# include # include # include # include using namespace std; # include "divdif.hpp" int main ( ); void test01 ( ); void test02 ( ); void test03 ( ); void test05 ( ); void test06 ( ); void test07 ( ); void test08 ( ); void test16 ( ); void test17 ( ); void test18 ( ); void test19 ( ); void test20 ( ); void test21 ( ); void test22 ( ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for DIVDIF_PRB. // // Discussion: // // DIVDIF_PRB tests the DIVDIF library. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 June 2013 // // Author: // // John Burkardt // { timestamp ( ); cout << "\n"; cout << "DIVDIF_PRB\n"; cout << " C++ version\n"; cout << " Test the DIVDIF library.\n"; test01 ( ); test02 ( ); test03 ( ); test05 ( ); test06 ( ); test07 ( ); test08 ( ); test16 ( ); test17 ( ); test18 ( ); test19 ( ); test20 ( ); test21 ( ); test22 ( ); // // Terminate. // cout << "\n"; cout << "DIVDIF_PRB\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void test01 ( ) //****************************************************************************80 // // Purpose: // // TEST01 tests DIF*; // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 June 2013 // // Author: // // John Burkardt // { # define MAXTAB 10 double diftab[MAXTAB]; double diftab2[MAXTAB]; double diftab3[MAXTAB]; int i; int ntab; int ntab2; int ntab3; double xtab[MAXTAB]; double xtab2[MAXTAB]; double xtab3[MAXTAB]; double xval; double ytab[MAXTAB]; double yval; cout << "\n"; cout << "TEST01\n"; cout << " DATA_TO_DIF_DISPLAY sets up a difference table\n"; cout << " and displays intermediate calculations;\n"; cout << " DIF_APPEND appends a new data point;\n"; cout << " DIF_ANTIDERIV computes the antiderivative;\n"; cout << " DIF_DERIV_TABLE computes the derivative;\n"; cout << " DIF_SHIFT_ZERO shifts all the abscissas to 0;\n"; cout << " DIF_VAL evaluates at a point;\n"; cout << "\n"; // // Set XTAB, YTAB to X, X^2. // ntab = 4; for ( i = 0; i < ntab; i++ ) { xtab[i] = ( double ) ( i + 1 ); ytab[i] = xtab[i] * xtab[i]; } data_to_dif_display ( ntab, xtab, ytab, diftab ); dif_print ( ntab, xtab, diftab, " The divided difference polynomial:" ); // // Add (5,25) to the table. // cout << "\n"; cout << " DIF_APPEND can add the data (5,25) to the table.\n"; cout << "\n"; xval = 5.0; yval = 25.0; dif_append ( ntab, xtab, diftab, xval, yval, &ntab, xtab, diftab ); dif_print ( ntab, xtab, diftab, " The updated divided difference polynomial:" ); // // Evaluate the polynomial at 2.5. // cout << "\n"; cout << " DIF_VAL can evaluate the table at a point.\n"; cout << "\n"; xval = 2.5; yval = dif_val ( ntab, xtab, diftab, xval ); cout << "\n"; cout << " DIF_VAL reports P(" << xval << ") = " << yval << "\n"; // // Shift the base to zero. // dif_shift_zero ( ntab, xtab, diftab ); dif_print ( ntab, xtab, diftab, " The divided difference table after DIF_SHIFT_ZERO:" ); // // Compute a table for the derivative. // ntab2 = ntab - 1; dif_deriv_table ( ntab, xtab, diftab, xtab2, diftab2 ); dif_print ( ntab2, xtab2, diftab2, " The divided difference table for the derivative:" ); yval = dif_val ( ntab2, xtab2, diftab2, xval ); cout << "\n"; cout << " DIF_VAL reports P'(" << xval << ") = " << yval << "\n"; // // Compute the antiderivative. // dif_antideriv ( ntab, xtab, diftab, &ntab3, xtab3, diftab3 ); dif_print ( ntab3, xtab3, diftab3, " The divided difference table for the antiderivative:" ); yval = dif_val ( ntab3, xtab3, diftab3, xval ); cout << "\n"; cout << " DIF_VAL reports (Anti)P(" << xval << ") = " << yval << "\n"; return; # undef MAXTAB } //****************************************************************************80 void test02 ( ) //****************************************************************************80 // // Purpose: // // TEST02 tests DATA_TO_DIF and DIF_VAL. // // Discussion: // // This routine demonstrates how divided difference approximation // improves with N. // // Evaluate these polynomials at 2.5. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2007 // // Author: // // John Burkardt // { # define MAXTAB 8 double diftab[MAXTAB]; double error; int j; int ntab; double true_value; double xtab[MAXTAB]; double xval; double ytab[MAXTAB]; double yval; cout << "\n"; cout << "TEST02\n"; cout << " Approximate Y = EXP(X) using orders 1 to " << MAXTAB << ".\n"; cout << "\n"; cout << " Original data:\n"; cout << "\n"; cout << " X Y\n"; cout << "\n"; for ( j = 0; j < MAXTAB; j++ ) { xtab[j] = ( double ) j; ytab[j] = exp ( xtab[j] ); cout << " " << setw(10) << xtab[j] << " " << setw(10) << ytab[j] << "\n"; } xval = 2.5; true_value = exp ( xval ); cout << "\n"; cout << " Evaluate at X = " << xval << " where EXP(X) = " << true_value << "\n"; cout << "\n"; cout << " Order Approximate Y Error\n"; cout << "\n"; for ( ntab = 1; ntab <= MAXTAB; ntab++ ) { for ( j = 0; j < ntab; j++ ) { xtab[j] = ( double ) j; ytab[j] = exp ( xtab[j] ); } data_to_dif ( ntab, xtab, ytab, diftab ); yval = dif_val ( ntab, xtab, diftab, xval ); error = yval - true_value; cout << " " << setw(6) << ntab << " " << setw(10) << yval << " " << setw(10) << error << "\n"; } return; # undef MAXTAB } //****************************************************************************80 void test03 ( ) //****************************************************************************80 // // Purpose: // // TEST03 tests DIF_BASIS. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2007 // // Author: // // John Burkardt // { # define NTAB 5 double *diftab; int i; int j; int nstep = 9; double *pointer; int set = 3; double xhi; double xlo; double xtab[NTAB]; double xval; double yval; cout << "\n"; cout << "TEST03\n"; cout << " DIF_BASIS computes Lagrange basis polynomials\n"; cout << " in difference form.\n"; cout << "\n"; // // Set the base points. // r8vec_indicator ( NTAB, xtab ); r8vec_print ( NTAB, xtab, " The base points:" ); // // Get the difference tables for the basis polynomials and print them. // diftab = new double[NTAB*NTAB]; dif_basis ( NTAB, xtab, diftab ); cout << "\n"; cout << " The table of difference vectors defining the basis polynomials.\n"; cout << " Each ROW represents a polynomial.\n"; cout << "\n"; pointer = diftab; for ( i = 0; i < NTAB; i++ ) { cout << " "; for ( j = 0; j < NTAB; j++ ) { cout << setw(10) << *pointer << " "; pointer++; } cout << "\n"; } // // Evaluate basis polynomial 3 at a set of points. // cout << "\n"; cout << " Evaluate basis polynomial #" << set << " at a set of points.\n"; cout << "\n"; cout << " X Y\n"; cout << "\n"; xhi = ( double ) NTAB; xlo = 1.0; // // Advance pointer to beginning of data for basis polynomial SET. // pointer = diftab; for ( i = 1; i < set; i++ ) { for ( j = 1; j <= NTAB; j++ ) { pointer++; } } for ( i = 1; i <= nstep; i++ ) { xval = ( ( double ) ( nstep - i ) * xlo + ( double ) ( i - 1 ) * xhi ) / ( double ) ( nstep - 1 ); yval = dif_val ( NTAB, xtab, pointer, xval ); cout << " " << setw(10) << xval << " " << setw(10) << yval << "\n"; } delete [] diftab; return; # undef NTAB } //****************************************************************************80 void test05 ( ) //****************************************************************************80 // // Purpose: // // TEST05 tests DATA_TO_DIF_DISPLAY, DIF_PRINT, DIF_SHIFT_ZERO, DIF_TO_R8POLY; // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2007 // // Author: // // John Burkardt // { # define MAXTAB 10 double c[MAXTAB]; double diftab1[MAXTAB]; double diftab2[MAXTAB]; int i; int ntab; double x; double xtab1[MAXTAB]; double xtab2[MAXTAB]; double ytab1[MAXTAB]; double ytab2[MAXTAB]; cout << "\n"; cout << "TEST05\n"; cout << " DIF_TO_R8POLY converts a difference table to a polynomial;\n"; cout << " DIF_SHIFT_ZERO shifts a divided difference table to 0;\n"; cout << "\n"; cout << " These are equivalent operations\n"; cout << "\n"; // // Set XTAB, YTAB to X, F(X) // ntab = 4; for ( i = 0; i < ntab; i++ ) { x = ( double ) ( i + 1 ); xtab1[i] = x; xtab2[i] = x; ytab1[i] = - 4.0 + x * ( 3.0 + x * ( - 2.0 + x ) ); ytab2[i] = ytab1[i]; } // // Compute and display the finite difference table. // data_to_dif_display ( ntab, xtab1, ytab1, diftab1 ); data_to_dif_display ( ntab, xtab2, ytab2, diftab2 ); // // Examine the corresponding polynomial. // dif_print ( ntab, xtab1, diftab1, " The divided difference table:" ); // // Shift to zero using DIF_SHIFT_ZERO. // dif_shift_zero ( ntab, xtab1, diftab1 ); r8poly_print ( ntab, diftab1, " The polynomial using DIF_SHIFT_ZERO:" ); // // Shift to zero using DIF_TO_R8POLY. // dif_to_r8poly ( ntab, xtab2, diftab2, c ); r8poly_print ( ntab, c, " The polynomial using DIF_TO_R8POLY:" ); return; # undef MAXTAB } //****************************************************************************80 void test06 ( ) //****************************************************************************80 // // Purpose: // // TEST06 tests R8POLY*. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2007 // // Author: // // John Burkardt // { # define N 5 int i; double poly_cof[N]; double poly_cof2[N+1]; double poly_cof3[N-1]; double xval; double yval; double yval2; double yval3; cout << "\n"; cout << "TEST06\n"; cout << " R8POLY_ANT_COF computes the coefficients of the\n"; cout << " antiderivative of a polynomial;\n"; cout << " R8POLY_ANT_VAL evaluates the antiderivative of\n"; cout << " a polynomial;\n"; cout << " R8POLY_DER_COF computes the coefficients of the\n"; cout << " derivative of a polynomial;\n"; cout << " R8POLY_DER_VAL evaluates the derivative of\n"; cout << " a polynomial;\n"; cout << " R8POLY_PRINT prints a polynomial;\n"; cout << " R8POLY_VAL evaluates a polynomial.\n"; for ( i = 0; i <= N; i++ ) { poly_cof[i] = ( double ) ( i + 1 ); } r8poly_print ( N, poly_cof, " The initial polynomial:" ); r8poly_ant_cof ( N, poly_cof, poly_cof2 ); r8poly_print ( N+1, poly_cof2, " The antiderivative polynomial:" ); r8poly_der_cof ( N, poly_cof, poly_cof3 ); r8poly_print ( N-1, poly_cof3, " The derivative polynomial:" ); cout << "\n"; cout << " Evaluate the polynomial, antiderivative and\n"; cout << " derivative, using only the original polynomial\n"; cout << " coefficients:\n"; cout << "\n"; cout << " X P(X) Anti_P(X) P'(X)\n"; cout << "\n"; for ( i = 0; i <= 2; i++ ) { xval = ( double ) i; yval = r8poly_val_horner ( N, poly_cof, xval ); yval2 = r8poly_ant_val ( N, poly_cof, xval ); yval3 = r8poly_der_val ( N, poly_cof, xval ); cout << " " << setw(10) << xval << " " << setw(10) << yval << " " << setw(10) << yval2 << " " << setw(10) << yval3 << "\n"; } return; # undef N } //****************************************************************************80 void test07 ( ) //****************************************************************************80 // // Purpose: // // TEST07 tests R8POLY_BASIS. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2007 // // Author: // // John Burkardt // { # define NTAB 5 int i; int j; int nstep = 9; double *pointer; double *polcof; int set = 3; double xhi; double xlo; double xtab[NTAB]; double xval; double yval; cout << "\n"; cout << "TEST07\n"; cout << " R8POLY_BASIS computes Lagrange basis polynomials\n"; cout << " in standard form.\n"; cout << "\n"; polcof = new double[NTAB*NTAB]; // // Set the base points. // r8vec_indicator ( NTAB, xtab ); // // Get the difference tables for the basis polynomials and print them. // r8poly_basis ( NTAB, xtab, polcof ); cout << "\n"; cout << " The table of difference vectors defining the basis polynomials.\n"; cout << " Each ROW represents a polynomial.\n"; cout << "\n"; pointer = polcof; for ( i = 0; i < NTAB; i++ ) { for ( j = 0; j < NTAB; j++ ) { cout << setw(10) << *pointer << " "; pointer++; } cout << "\n"; } // // Advance the pointer to the beginning of the data for basis polynomial SET. // pointer = polcof; for ( i = 1; i < set; i++ ) { for ( j = 1; j <= NTAB; j++ ) { pointer++; } } // // Print basis polynomial SET in polynomial form. // r8poly_print ( NTAB, pointer, " One basis polynomial in standard form:" ); // // Evaluate basis polynoimial SET at a set of points. // cout << "\n"; cout << " Evaluate basis polynomial #" << set << " at a set of points.\n"; cout << "\n"; cout << " X Y\n"; cout << "\n"; xhi = ( double ) NTAB; xlo = 1.0; for ( i = 1; i <= nstep; i++ ) { xval = ( ( double ) ( nstep - i ) * xlo + ( double ) ( i - 1 ) * xhi ) / ( double ) ( nstep - 1 ); yval = r8poly_val_horner ( NTAB, pointer, xval ); cout << " " << setw(10) << xval << " " << setw(10) << yval << "\n"; } delete [] polcof; return; # undef NTAB } //****************************************************************************80 void test08 ( ) //****************************************************************************80 // // Purpose: // // TEST08 tests R8POLY_SHIFT. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2007 // // Author: // // John Burkardt // { # define N 3 int i; double poly_cof[N]; double scale; double shift; scale = 2.0; shift = +3.0; poly_cof[0] = +6.0; poly_cof[1] = -1.0; poly_cof[2] = 2.0; cout << "\n"; cout << "TEST08\n"; cout << " R8POLY_SHIFT shifts polynomial coefficients.\n"; cout << "\n"; cout << " Polynomial coefficients for argument X\n"; cout << "\n"; for ( i = 0; i < N; i++ ) { cout << " " << setw(6) << i << " " << setw(10) << poly_cof[i] << "\n"; } r8poly_shift ( scale, shift, N, poly_cof ); cout << "\n"; cout << " SCALE = " << scale << "\n"; cout << " SHIFT = " << shift << "\n"; cout << "\n"; cout << " Polynomial coefficients for argument Z = SCALE * X + SHIFT:\n"; cout << "\n"; for ( i = 0; i < N; i++ ) { cout << " " << setw(6) << i << " " << setw(10) << poly_cof[i] << "\n"; } return; # undef N } //****************************************************************************80 void test16 ( ) //****************************************************************************80 // // Purpose: // // TEST16 tests NCC_RULE; // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2007 // // Author: // // John Burkardt // { # define NORDER 8 int i; double weight[NORDER]; double xtab[NORDER]; cout << "\n"; cout << "TEST16\n"; cout << " NCC_RULE computes closed Newton Cotes formulas;\n"; cout << "\n"; ncc_rule ( NORDER, xtab, weight ); cout << "\n"; cout << " Newton-Cotes Closed Quadrature Rule:\n"; cout << "\n"; cout << " Abscissa Weight\n"; cout << "\n"; for ( i = 0; i < NORDER; i++ ) { cout << " " << setw(6) << i+1 << " " << setw(10) << xtab[i] << " " << setw(10) << weight[i] << "\n"; } return; # undef NORDER } //****************************************************************************80 void test17 ( ) //****************************************************************************80 // // Purpose: // // TEST17 tests NCO_RULE. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2007 // // Author: // // John Burkardt // { # define NORDER 8 int i; double weight[NORDER]; double xtab[NORDER]; cout << "\n"; cout << "TEST17\n"; cout << " NCO_RULE computes open Newton Cotes formulas.\n"; cout << "\n"; nco_rule ( NORDER, xtab, weight ); cout << "\n"; cout << " Newton-Cotes Open Quadrature Rule:\n"; cout << "\n"; cout << " Abscissa Weight\n"; cout << "\n"; for ( i = 0; i < NORDER; i++ ) { cout << " " << setw(6) << i+1 << " " << setw(10) << xtab[i] << " " << setw(10) << weight[i] << "\n"; } return; # undef NORDER } //****************************************************************************80 void test18 ( ) //****************************************************************************80 // // Purpose: // // TEST18 tests ROOTS_TO_DIF and DIF_TO_R8POLY. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2007 // // Author: // // John Burkardt // { # define MAXROOTS 4 double c[MAXROOTS+1]; double diftab[MAXROOTS+1]; int nroots; int ntab; double roots[MAXROOTS]; double xtab[MAXROOTS+1]; cout << "\n"; cout << "TEST18\n"; cout << " ROOTS_TO_DIF computes a divided difference\n"; cout << " polynomial with the given roots;\n"; cout << " DIF_TO_R8POLY converts it to a standard form polynomial.\n"; cout << "\n"; nroots = 1; roots[0] = 3.0; r8vec_print ( nroots, roots, " The roots:" ); roots_to_dif ( nroots, roots, &ntab, xtab, diftab ); dif_to_r8poly ( ntab, xtab, diftab, c ); r8poly_print ( ntab, c, " The polynomial:" ); nroots = 2; roots[0] = 3.0; roots[1] = 1.0; r8vec_print ( nroots, roots, " The roots:" ); roots_to_dif ( nroots, roots, &ntab, xtab, diftab ); dif_to_r8poly ( ntab, xtab, diftab, c ); r8poly_print ( ntab, c, " The polynomial:" ); nroots = 3; roots[0] = 3.0; roots[1] = 1.0; roots[2] = 2.0; r8vec_print ( nroots, roots, " The roots:" ); roots_to_dif ( nroots, roots, &ntab, xtab, diftab ); dif_to_r8poly ( ntab, xtab, diftab, c ); r8poly_print ( ntab, c, " The polynomial:" ); nroots = 4; roots[0] = 3.0; roots[1] = 1.0; roots[2] = 2.0; roots[3] = 4.0; r8vec_print ( nroots, roots, " The roots:" ); roots_to_dif ( nroots, roots, &ntab, xtab, diftab ); dif_to_r8poly ( ntab, xtab, diftab, c ); r8poly_print ( ntab, c, " The polynomial:" ); return; # undef MAXTAB } //****************************************************************************80 void test19 ( ) //****************************************************************************80 // // Purpose: // // TEST19 tests ROOTS_TO_R8POLY. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2007 // // Author: // // John Burkardt // { # define MAXROOT 5 double c[MAXROOT+1]; int nc; int nroot; double roots[MAXROOT]; cout << "\n"; cout << "TEST19\n"; cout << " ROOTS_TO_R8POLY computes polynomial coefficients from roots.\n"; cout << "\n"; nroot = 1; roots[0] = 3.0; r8vec_print ( nroot, roots, " The roots:" ); roots_to_r8poly ( nroot, roots, &nc, c ); r8poly_print ( nc, c, " The polynomial:" ); nroot = 2; roots[0] = 3.0; roots[1] = 1.0; r8vec_print ( nroot, roots, " The roots:" ); roots_to_r8poly ( nroot, roots, &nc, c ); r8poly_print ( nc, c, " The polynomial:" ); nroot = 3; roots[0] = 3.0; roots[1] = 1.0; roots[2] = 2.0; r8vec_print ( nroot, roots, " The roots:" ); roots_to_r8poly ( nroot, roots, &nc, c ); r8poly_print ( nc, c, " The polynomial:" ); nroot = 4; roots[0] = 3.0; roots[1] = 1.0; roots[2] = 2.0; roots[3] = 4.0; r8vec_print ( nroot, roots, " The roots:" ); roots_to_r8poly ( nroot, roots, &nc, c ); r8poly_print ( nc, c, " The polynomial:" ); return; # undef MAXROOT } //****************************************************************************80 void test20 ( ) //****************************************************************************80 // // Purpose: // // TEST20 tests DIF_DERIVK_TABLE; // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 June 2013 // // Author: // // John Burkardt // { double *c0; double *d0; double *d1; double *d2; double *d3; double *d4; double *f0; int i; int j; int k; int n0; int n1; int n2; int n3; int n4; double x; double *x0; double *x1; double *x2; double *x3; double *x4; double y0; double y1; double y2; double y3; double y4; cout << "\n"; cout << "TEST20\n"; cout << " For a divided difference polynomial:\n"; cout << " DIF_DERIVK_TABLE computes the K-th derivative;\n"; // // Set the 0 data points. // n0 = 5; x0 = new double[n0]; f0 = new double[n0]; for ( i = 0; i < 5; i++ ) { x0[i] = ( double ) ( i - 2 ); } // // Set data for x^4/24+x^3/3+x^2/2+x+1 // for ( j = 0; j < n0; j++ ) { f0[j] = 1.0; for ( i = 4; 1 <= i; i-- ) { f0[j] = f0[j] * x0[j] / ( double ) ( i ) + 1.0; } } // // Compute the difference table. // d0 = new double[n0]; data_to_dif ( n0, x0, f0, d0 ); dif_print ( n0, x0, d0, " The divided difference polynomial P0:" ); c0 = ( double * ) malloc ( n0 * sizeof ( double ) ); dif_to_r8poly ( n0, x0, d0, c0 ); r8poly_print ( n0, c0, " Using DIF_TO_R8POLY" ); // // Compute the difference table for the K=1 derivative. // k = 1; n1 = n0 - k; x1 = new double[n1]; d1 = new double[n1]; dif_derivk_table ( n0, x0, d0, k, x1, d1 ); // // Compute the difference table for the K=2 derivative. // k = 2; n2 = n0 - k; x2 = new double[n2]; d2 = new double[n2]; dif_derivk_table ( n0, x0, d0, k, x2, d2 ); // // Compute the difference table for the K=3 derivative. // k = 3; n3 = n0 - k; x3 = new double[n3]; d3 = new double[n3]; dif_derivk_table ( n0, x0, d0, k, x3, d3 ); // // Compute the difference table for the K=4 derivative. // k = 4; n4 = n0 - k; x4 = new double[n4]; d4 = new double[n4]; dif_derivk_table ( n0, x0, d0, k, x4, d4 ); // // Evaluate all 5 polynomials. // cout << "\n"; cout << " Evaluate difference tables for the function P0\n"; cout << " and its first four derivatives, P1...P4.\n"; cout << "\n"; cout << " X P0 P1 P2 P3 P4\n"; cout << "\n"; for ( i = 0; i <= 10; i++ ) { x = ( double ) ( i ) / 5.0; y0 = dif_val ( n0, x0, d0, x ); y1 = dif_val ( n1, x1, d1, x ); y2 = dif_val ( n2, x2, d2, x ); y3 = dif_val ( n3, x3, d3, x ); y4 = dif_val ( n4, x4, d4, x ); cout << " " << setw(8) << x << " " << setw(8) << y0 << " " << setw(8) << y1 << " " << setw(8) << y2 << " " << setw(8) << y3 << " " << setw(8) << y4 << "\n"; } delete [] c0; delete [] d0; delete [] d1; delete [] d2; delete [] d3; delete [] d4; delete [] f0; delete [] x0; delete [] x1; delete [] x2; delete [] x3; delete [] x4; return; } //****************************************************************************80 void test21 ( ) //****************************************************************************80 // // Purpose: // // TEST21 tests DIF_BASIS_DERIV; // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 June 2013 // // Author: // // John Burkardt // { double *c; double *ddp; int nd = 3; double *xd; double *xdp; cout << "\n"; cout << "TEST21\n"; cout << " DIF_BASIS_DERIV computes difference tables for\n"; cout << " the first derivative of each Lagrange basis.\n"; xd = new double[nd]; xdp = new double[nd-1]; ddp = new double[(nd-1)*nd]; xd[0] = -2.0; xd[1] = 1.0; xd[2] = 5.0; dif_basis_deriv ( nd, xd, xdp, ddp ); // // Because the difference tables were shifted to all 0 abscissas, // they contain the polynomial coefficients. // r8mat_transpose_print ( nd - 1, nd, ddp, " Lagrange basis derivative polynomial coefficients:" ); c = new double[nd-1]; dif_to_r8poly ( nd - 1, xdp, ddp+0*(nd-1), c ); r8poly_print ( nd - 1, c, " P1'=-(2x-6)/21" ); dif_to_r8poly ( nd - 1, xdp, ddp+1*(nd-1), c ); r8poly_print ( nd - 1, c, " P2'=-(2x-3)/12" ); dif_to_r8poly ( nd - 1, xdp, ddp+2*(nd-1), c ); r8poly_print ( nd - 1, c, " P3'=(2x+1)/28" ); delete [] c; delete [] ddp; delete [] xd; delete [] xdp; return; } //****************************************************************************80 void test22 ( ) //****************************************************************************80 // // Purpose: // // TEST22 tests DIF_BASIS_DERIVK; // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 June 2013 // // Author: // // John Burkardt // { double *c; double *ddp; int k = 2; int nd = 5; double *xd; double *xdp; cout << "\n"; cout << "TEST22\n"; cout << " DIF_BASIS_DERIVK computes difference tables for\n"; cout << " the K-th derivative of each Lagrange basis.\n"; xd = new double[nd]; xdp = new double[nd-k]; ddp = new double[(nd-k)*nd]; xd[0] = 1.0; xd[1] = 2.0; xd[2] = 3.0; xd[3] = 4.0; xd[4] = 5.0; dif_basis_derivk ( nd, xd, k, xdp, ddp ); // // Because the difference tables were shifted to all 0 abscissas, // they contain the polynomial coefficients. // r8mat_transpose_print ( nd - k, nd, ddp, " Lagrange basis K-th derivative polynomial coefficients:" ); c = new double[nd-k]; dif_to_r8poly ( nd - k, xdp, ddp+0*(nd-k), c ); r8poly_print ( nd - k, c, " P1''=(12x^2-84x+142)/24" ); dif_to_r8poly ( nd - k, xdp, ddp+1*(nd-k), c ); r8poly_print ( nd - k, c, " P2''=-2x^2+13x-59/3" ); dif_to_r8poly ( nd - k, xdp, ddp+2*(nd-k), c ); r8poly_print ( nd - k, c, " P3''=3x^2-18x+49/2" ); dif_to_r8poly ( nd - k, xdp, ddp+3*(nd-k), c ); r8poly_print ( nd - k, c, " P4''=-2x^2+11x-41/3" ); dif_to_r8poly ( nd - k, xdp, ddp+4*(nd-k), c ); r8poly_print ( nd - k, c, " P5''=(6x^2-30x+35)/12" ); delete [] c; delete [] ddp; delete [] xd; delete [] xdp; return; }