# include # include # include # include # include # include using namespace std; # include "edge.hpp" int main ( ); void test01 ( ); void test02 ( ); void test03 ( ); void test035 ( ); void test036 ( ); void test037 ( ); void test04 ( ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // EDGE_PRB tests the EDGE library. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 September 2014 // // Author: // // John Burkardt // { timestamp ( ); cout << "\n"; cout << "EDGE_PRB\n"; cout << " C++ version.\n"; cout << " Test the EDGE library.\n"; test01 ( ); test02 ( ); test03 ( ); test035 ( ); test036 ( ); test037 ( ); test04 ( ); // // Terminate. // cout << "\n"; cout << "EDGE_PRB\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void test01 ( ) //****************************************************************************80 // // Purpose: // // TEST01 plots functions with jump discontinuities. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2014 // // Author: // // John Burkardt // // Reference: // // Rick Archibald, Anne Gelb, Jungho Yoon, // Polynomial fitting for edge detection in irregularly sampled signals // and images, // SIAM Journal on Numerical Analysis, // Volume 43, Number 1, 2006, pages 259-279. // { string command_filename; ofstream command_unit; string data_filename; ofstream data_unit; double *f; string header; int i; int n; int seed; int test; int test_num; string title; double *x; double x_max; double x_min; cout << "\n"; cout << "TEST01:\n"; cout << " Plot 1D test functions.\n"; test_num = 7; for ( test = 1; test <= test_num; test++ ) { if ( test == 1 ) { n = 101; x_min = -1.0; x_max = +1.0; x = r8vec_linspace_new ( n, x_min, x_max ); header = "fx1"; f = fx1_vec ( n, x ); title = "1D Test Function #1"; } else if ( test == 2 ) { n = 101; x_min = -1.0; x_max = +1.0; x = r8vec_linspace_new ( n, x_min, x_max ); header = "fx2"; f = fx2_vec ( n, x ); title = "1D Test Function #2"; } else if ( test == 3 ) { n = 101; x_min = -1.0; x_max = +1.0; x = r8vec_linspace_new ( n, x_min, x_max ); header = "fx3"; f = fx3_vec ( n, x ); title = "1D Test Function #3"; } else if ( test == 4 ) { n = 101; x_min = 0.0; x_max = +1.0; x = r8vec_linspace_new ( n, x_min, x_max ); header = "fx4"; f = fx4_vec ( n, x ); title = "1D Test Function #4"; } else if ( test == 5 ) { n = 101; x_min = -1.0; x_max = +1.0; x = r8vec_linspace_new ( n, x_min, x_max ); header = "fx5"; f = fx5_vec ( n, x ); title = "1D Test Function #5"; } else if ( test == 6 ) { n = 101; x_min = 0.0; x_max = +1.0; x = r8vec_linspace_new ( n, x_min, x_max ); header = "fx6"; f = fx6_vec ( n, x ); title = "1D Test Function #6"; } else if ( test == 7 ) { n = 101; x_min = 0.0; x_max = +1.0; x = r8vec_linspace_new ( n, x_min, x_max ); header = "fx7"; f = fx7_vec ( n, x ); title = "1D Test Function #7"; } data_filename = header + "_data.txt"; data_unit.open ( data_filename.c_str ( ) ); for ( i = 0; i < n; i++ ) { data_unit << x[i] << " " << f[i] << "\n"; } data_unit.close ( ); cout << " Created data file '" << data_filename << "'\n"; command_filename = header + "_commands.txt"; command_unit.open ( command_filename.c_str ( ) ); command_unit << "# " << command_filename << "\n"; command_unit << "#\n"; command_unit << "# Usage:\n"; command_unit << "# gnuplot < " << command_filename << "\n"; command_unit << "#\n"; command_unit << "set term png\n"; command_unit << "set output '" << header << ".png'\n"; command_unit << "set xlabel '<--- X --->'\n"; command_unit << "set ylabel '<--- Y --->'\n"; command_unit << "set title '" << title << "'\n"; command_unit << "set grid\n"; command_unit << "set style data lines\n"; command_unit << "plot '" << data_filename << "' using 1:2 with points lt 3 pt 4 linecolor rgb 'blue'\n"; command_unit << "quit\n"; command_unit.close ( ); cout << " Created command file '" << command_filename << "'\n"; delete [] f; } delete [] x; return; } //****************************************************************************80 void test02 ( ) //****************************************************************************80 // // Purpose: // // TEST02 plots a function with a jump discontinuity along a circle. // // Discussion: // // This is example 4.1 in the reference. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 February 2014 // // Author: // // John Burkardt // // Reference: // // Rick Archibald, Anne Gelb, Jungho Yoon, // Polynomial fitting for edge detection in irregularly sampled signals // and images, // SIAM Journal on Numerical Analysis, // Volume 43, Number 1, 2006, pages 259-279. // { string command_filename; ofstream command_unit; string data_filename; ofstream data_unit; double fxy; string header; int i; int j; int n; int test; int test_num; string title; double *x; double x_max; double x_min; double *y; double y_max; double y_min; cout << "\n"; cout << "TEST02:\n"; cout << " Plot 2D test function #1 with jump along circle.\n"; header = "fxy1"; title = "2D test function #1 with discontinuity along circle"; n = 101; x_min = -1.0; x_max = +1.0; x = r8vec_linspace_new ( n, x_min, x_max ); y_min = -1.0; y_max = +1.0; y = r8vec_linspace_new ( n, y_min, y_max ); data_filename = header + "_data.txt"; data_unit.open ( data_filename.c_str ( ) ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { fxy = fxy1 ( x[i], y[j] ); data_unit << x[i] << " " << y[j] << " " << fxy << "\n"; } data_unit << "\n"; } data_unit.close ( ); cout << " Created data file '" << data_filename << "'\n"; command_filename = header + "_commands.txt"; command_unit.open ( command_filename.c_str ( ) ); command_unit << "# " << command_filename << "\n"; command_unit << "#\n"; command_unit << "# Usage:\n"; command_unit << "# gnuplot < " << command_filename << "\n"; command_unit << "#\n"; command_unit << "set term png\n"; command_unit << "set output '" << header << ".png'\n"; command_unit << "set view 120, 77\n"; command_unit << "set hidden3d\n"; command_unit << "set timestamp\n"; command_unit << "set xlabel '<--- X --->'\n"; command_unit << "set ylabel '<--- Y --->'\n"; command_unit << "set zlabel '<--- Z --->'\n"; command_unit << "set title '" << title << "'\n"; command_unit << "set grid\n"; command_unit << "set style data lines\n"; command_unit << "splot '" << data_filename << "' with lines\n"; command_unit << "quit\n"; command_unit.close ( ); cout << " Created command file '" << command_filename << "'\n"; delete [] x; delete [] y; return; } //****************************************************************************80 void test03 ( ) //****************************************************************************80 // // Purpose: // // TEST03 plots a function with a jump discontinuity along a circle. // // Discussion: // // This is example 4.2 in the reference. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 February 2014 // // Author: // // John Burkardt // // Reference: // // Rick Archibald, Anne Gelb, Jungho Yoon, // Polynomial fitting for edge detection in irregularly sampled signals // and images, // SIAM Journal on Numerical Analysis, // Volume 43, Number 1, 2006, pages 259-279. // { string command_filename; ofstream command_unit; string data_filename; ofstream data_unit; double fxy; string header; int i; int j; int n; int test; int test_num; string title; double *x; double x_max; double x_min; double *y; double y_max; double y_min; cout << "\n"; cout << "TEST03:\n"; cout << " Plot 2D test function #2, the Shepp Logan phantom.\n"; header = "fxy2"; title = "2D test function #2, the Shepp Logan phantom"; n = 101; x_min = -1.0; x_max = +1.0; x = r8vec_linspace_new ( n, x_min, x_max ); y_min = -1.0; y_max = +1.0; y = r8vec_linspace_new ( n, y_min, y_max ); data_filename = header + "_data.txt"; data_unit.open ( data_filename.c_str ( ) ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { fxy = fxy2 ( x[i], y[j] ); data_unit << x[i] << " " << y[j] << " " << fxy << "\n"; } data_unit << "\n"; } data_unit.close ( ); cout << " Created data file '" << data_filename << "'\n"; command_filename = header + "_commands.txt"; command_unit.open ( command_filename.c_str ( ) ); command_unit << "# " << command_filename << "\n"; command_unit << "#\n"; command_unit << "# Usage:\n"; command_unit << "# gnuplot < " << command_filename << "\n"; command_unit << "#\n"; command_unit << "set term png\n"; command_unit << "set output '" << header << ".png'\n"; command_unit << "set view 30, 75\n"; command_unit << "set hidden3d\n"; command_unit << "set timestamp\n"; command_unit << "set xlabel '<--- X --->'\n"; command_unit << "set ylabel '<--- Y --->'\n"; command_unit << "set zlabel '<--- Z --->'\n"; command_unit << "set title '" << title << "'\n"; command_unit << "set grid\n"; command_unit << "set style data lines\n"; command_unit << "splot '" << data_filename << "' with lines\n"; command_unit << "quit\n"; command_unit.close ( ); cout << " Created command file '" << command_filename << "'\n"; delete [] x; delete [] y; return; } //****************************************************************************80 void test035 ( ) //****************************************************************************80 // // Purpose: // // TEST035 plots a function with a jump discontinuity along a circle. // // Discussion: // // This is example 3.2 in the reference. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 September 2014 // // Author: // // John Burkardt // // Reference: // // Rick Archibald, Anne Gelb, Jungho Yoon, // Determining the location of discontinuities in the derivatives // of functions, // Applied Numerical Mathematics, // Volume 58, 2008, pages 577-592. // { string command_filename; ofstream command_unit; string data_filename; ofstream data_unit; double fxy; string header; int i; int j; int n; int test; int test_num; string title; double *x; double x_max; double x_min; double *y; double y_max; double y_min; cout << "\n"; cout << "TEST035:\n"; cout << " Plot 2D test function #3, the modified 2D Harten function.\n"; header = "fxy3"; title = "2D test function #3, the modified 2D Harten function"; n = 101; x_min = -1.0; x_max = +1.0; x = r8vec_linspace_new ( n, x_min, x_max ); y_min = -1.0; y_max = +1.0; y = r8vec_linspace_new ( n, y_min, y_max ); data_filename = header + "_data.txt"; data_unit.open ( data_filename.c_str ( ) ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { fxy = fxy3 ( x[i], y[j] ); data_unit << x[i] << " " << y[j] << " " << fxy << "\n"; } data_unit << "\n"; } data_unit.close ( ); cout << " Created data file '" << data_filename << "'\n"; command_filename = header + "_commands.txt"; command_unit.open ( command_filename.c_str ( ) ); command_unit << "# " << command_filename << "\n"; command_unit << "#\n"; command_unit << "# Usage:\n"; command_unit << "# gnuplot < " << command_filename << "\n"; command_unit << "#\n"; command_unit << "set term png\n"; command_unit << "set output '" << header << ".png'\n"; command_unit << "set view 30, 75\n"; command_unit << "set hidden3d\n"; command_unit << "set timestamp\n"; command_unit << "set xlabel '<--- X --->'\n"; command_unit << "set ylabel '<--- Y --->'\n"; command_unit << "set zlabel '<--- Z --->'\n"; command_unit << "set title '" << title << "'\n"; command_unit << "set grid\n"; command_unit << "set style data lines\n"; command_unit << "splot '" << data_filename << "' with lines\n"; command_unit << "quit\n"; command_unit.close ( ); cout << " Created command file '" << command_filename << "'\n"; delete [] x; delete [] y; return; } //****************************************************************************80 void test036 ( ) //****************************************************************************80 // // Purpose: // // TEST036 plots a function with a derivative discontinuity. // // Discussion: // // This is example 3.1 in the reference. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 September 2014 // // Author: // // John Burkardt // // Reference: // // Rick Archibald, Anne Gelb, Jungho Yoon, // Determining the location of discontinuities in the derivatives // of functions, // Applied Numerical Mathematics, // Volume 58, 2008, pages 577-592. // { string command_filename; ofstream command_unit; string data_filename; ofstream data_unit; double fxy; string header; int i; int j; int n; int test; int test_num; string title; double *x; double x_max; double x_min; double *y; double y_max; double y_min; cout << "\n"; cout << "TEST036:\n"; cout << " Plot 2D test function #4, the discontinuous medium wave, P(x,t).\n"; header = "fxy4"; title = "2D test function #4, the discontinuous medium wave, P(x,t)"; n = 101; x_min = -1.0; x_max = 0.0; x = r8vec_linspace_new ( n, x_min, x_max ); y_min = 0.0; y_max = 0.1; y = r8vec_linspace_new ( n, y_min, y_max ); data_filename = header + "_data.txt"; data_unit.open ( data_filename.c_str ( ) ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { fxy = fxy4 ( x[i], y[j] ); data_unit << x[i] << " " << y[j] << " " << fxy << "\n"; } data_unit << "\n"; } data_unit.close ( ); cout << " Created data file '" << data_filename << "'\n"; command_filename = header + "_commands.txt"; command_unit.open ( command_filename.c_str ( ) ); command_unit << "# " << command_filename << "\n"; command_unit << "#\n"; command_unit << "# Usage:\n"; command_unit << "# gnuplot < " << command_filename << "\n"; command_unit << "#\n"; command_unit << "set term png\n"; command_unit << "set output '" << header << ".png'\n"; command_unit << "set view 30, 45\n"; command_unit << "set hidden3d\n"; command_unit << "set timestamp\n"; command_unit << "set xlabel '<--- X --->'\n"; command_unit << "set ylabel '<--- Y --->'\n"; command_unit << "set zlabel '<--- Z --->'\n"; command_unit << "set title '" << title << "'\n"; command_unit << "set grid\n"; command_unit << "set style data lines\n"; command_unit << "splot '" << data_filename << "' with lines\n"; command_unit << "quit\n"; command_unit.close ( ); cout << " Created command file '" << command_filename << "'\n"; delete [] x; delete [] y; return; } //****************************************************************************80 void test037 ( ) //****************************************************************************80 // // Purpose: // // TEST037 plots a function with a derivative discontinuity. // // Discussion: // // This is example 3.1 in the reference. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 September 2014 // // Author: // // John Burkardt // // Reference: // // Rick Archibald, Anne Gelb, Jungho Yoon, // Determining the location of discontinuities in the derivatives // of functions, // Applied Numerical Mathematics, // Volume 58, 2008, pages 577-592. // { string command_filename; ofstream command_unit; string data_filename; ofstream data_unit; double fxy; string header; int i; int j; int n; int test; int test_num; string title; double *x; double x_max; double x_min; double *y; double y_max; double y_min; cout << "\n"; cout << "TEST037:\n"; cout << " Plot 2D test function #5, the discontinuous medium wave, U(x,t).\n"; header = "fxy5"; title = "2D test function #5, the discontinuous medium wave, U(x,t)"; n = 101; x_min = -1.0; x_max = 0.0; x = r8vec_linspace_new ( n, x_min, x_max ); y_min = 0.0; y_max = 0.1; y = r8vec_linspace_new ( n, y_min, y_max ); data_filename = header + "_data.txt"; data_unit.open ( data_filename.c_str ( ) ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { fxy = fxy5 ( x[i], y[j] ); data_unit << x[i] << " " << y[j] << " " << fxy << "\n"; } data_unit << "\n"; } data_unit.close ( ); cout << " Created data file '" << data_filename << "'\n"; command_filename = header + "_commands.txt"; command_unit.open ( command_filename.c_str ( ) ); command_unit << "# " << command_filename << "\n"; command_unit << "#\n"; command_unit << "# Usage:\n"; command_unit << "# gnuplot < " << command_filename << "\n"; command_unit << "#\n"; command_unit << "set term png\n"; command_unit << "set output '" << header << ".png'\n"; command_unit << "set view 30, 45\n"; command_unit << "set hidden3d\n"; command_unit << "set timestamp\n"; command_unit << "set xlabel '<--- X --->'\n"; command_unit << "set ylabel '<--- Y --->'\n"; command_unit << "set zlabel '<--- Z --->'\n"; command_unit << "set title '" << title << "'\n"; command_unit << "set grid\n"; command_unit << "set style data lines\n"; command_unit << "splot '" << data_filename << "' with lines\n"; command_unit << "quit\n"; command_unit.close ( ); cout << " Created command file '" << command_filename << "'\n"; delete [] x; delete [] y; return; } //****************************************************************************80 void test04 ( ) //****************************************************************************80 // // Purpose: // // TEST04 plots slices of a 3D function. // // Discussion: // // Although the slice plots look uninteresting, there is a lot of detail // hidden in the data in variations that are not obvious at first. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 February 2014 // // Author: // // John Burkardt // // Reference: // // Larry Shepp, // Computerized tomography and nuclear magnetic resonance, // Journal of Computer Assisted Tomography, // Volume 4, Number 1, February 1980, pages 94-107. // { string command_filename; ofstream command_unit; string data_filename; ofstream data_unit; double fxyz; string header; int i; int j; int k; int n; int test; int test_num; string title; double *x; double x_max; double x_min; double x_val; double *y; double y_max; double y_min; double y_val; double *z; double z_max; double z_min; double z_val; cout << "\n"; cout << "TEST04:\n"; cout << " Plot 3D test function #1, the Shepp Logan 3D phantom.\n"; test_num = 3; n = 101; x_min = -1.5; x_max = +1.5; x = r8vec_linspace_new ( n, x_min, x_max ); y_min = -1.5; y_max = +1.5; y = r8vec_linspace_new ( n, y_min, y_max ); z_min = -1.5; z_max = +1.5; z = r8vec_linspace_new ( n, z_min, z_max ); for ( test = 1; test <= test_num; test++ ) { if ( test == 1 ) { x_val = 0.0; title = "Slice X = 0.0"; header = "fxyz1_x"; } else if ( test == 2 ) { y_val = 0.0; title = "Slice Y = 0.0"; header = "fxyz1_y"; } else if ( test == 3 ) { z_val = - 0.1; title = "Slice Z = - 0.1"; header = "fxyz1_z"; } data_filename = header + "_data.txt"; data_unit.open ( data_filename.c_str ( ) ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { if ( test == 1 ) { fxyz = fxyz1 ( x_val, y[j], z[i] ); data_unit << y[j] << " " << z[i] << " " << fxyz << "\n"; } else if ( test == 2 ) { fxyz = fxyz1 ( x[j], y_val, z[i] ); data_unit << x[j] << " " << z[i] << " " << fxyz << "\n"; } else if ( test == 3 ) { fxyz = fxyz1 ( x[j], y[i], z_val ); data_unit << x[j] << " " << y[i] << " " << fxyz << "\n"; } } data_unit << "\n"; } data_unit.close ( ); cout << " Created data file '" << data_filename << "'\n"; command_filename = header + "_commands.txt"; command_unit.open ( command_filename.c_str ( ) ); command_unit << "# " << command_filename << "\n"; command_unit << "#\n"; command_unit << "# Usage:\n"; command_unit << "# gnuplot < " << command_filename << "\n"; command_unit << "#\n"; command_unit << "set term png\n"; command_unit << "set output '" << header << ".png'\n"; command_unit << "set view 20, 75\n"; command_unit << "set hidden3d\n"; command_unit << "set timestamp\n"; if ( test == 1 ) { command_unit << "set xlabel '<--- Y --->'\n"; command_unit << "set ylabel '<--- Z --->'\n"; command_unit << "set zlabel '<--- X --->'\n"; } else if ( test == 2 ) { command_unit << "set xlabel '<--- X --->'\n"; command_unit << "set ylabel '<--- Z --->'\n"; command_unit << "set zlabel '<--- Y --->'\n"; } else if ( test == 3 ) { command_unit << "set xlabel '<--- X --->'\n"; command_unit << "set ylabel '<--- Y --->'\n"; command_unit << "set zlabel '<--- Z --->'\n"; } command_unit << "set title '" << title << "'\n"; command_unit << "set grid\n"; command_unit << "set style data lines\n"; command_unit << "splot '" << data_filename << "' with lines\n"; command_unit << "quit\n"; command_unit.close ( ); cout << " Created command file '" << command_filename << "'\n"; } delete [] x; delete [] y; delete [] z; return; }