * sin ( gt ); } return g; } //****************************************************************************80 void r82vec_print_part ( int n, double a[], int max_print, string title ) //****************************************************************************80 // // Purpose: // // R82VEC_PRINT_PART prints "part" of an R82VEC. // // Discussion: // // The user specifies MAX_PRINT, the maximum number of lines to print. // // If N, the size of the vector, is no more than MAX_PRINT, then // the entire vector is printed, one entry per line. // // Otherwise, if possible, the first MAX_PRINT-2 entries are printed, // followed by a line of periods suggesting an omission, // and the last entry. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 November 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries of the vector. // // Input, double A[2*N], the vector to be printed. // // Input, int MAX_PRINT, the maximum number of lines // to print. // // Input, string TITLE, a title. // { int i; if ( max_print <= 0 ) { return; } if ( n <= 0 ) { return; } cout << "\n"; cout << title << "\n"; cout << "\n"; if ( n <= max_print ) { for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << " " << setw(14) << a[0+i*2] << " " << setw(14) << a[1+i*2] << "\n"; } } else if ( 3 <= max_print ) { for ( i = 0; i < max_print - 2; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[0+i*2] << " " << setw(14) << a[1+i*2] << "\n"; } cout << " ........ .............. ..............\n"; i = n - 1; cout << " " << setw(8) << i << ": " << setw(14) << a[0+i*2] << " " << setw(14) << a[1+i*2] << "\n"; } else { for ( i = 0; i < max_print - 1; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[0+i*2] << " " << setw(14) << a[1+i*2] << "\n"; } i = max_print - 1; cout << " " << setw(8) << i << ": " << setw(14) << a[0+i*2] << " " << setw(14) << a[1+i*2] << " " << "...more entries...\n"; } return; } //****************************************************************************80 void r8mat_write ( string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(24) << setprecision(16) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }