# include # include # include # include # include # include using namespace std; # include "doomsday.hpp" //****************************************************************************80 int doomsday_gregorian ( int y, int m, int d ) //****************************************************************************80 // // Purpose: // // DOOMSDAY_GREGORIAN: weekday given any date in Gregorian calendar. // // Discussion: // // This procedure does not include any procedure to switch to the Julian // calendar for dates early enough that that calendar was used instead. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 May 2012 // // Author: // // John Burkardt // // Reference: // // John Conway, // Tomorrow is the Day After Doomsday, // Eureka, // Volume 36, October 1973, pages 28-31. // // Parameters: // // Input, int Y, M, D, the year, month and day of the date. // Note that the year must be positive. // // Output, int DOOMSDAY_GREGORIAN, the weekday of the date. // { int anchor[4] = { 1, 6, 4, 3 }; int c; int drd; int drdr; int l; int mdoom[12] = { 3, 28, 0, 4, 9, 6, 11, 8, 5, 10, 7, 12 }; int w; int ydoom; int yy; int yy12d; int yy12r; int yy12r4d; // // Refuse to handle Y <= 0. // if ( y <= 0 ) { cerr << "\n"; cerr << "DOOMSDAY_GREGORIAN - Fatal error!\n"; cerr << " Y <= 0.\n"; exit ( 1 ); } // // Determine the century C. // c = y / 100; // // Determine the last two digits of the year, YY // yy = y % 100; // // Divide the last two digits of the year by 12. // yy = y % 100; yy12d = yy / 12; yy12r = yy % 12; yy12r4d = yy12r / 4; drd = yy12d + yy12r + yy12r4d; drdr = drd % 7; ydoom = anchor[ ( c - 1 ) % 4 ] + drdr; ydoom = i4_wrap ( ydoom, 1, 7 ); // // If M = 1 or 2, and leap year, add 1. // if ( ( m == 1 || m == 2 ) && year_is_leap_gregorian ( y ) ) { l = 1; } else { l = 0; } w = ydoom + ( d - mdoom[m-1] - l ); w = i4_wrap ( w, 1, 7 ); return w; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_modp ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_MODP returns the nonnegative remainder of I4 division. // // Discussion: // // If // NREM = I4_MODP ( I, J ) // NMULT = ( I - NREM ) / J // then // I = J * NMULT + NREM // where NREM is always nonnegative. // // The MOD function computes a result with the same sign as the // quantity being divided. Thus, suppose you had an angle A, // and you wanted to ensure that it was between 0 and 360. // Then mod(A,360) would do, if A was positive, but if A // was negative, your result would be between -360 and 0. // // On the other hand, I4_MODP(A,360) is between 0 and 360, always. // // I J MOD I4_MODP I4_MODP Factorization // // 107 50 7 7 107 = 2 * 50 + 7 // 107 -50 7 7 107 = -2 * -50 + 7 // -107 50 -7 43 -107 = -3 * 50 + 43 // -107 -50 -7 43 -107 = 3 * -50 + 43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number to be divided. // // Input, int J, the number that divides I. // // Output, int I4_MODP, the nonnegative remainder when I is // divided by J. // { int value; if ( j == 0 ) { cerr << "\n"; cerr << "I4_MODP - Fatal error!\n"; cerr << " I4_MODP ( I, J ) called with J = " << j << "\n"; exit ( 1 ); } value = i % j; if ( value < 0 ) { value = value + abs ( j ); } return value; } //****************************************************************************80 int i4_wrap ( int ival, int ilo, int ihi ) //****************************************************************************80 // // Purpose: // // I4_WRAP forces an I4 to lie between given limits by wrapping. // // Example: // // ILO = 4, IHI = 8 // // I Value // // -2 8 // -1 4 // 0 5 // 1 6 // 2 7 // 3 8 // 4 4 // 5 5 // 6 6 // 7 7 // 8 8 // 9 4 // 10 5 // 11 6 // 12 7 // 13 8 // 14 4 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int IVAL, an integer value. // // Input, int ILO, IHI, the desired bounds for the integer value. // // Output, int I4_WRAP, a "wrapped" version of IVAL. // { int jhi; int jlo; int value; int wide; jlo = i4_min ( ilo, ihi ); jhi = i4_max ( ilo, ihi ); wide = jhi + 1 - jlo; if ( wide == 1 ) { value = jlo; } else { value = jlo + i4_modp ( ival - jlo, wide ); } return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 string weekday_to_name_common ( int w ) //****************************************************************************80 // // Purpose: // // WEEKDAY_TO_NAME_COMMON returns the name of a Common weekday. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 March 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int W, the weekday index. // // Output, string WEEKDAY_TO_NAME_COMMON, the weekday name. // { string s; static string weekday_list[7] = { "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday" }; if ( 1 <= w && w <= 7 ) { s = weekday_list[w-1]; return s; } else { cerr << "\n"; cerr << "WEEKDAY_TO_NAME_COMMON\n"; cerr << " Illegal weekday.\n"; exit ( 1 ); } } //****************************************************************************80 void weekday_values ( int &n_data, int &y, int &m, int &d, int &w ) //****************************************************************************80 // // Purpose: // // WEEKDAY_VALUES returns the day of the week for various dates. // // Discussion: // // The CE or Common Era calendar is used, under the // hybrid Julian/Gregorian Calendar, with a transition from Julian // to Gregorian. The day after 04 October 1582 was 15 October 1582. // // The year before 1 AD or CE is 1 BC or BCE. In this data set, // years BC/BCE are indicated by a negative year value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 2012 // // Author: // // John Burkardt // // Reference: // // Edward Reingold, Nachum Dershowitz, // Calendrical Calculations: The Millennium Edition, // Cambridge University Press, 2001, // ISBN: 0 521 77752 6 // LC: CE12.R45. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &Y, &M, &D, the Common Era date. // // Output, int &W, the day of the week. Sunday = 1. // { # define N_MAX 34 static int d_vec[N_MAX] = { 30, 8, 26, 3, 7, 18, 7, 19, 14, 18, 16, 3, 26, 20, 4, 25, 31, 9, 24, 10, 30, 24, 19, 2, 27, 19, 25, 29, 19, 7, 17, 25, 10, 18 }; static int m_vec[N_MAX] = { 7, 12, 9, 10, 1, 5, 11, 4, 10, 5, 3, 3, 3, 4, 6, 1, 3, 9, 2, 6, 6, 7, 6, 8, 3, 4, 8, 9, 4, 10, 3, 2, 11, 7 }; static int w_vec[N_MAX] = { 1, 4, 4, 1, 4, 2, 7, 1, 7, 1, 6, 7, 6, 1, 1, 4, 7, 7, 7, 4, 1, 6, 1, 2, 4, 1, 1, 2, 2, 5, 3, 1, 4, 1 }; static int y_vec[N_MAX] = { - 587, - 169, 70, 135, 470, 576, 694, 1013, 1066, 1096, 1190, 1240, 1288, 1298, 1391, 1436, 1492, 1553, 1560, 1648, 1680, 1716, 1768, 1819, 1839, 1903, 1929, 1941, 1943, 1943, 1992, 1996, 2038, 2094 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; y = 0; m = 0; d = 0; w = 0; } else { y = y_vec[n_data-1]; m = m_vec[n_data-1]; d = d_vec[n_data-1]; w = w_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 bool year_is_leap_gregorian ( int y ) //****************************************************************************80 // // Purpose: // // YEAR_IS_LEAP_GREGORIAN returns TRUE if the Gregorian year was a leap year. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 May 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int Y, the year to be checked. // // Output, bool YEAR_IS_LEAP_GREGORIAN, TRUE if the year was a leap year, // FALSE otherwise. // { bool value; if ( y <= 0 ) { cerr << "\n"; cerr << "YEAR_IS_LEAP_GREGORIAN - Fatal error!\n"; cerr << " This function will not accept nonpositive years.\n"; exit ( 1 ); } if ( ( y % 400 ) == 0 ) { value = true; } else if ( ( y % 100 ) == 0 ) { value = false; } else if ( ( y % 4 ) == 0 ) { value = true; } else { value = false; } return value; }