# include <cstdlib>
# include <iostream>
# include <iomanip>
# include <cmath>
# include <ctime>
# include <cstring>

using namespace std;

# include "eispack.hpp"

//****************************************************************************80

int bakvec ( int n, double t[], double e[], int m, double z[] )

//****************************************************************************80
//
//  Purpose:
//
//    BAKVEC determines eigenvectors by reversing the FIGI transformation.
//
//  Discussion:
//
//    This subroutine forms the eigenvectors of a nonsymmetric tridiagonal
//    matrix by back transforming those of the corresponding symmetric
//    matrix determined by FIGI.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    08 November 2012
//
//  Author:
//
//    Original FORTRAN77 version by Smith, Boyle, Dongarra, Garbow, Ikebe,
//    Klema, Moler.
//    C++ version by John Burkardt.
//
//  Reference:
//
//    James Wilkinson, Christian Reinsch,
//    Handbook for Automatic Computation,
//    Volume II, Linear Algebra, Part 2,
//    Springer, 1971,
//    ISBN: 0387054146,
//    LC: QA251.W67.
//
//    Brian Smith, James Boyle, Jack Dongarra, Burton Garbow,
//    Yasuhiko Ikebe, Virginia Klema, Cleve Moler,
//    Matrix Eigensystem Routines, EISPACK Guide,
//    Lecture Notes in Computer Science, Volume 6,
//    Springer Verlag, 1976,
//    ISBN13: 978-3540075462,
//    LC: QA193.M37.
//
//  Parameters:
//
//    Input, int N, the order of the matrix.
//
//    Input, double T[N*3], contains the nonsymmetric matrix.  Its
//    subdiagonal is stored in the positions 2:N of the first column,
//    its diagonal in positions 1:N of the second column,
//    and its superdiagonal in positions 1:N-1 of the third column.
//    T(1,1) and T(N,3) are arbitrary.
//
//    Input/output, double E[N].  On input, E(2:N) contains the
//    subdiagonal elements of the symmetric matrix.  E(1) is arbitrary.
//    On output, the contents of E have been destroyed.
//
//    Input, int M, the number of eigenvectors to be back
//    transformed.
//
//    Input/output, double Z[N*M], contains the eigenvectors.
//    On output, they have been transformed as requested.
//
//    Output, int BAKVEC, an error flag.
//    0, for normal return,
//    2*N+I, if E(I) is zero with T(I,1) or T(I-1,3) non-zero.
//    In this case, the symmetric matrix is not similar
//    to the original matrix, and the eigenvectors
//    cannot be found by this program.
//
{
  int i;
  int ierr;
  int j;

  ierr = 0;

  if ( m == 0 )
  {
    return ierr;
  }

  e[0] = 1.0;
  if ( n == 1 )
  {
    return ierr;
  }

  for ( i = 1; i < n; i++ )
  {
    if ( e[i] == 0.0 )
    {
      if ( t[i+0*3] != 0.0 || t[i-1+2*3] != 0.0 )
      {
        ierr = 2 * n + ( i + 1 );
        return ierr;
      }
      e[i] = 1.0;
    }
    else
    {
      e[i] = e[i-1] * e[i] / t[i-1+2*3];
    }
  }

  for ( j = 0; j < m; j++ )
  {
    for ( i = 1; i < n; i++ )
    {
      z[i+j*n] = z[i+j*n] * e[i];
    }
  }

  return ierr;
}
//****************************************************************************80

void bandr ( int n, int mb, double a[], double d[], double e[], double e2[], 
  int matz, double z[] )

//****************************************************************************80
//
//  Purpose:
//
//    BANDR reduces a symmetric band matrix to symmetric tridiagonal form.
//
//  Discussion:
//
//    This subroutine reduces a real symmetric band matrix
//    to a symmetric tridiagonal matrix using and optionally
//    accumulating orthogonal similarity transformations.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    13 November 2012
//
//  Author:
//
//    Original FORTRAN77 version by Smith, Boyle, Dongarra, Garbow, Ikebe,
//    Klema, Moler.
//    C++ version by John Burkardt.
//
//  Reference:
//
//    James Wilkinson, Christian Reinsch,
//    Handbook for Automatic Computation,
//    Volume II, Linear Algebra, Part 2,
//    Springer, 1971,
//    ISBN: 0387054146,
//    LC: QA251.W67.
//
//    Brian Smith, James Boyle, Jack Dongarra, Burton Garbow,
//    Yasuhiko Ikebe, Virginia Klema, Cleve Moler,
//    Matrix Eigensystem Routines, EISPACK Guide,
//    Lecture Notes in Computer Science, Volume 6,
//    Springer Verlag, 1976,
//    ISBN13: 978-3540075462,
//    LC: QA193.M37.
//
//  Parameters:
//
//    Input, int N, the order of the matrix.
//
//    Input, int MB, is the (half) band width of the matrix,
//    defined as the number of adjacent diagonals, including the principal
//    diagonal, required to specify the non-zero portion of the
//    lower triangle of the matrix.
//
//    Input/output, double A[N*MB].  On input, contains the lower
//    triangle of the symmetric band input matrix stored as an N by MB array.
//    Its lowest subdiagonal is stored in the last N+1-MB positions of the first
//    column, its next subdiagonal in the last N+2-MB positions of the second
//    column, further subdiagonals similarly, and finally its principal diagonal
//    in the N positions of the last column.  Contents of storages not part of
//    the matrix are arbitrary.  On output, A has been destroyed, except for
//    its last two columns which contain a copy of the tridiagonal matrix.
//
//    Output, double D[N], the diagonal elements of the tridiagonal
//    matrix.
//
//    Output, double E[N], the subdiagonal elements of the tridiagonal
//    matrix in E(2:N).  E(1) is set to zero.
//
//    Output, double E2[N], contains the squares of the corresponding
//    elements of E.  E2 may coincide with E if the squares are not needed.
//
//    Input, logical MATZ, should be set to TRUE if the transformation matrix is
//    to be accumulated, and to FALSE otherwise.
//
//    Output, double Z[N*N], the orthogonal transformation matrix
//    produced in the reduction if MATZ has been set to TRUE.  Otherwise, Z is
//    not referenced.
//
{
  double b1;
  double b2;
  double c2;
  double dmin;
  double dminrt;
  double f1;
  double f2;
  double g;
  int i;
  int i1;
  int i2;
  int j;
  int j1;
  int j2;
  int jj;
  int k;
  int kr;
  int l;
  int m1;
  int maxl;
  int maxr;
  int mr;
  int r;
  int r1;
  double s2;
  double u;
  int ugl;

  dmin = r8_epsilon ( );
  dminrt = sqrt ( dmin );
//
//  Initialize the diagonal scaling matrix.
//
  for ( i = 0; i < n; i++ )
  {
    d[i] = 1.0;
  }

  if ( matz )
  {
    r8mat_identity ( n, z );
  }
//
//  Is input matrix diagonal?
//
  if ( mb == 1 )
  {
    for ( i = 0; i < n; i++ )
    {
      d[i] = a[i+(mb-1)*n];
      e[i] = 0.0;
      e2[i] = 0.0;
    }
    return;
  }

  m1 = mb - 1;

  if ( m1 != 1 )
  {
    for ( k = 1; k <= n - 2; k++ )
    {
      maxr = i4_min ( m1, n - k );
      for ( r1 = 2; r1 <= maxr; r1++ )
      {
        r = maxr + 2 - r1;
        kr = k + r;
        mr = mb - r;
        g = a[kr-1+(mr-1)*n];
        a[kr-2+0*n] = a[kr-2+mr*n];
        ugl = k;

        for ( j = kr; j <= n; j = j + m1 )
        {
          j1 = j - 1;
          j2 = j1 - 1;

          if ( g == 0.0 )
          {
            break;
          }

          b1 = a[j1-1+0*n] / g;
          b2 = b1 * d[j1-1] / d[j-1];
          s2 = 1.0 / ( 1.0 + b1 * b2 );

          if ( s2 < 0.5 )
          {
            b1 = g / a[j1-1+0*n];
            b2 = b1 * d[j-1] / d[j1-1];
            c2 = 1.0 - s2;
            d[j1-1] = c2 * d[j1-1];
            d[j-1] = c2 * d[j-1];
            f1 = 2.0 * a[j-1+(m1-1)*n];
            f2 = b1 * a[j1-1+(mb-1)*n];
            a[j-1+(m1-1)*n] = -b2 * ( b1 * a[j-1+(m1-1)*n] - a[j-1+(mb-1)*n] ) - f2 + a[j-1+(m1-1)*n];
            a[j1-1+(mb-1)*n] = b2 * ( b2 * a[j-1+(mb-1)*n] + f1 ) + a[j1-1+(mb-1)*n];
            a[j-1+(mb-1)*n] = b1 * ( f2 - f1 ) + a[j-1+(mb-1)*n];

            for ( l = ugl; l <= j2; l++ )
            {
              i2 = mb - j + l;
              u = a[j1-1+i2*n] + b2 * a[j-1+(i2-1)*n];
              a[j-1+(i2-1)*n] = -b1 * a[j1-1+i2*n] + a[j-1+(i2-1)*n];
              a[j1-1+i2*n] = u;
            }

            ugl = j;
            a[j1-1+0*n] = a[j1+0*n] + b2 * g;

            if ( j != n )
            {
              maxl = i4_min ( m1, n - j1 );

              for ( l = 2; l <= maxl; l++ )
              {
                i1 = j1 + l;
                i2 = mb - l;
                u = a[i1-1+(i2-1)*n] + b2 * a[i1-1+i2*n];
                a[i1-1+i2*n] = -b1 * a[i1-1+(i2-1)*n] + a[i1-1+i2*n];
                a[i1-1+(i2-1)*n] = u;
              }

              i1 = j + m1;

              if ( i1 <= n )
              {
                g = b2 * a[i1-1+0*n];
              }
            }

            if ( matz )
            {
              for ( l = 1; l <= n; l++ )
              {
                u = z[l-1+(j1-1)*n] + b2 * z[l-1+(j-1)*n];
                z[l-1+(j-1)*n] = -b1 * z[l-1+(j1-1)*n] + z[l-1+(j-1)*n];
                z[l-1+(j1-1)*n] = u;
              }
            }
          }
          else
          {
            u = d[j1-1];
            d[j1-1] = s2 * d[j-1];
            d[j-1] = s2 * u;
            f1 = 2.0 * a[j-1+(m1-1)*n];
            f2 = b1 * a[j-1+(mb-1)*n];
            u = b1 * ( f2 - f1 ) + a[j1-1+(mb-1)*n];
            a[j-1+(m1-1)*n] = b2 * ( b1 * a[j-1+(m1-1)*n] - a[j1-1+(mb-1)*n] ) + f2 - a[j-1+(m1-1)*n];
            a[j1-1+(mb-1)*n] = b2 * ( b2 * a[j1-1+(mb-1)*n] + f1 ) + a[j-1+(mb-1)*n];
            a[j-1+(mb-1)*n] = u;

            for ( l = ugl; l <= j2; l++ )
            {
              i2 = mb - j + l;
              u = b2 * a[j1-1+i2*n] + a[j-1+(i2-1)*n];
              a[j-1+(i2-1)*n] = -a[j1-1+i2*n] + b1 * a[j-1+(i2-1)*n];
              a[j1-1+i2*n] = u;
            }

            ugl = j;
            a[j1-1+0*n] = b2 * a[j1-1+0*n] + g;
 
            if ( j != n )
            {
              maxl = i4_min ( m1, n - j1 );

              for ( l = 2; l <= maxl; l++ )
              {
                i1 = j1 + l;
                i2 = mb - l;
                u = b2 * a[i1-1+(i2-1)*n] + a[i1-1+i2*n];
                a[i1-1+i2*n] = -a[i1-1+(i2-1)*n] + b1 * a[i1-1+i2*n];
                a[i1-1+(i2-1)*n] = u;
              }

              i1 = j + m1;

              if ( i1 <= n )
              {
                g = a[i1-1+0*n];
                a[i1-1+0*n] = b1 * a[i1-1+0*n];
              }
            }

            if ( matz )
            {
              for ( l = 1; l <= n; l++ )
              {
                u = b2 * z[l-1+(j1-1)*n] + z[l-1+(j-1)*n];
                z[l-1+(j-1)*n] = -z[l-1+(j1-1)*n] + b1 * z[l-1+(j-1)*n];
                z[l-1+(j1-1)*n] = u;
              }
            }
          }
        }
      }
//
//  Rescale to avoid underflow or overflow.
//
      if ( ( k % 64 ) == 0 )
      {
        for ( j = k; j <= n; j++ )
        {
          if ( d[j-1] < dmin )
          {
            maxl = i4_max ( 1, mb + 1 - j );

            for ( jj = maxl; jj <= m1; jj++ )
            {
              a[j-1+(jj-1)*n] = dminrt * a[j-1+(jj-1)*n];
            }

            if ( j != n )
            {
              maxl = i4_min ( m1, n - j );

              for ( l = 1; l <= maxl; l++ )
              {
                i1 = j + l;
                i2 = mb - l;
                a[i1-1+(i2-1)*n] = dminrt * a[i1-1+(i2-1)*n];
              }
            }

            if ( matz )
            {
              for ( i = 1; i <= n; i++ )
              {
                z[i-1+(j-1)*n] = dminrt * z[i-1+(j-1)*n];
              }
            }

            a[j-1+(mb-1)*n] = dmin * a[j-1+(mb-1)*n];
            d[j-1] = d[j-1] / dmin;
          }
        }
      }
    }
  }
//
//  Form square root of scaling matrix.
//
  for ( i = 1; i < n; i++ )
  {
    e[i] = sqrt ( d[i] );
  }
  if ( matz )
  {
    for ( j = 1; j < n; j++ )
    {
      for ( i = 0; i < n; i++ )
      {
        z[i+j*n] = z[i+j*n] * e[j];
      }
    }
  }

  u = 1.0;

  for ( j = 1; j < n; j++ )
  {
    a[j+(m1-1)*n] = u * e[j] * a[j+(m1-1)*n];
    u = e[j];
    e2[j] = a[j+(m1-1)*n] * a[j+(m1-1)*n];
    a[j+(mb-1)*n] = d[j] * a[j+(mb-1)*n];
    d[j] = a[j+(mb-1)*n];
    e[j] = a[j+(m1-1)*n];
  }

  d[0] = a[0+(mb-1)*n];
  e[0] = 0.0;
  e2[0] = 0.0;

  return;
}
//****************************************************************************80

void cbabk2 ( int n, int low, int igh, double scale[], int m, double zr[], 
  double zi[] )

//****************************************************************************80
//
//  Purpose:
//
//    CBABK2 finds eigenvectors by undoing the CBAL transformation.
//
//  Discussion:
//
//    This subroutine forms the eigenvectors of a complex general
//    matrix by back transforming those of the corresponding
//    balanced matrix determined by CBAL.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    08 November 2012
//
//  Author:
//
//    Original FORTRAN77 version by Smith, Boyle, Dongarra, Garbow, Ikebe,
//    Klema, Moler.
//    C++ version by John Burkardt.
//
//  Reference:
//
//    James Wilkinson, Christian Reinsch,
//    Handbook for Automatic Computation,
//    Volume II, Linear Algebra, Part 2,
//    Springer, 1971,
//    ISBN: 0387054146,
//    LC: QA251.W67.
//
//    Brian Smith, James Boyle, Jack Dongarra, Burton Garbow,
//    Yasuhiko Ikebe, Virginia Klema, Cleve Moler,
//    Matrix Eigensystem Routines, EISPACK Guide,
//    Lecture Notes in Computer Science, Volume 6,
//    Springer Verlag, 1976,
//    ISBN13: 978-3540075462,
//    LC: QA193.M37.
//
//  Parameters:
//
//    Input, int N, the order of the matrix.
//
//    Input, int LOW, IGH, values determined by CBAL.
//
//    Input, double SCALE[N], information determining the permutations
//    and scaling factors used by CBAL.
//
//    Input, int M, the number of eigenvectors to be back
//    transformed.
//
//    Input/output, double ZR[N*M], ZI[N*M].  On input, the real
//    and imaginary parts, respectively, of the eigenvectors to be back
//    transformed in their first M columns.  On output, the transformed
//    eigenvectors.
//
{
  int i;
  int ii;
  int j;
  int k;
  double s;

  if ( m == 0 )
  {
    return;
  }

  if ( igh != low )
  {
    for ( i = low; i <= igh; i++ )
    {
      s = scale[i];
      for ( j = 0; j < m; j++ )
      {
        zr[i+j*n] = zr[i+j*n] * s;
        zi[i+j*n] = zi[i+j*n] * s;
      }
    }
  }

  for ( ii = 0; ii < n; ii++ )
  {
    i = ii;
    if ( i < low || igh < i )
    {
      if ( i < low )
      {
        i = low - ii;
      }

      k = scale[i];

      if ( k != i )
      {
        for ( j = 0; j < m; j++ )
        {
          s         = zr[i+j*n];
          zr[i+j*n] = zr[k+j*n];
          zr[k+j*n] = s;
          s         = zi[i+j*n];
          zi[i+j*n] = zi[k+j*n];
          zi[k+j*n] = s;
        }
      }
    }
  }
  return;
}
//****************************************************************************80

void csroot ( double xr, double xi, double &yr, double &yi )

//****************************************************************************80
//
//  Purpose:
//
//    CSROOT computes the complex square root of a complex quantity.
//
//  Discussion:
//
//    The branch of the square function is chosen so that
//      0.0 <= YR
//    and
//      sign ( YI ) == sign ( XI )
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    13 November 2012
//
//  Author:
//
//    Original FORTRAN77 version by Smith, Boyle, Dongarra, Garbow, Ikebe,
//    Klema, Moler.
//    C++ version by John Burkardt.
//
//  Reference:
//
//    James Wilkinson, Christian Reinsch,
//    Handbook for Automatic Computation,
//    Volume II, Linear Algebra, Part 2,
//    Springer, 1971,
//    ISBN: 0387054146,
//    LC: QA251.W67.
//
//    Brian Smith, James Boyle, Jack Dongarra, Burton Garbow,
//    Yasuhiko Ikebe, Virginia Klema, Cleve Moler,
//    Matrix Eigensystem Routines, EISPACK Guide,
//    Lecture Notes in Computer Science, Volume 6,
//    Springer Verlag, 1976,
//    ISBN13: 978-3540075462,
//    LC: QA193.M37.
//
//  Parameters:
//
//    Input, double XR, XI, the real and imaginary parts of the 
//    quantity whose square root is desired.
//
//    Output, double &YR, &YI, the real and imaginary parts of the 
//    square root.
//
{
  double s;
  double ti;
  double tr;

  tr = xr;
  ti = xi;
  s = sqrt ( 0.5 * ( pythag ( tr, ti ) + r8_abs ( tr ) ) );

  if ( 0.0 <= tr )
  {
    yr = s;
  }

  if ( ti < 0.0 )
  {
    s = -s;
  }

  if ( tr <= 0.0 )
  {
    yi = s;
  }

  if ( tr < 0.0 )
  {
    yr = 0.5 * ( ti / yi );
  }
  else if ( 0.0 < tr )
  {
    yi = 0.5 * ( ti / yr );
  }
  return;
}
//****************************************************************************80

int i4_max ( int i1, int i2 )

//****************************************************************************80
//
//  Purpose:
//
//    I4_MAX returns the maximum of two I4's.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    13 October 1998
//
//  Author:
//
//    John Burkardt
//
//  Parameters:
//
//    Input, int I1, I2, are two integers to be compared.
//
//    Output, int I4_MAX, the larger of I1 and I2.
//
{
  int value;

  if ( i2 < i1 )
  {
    value = i1;
  }
  else
  {
    value = i2;
  }
  return value;
}
//****************************************************************************80

int i4_min ( int i1, int i2 )

//****************************************************************************80
//
//  Purpose:
//
//    I4_MIN returns the minimum of two I4's.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    13 October 1998
//
//  Author:
//
//    John Burkardt
//
//  Parameters:
//
//    Input, int I1, I2, two integers to be compared.
//
//    Output, int I4_MIN, the smaller of I1 and I2.
//
{
  int value;

  if ( i1 < i2 )
  {
    value = i1;
  }
  else
  {
    value = i2;
  }
  return value;
}
//****************************************************************************80

double pythag ( double a, double b )

//****************************************************************************80
//
//  Purpose:
//
//    PYTHAG computes SQRT ( A * A + B * B ) carefully.
//
//  Discussion:
//
//    The formula
//
//      PYTHAG = sqrt ( A * A + B * B )
//
//    is reasonably accurate, but can fail if, for example, A^2 is larger
//    than the machine overflow.  The formula can lose most of its accuracy
//    if the sum of the squares is very large or very small.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    08 November 2012
//
//  Author:
//
//    Original FORTRAN77 version by Smith, Boyle, Dongarra, Garbow, Ikebe,
//    Klema, Moler.
//    C++ version by John Burkardt.
//
//  Reference:
//
//    James Wilkinson, Christian Reinsch,
//    Handbook for Automatic Computation,
//    Volume II, Linear Algebra, Part 2,
//    Springer, 1971,
//    ISBN: 0387054146,
//    LC: QA251.W67.
//
//    Brian Smith, James Boyle, Jack Dongarra, Burton Garbow,
//    Yasuhiko Ikebe, Virginia Klema, Cleve Moler,
//    Matrix Eigensystem Routines, EISPACK Guide,
//    Lecture Notes in Computer Science, Volume 6,
//    Springer Verlag, 1976,
//    ISBN13: 978-3540075462,
//    LC: QA193.M37.
//
//  Modified:
//
//    08 November 2012
//
//  Parameters:
//
//    Input, double A, B, the two legs of a right triangle.
//
//    Output, double PYTHAG, the length of the hypotenuse.
//
{
  double p;
  double r;
  double s;
  double t;
  double u;

  p = r8_max ( r8_abs ( a ), r8_abs ( b ) );

  if ( p != 0.0 )
  {
    r = r8_min ( r8_abs ( a ), r8_abs ( b ) ) / p;
    r = r * r;

    while ( 1 )
    {
      t = 4.0 + r;

      if ( t == 4.0 )
      {
        break;
      }

      s = r / t;
      u = 1.0 + 2.0 * s;
      p = u * p;
      r = ( s / u ) * ( s / u ) * r;
    }
  }
  return p;
}
//****************************************************************************80

double r8_abs ( double x )

//****************************************************************************80
//
//  Purpose:
//
//    R8_ABS returns the absolute value of an R8.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    14 November 2006
//
//  Author:
//
//    John Burkardt
//
//  Parameters:
//
//    Input, double X, the quantity whose absolute value is desired.
//
//    Output, double R8_ABS, the absolute value of X.
//
{
  double value;

  if ( 0.0 <= x )
  {
    value = + x;
  }
  else
  {
    value = - x;
  }
  return value;
}
//****************************************************************************80

double r8_epsilon ( )

//****************************************************************************80
//
//  Purpose:
//
//    R8_EPSILON returns the R8 roundoff unit.
//
//  Discussion:
//
//    The roundoff unit is a number R which is a power of 2 with the
//    property that, to the precision of the computer's arithmetic,
//      1 < 1 + R
//    but
//      1 = ( 1 + R / 2 )
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    01 September 2012
//
//  Author:
//
//    John Burkardt
//
//  Parameters:
//
//    Output, double R8_EPSILON, the R8 round-off unit.
//
{
  const double value = 2.220446049250313E-016;

  return value;
}
//****************************************************************************80

double r8_max ( double x, double y )

//****************************************************************************80
//
//  Purpose:
//
//    R8_MAX returns the maximum of two R8's.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    18 August 2004
//
//  Author:
//
//    John Burkardt
//
//  Parameters:
//
//    Input, double X, Y, the quantities to compare.
//
//    Output, double R8_MAX, the maximum of X and Y.
//
{
  double value;

  if ( y < x )
  {
    value = x;
  }
  else
  {
    value = y;
  }
  return value;
}
//****************************************************************************80

double r8_min ( double x, double y )

//****************************************************************************80
//
//  Purpose:
//
//    R8_MIN returns the minimum of two R8's.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    31 August 2004
//
//  Author:
//
//    John Burkardt
//
//  Parameters:
//
//    Input, double X, Y, the quantities to compare.
//
//    Output, double R8_MIN, the minimum of X and Y.
//
{
  double value;

  if ( y < x )
  {
    value = y;
  }
  else
  {
    value = x;
  }
  return value;
}
//****************************************************************************80

double r8_sign ( double x )

//****************************************************************************80
//
//  Purpose:
//
//    R8_SIGN returns the sign of an R8.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    18 October 2004
//
//  Author:
//
//    John Burkardt
//
//  Parameters:
//
//    Input, double X, the number whose sign is desired.
//
//    Output, double R8_SIGN, the sign of X.
//
{
  double value;

  if ( x < 0.0 )
  {
    value = -1.0;
  }
  else
  {
    value = 1.0;
  }
  return value;
}
//****************************************************************************80

void r8mat_identity ( int n, double a[] )

//****************************************************************************80
//
//  Purpose:
//
//    R8MAT_IDENTITY sets the square matrix A to the identity.
//
//  Discussion:
//
//    An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
//    in column-major order.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    01 December 2011
//
//  Author:
//
//    John Burkardt
//
//  Parameters:
//
//    Input, int N, the order of A.
//
//    Output, double A[N*N], the N by N identity matrix.
//
{
  int i;
  int j;
  int k;

  k = 0;
  for ( j = 0; j < n; j++ )
  {
    for ( i = 0; i < n; i++ )
    {
      if ( i == j )
      {
        a[k] = 1.0;
      }
      else
      {
        a[k] = 0.0;
      }
      k = k + 1;
    }
  }

  return;
}
//****************************************************************************80

double *r8mat_mm_new ( int n1, int n2, int n3, double a[], double b[] )

//****************************************************************************80
//
//  Purpose:
//
//    R8MAT_MM_NEW multiplies two matrices.
//
//  Discussion:
//
//    An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
//    in column-major order.
//
//    For this routine, the result is returned as the function value.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    18 October 2005
//
//  Author:
//
//    John Burkardt
//
//  Parameters:
//
//    Input, int N1, N2, N3, the order of the matrices.
//
//    Input, double A[N1*N2], double B[N2*N3], the matrices to multiply.
//
//    Output, double R8MAT_MM[N1*N3], the product matrix C = A * B.
//
{
  double *c;
  int i;
  int j;
  int k;

  c = new double[n1*n3];

  for ( i = 0; i < n1; i ++ )
  {
    for ( j = 0; j < n3; j++ )
    {
      c[i+j*n1] = 0.0;
      for ( k = 0; k < n2; k++ )
      {
        c[i+j*n1] = c[i+j*n1] + a[i+k*n1] * b[k+j*n2];
      }
    }
  }

  return c;
}
//****************************************************************************80

void r8mat_print ( int m, int n, double a[], string title )

//****************************************************************************80
//
//  Purpose:
//
//    R8MAT_PRINT prints an R8MAT.
//
//  Discussion:
//
//    An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
//    in column-major order.
//
//    Entry A(I,J) is stored as A[I+J*M]
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    10 September 2009
//
//  Author:
//
//    John Burkardt
//
//  Parameters:
//
//    Input, int M, the number of rows in A.
//
//    Input, int N, the number of columns in A.
//
//    Input, double A[M*N], the M by N matrix.
//
//    Input, string TITLE, a title.
//
{
  r8mat_print_some ( m, n, a, 1, 1, m, n, title );

  return;
}
//****************************************************************************80

void r8mat_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi,
  int jhi, string title )

//****************************************************************************80
//
//  Purpose:
//
//    R8MAT_PRINT_SOME prints some of an R8MAT.
//
//  Discussion:
//
//    An R8MAT is a doubly dimensioned array of R8 values, stored as a vector
//    in column-major order.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    20 August 2010
//
//  Author:
//
//    John Burkardt
//
//  Parameters:
//
//    Input, int M, the number of rows of the matrix.
//    M must be positive.
//
//    Input, int N, the number of columns of the matrix.
//    N must be positive.
//
//    Input, double A[M*N], the matrix.
//
//    Input, int ILO, JLO, IHI, JHI, designate the first row and
//    column, and the last row and column to be printed.
//
//    Input, string TITLE, a title.
//
{
# define INCX 5

  int i;
  int i2hi;
  int i2lo;
  int j;
  int j2hi;
  int j2lo;

  cout << "\n";
  cout << title << "\n";

  if ( m <= 0 || n <= 0 )
  {
    cout << "\n";
    cout << "  (None)\n";
    return;
  }
//
//  Print the columns of the matrix, in strips of 5.
//
  for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX )
  {
    j2hi = j2lo + INCX - 1;
    j2hi = i4_min ( j2hi, n );
    j2hi = i4_min ( j2hi, jhi );

    cout << "\n";
//
//  For each column J in the current range...
//
//  Write the header.
//
    cout << "  Col:    ";
    for ( j = j2lo; j <= j2hi; j++ )
    {
      cout << setw(7) << j - 1 << "       ";
    }
    cout << "\n";
    cout << "  Row\n";
    cout << "\n";
//
//  Determine the range of the rows in this strip.
//
    i2lo = i4_max ( ilo, 1 );
    i2hi = i4_min ( ihi, m );

    for ( i = i2lo; i <= i2hi; i++ )
    {
//
//  Print out (up to) 5 entries in row I, that lie in the current strip.
//
      cout << setw(5) << i - 1 << ": ";
      for ( j = j2lo; j <= j2hi; j++ )
      {
        cout << setw(12) << a[i-1+(j-1)*m] << "  ";
      }
      cout << "\n";
    }
  }

  return;
# undef INCX
}
//****************************************************************************80

double *r8mat_uniform_01_new ( int m, int n, int &seed )

//****************************************************************************80
//
//  Purpose:
//
//    R8MAT_UNIFORM_01_NEW returns a unit pseudorandom R8MAT.
//
//  Discussion:
//
//    An R8MAT is a doubly dimensioned array of R8's,  stored as a vector
//    in column-major order.
//
//    This routine implements the recursion
//
//      seed = 16807 * seed mod ( 2^31 - 1 )
//      unif = seed / ( 2^31 - 1 )
//
//    The integer arithmetic never requires more than 32 bits,
//    including a sign bit.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    03 October 2005
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Paul Bratley, Bennett Fox, Linus Schrage,
//    A Guide to Simulation,
//    Springer Verlag, pages 201-202, 1983.
//
//    Bennett Fox,
//    Algorithm 647:
//    Implementation and Relative Efficiency of Quasirandom
//    Sequence Generators,
//    ACM Transactions on Mathematical Software,
//    Volume 12, Number 4, pages 362-376, 1986.
//
//    Philip Lewis, Allen Goodman, James Miller,
//    A Pseudo-Random Number Generator for the System/360,
//    IBM Systems Journal,
//    Volume 8, pages 136-143, 1969.
//
//  Parameters:
//
//    Input, int M, N, the number of rows and columns.
//
//    Input/output, int &SEED, the "seed" value.  Normally, this
//    value should not be 0, otherwise the output value of SEED
//    will still be 0, and R8_UNIFORM will be 0.  On output, SEED has
//    been updated.
//
//    Output, double R8MAT_UNIFORM_01_NEW[M*N], a matrix of pseudorandom values.
//
{
  int i;
  int j;
  int k;
  double *r;

  r = new double[m*n];

  for ( j = 0; j < n; j++ )
  {
    for ( i = 0; i < m; i++ )
    {
      k = seed / 127773;

      seed = 16807 * ( seed - k * 127773 ) - k * 2836;

      if ( seed < 0 )
      {
        seed = seed + 2147483647;
      }
      r[i+j*m] = ( double ) ( seed ) * 4.656612875E-10;
    }
  }

  return r;
}
//****************************************************************************80

void r8vec_print ( int n, double a[], string title )

//****************************************************************************80
//
//  Purpose:
//
//    R8VEC_PRINT prints an R8VEC.
//
//  Discussion:
//
//    An R8VEC is a vector of R8's.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    16 August 2004
//
//  Author:
//
//    John Burkardt
//
//  Parameters:
//
//    Input, int N, the number of components of the vector.
//
//    Input, double A[N], the vector to be printed.
//
//    Input, string TITLE, a title.
//
{
  int i;

  cout << "\n";
  cout << title << "\n";
  cout << "\n";
  for ( i = 0; i < n; i++ )
  {
    cout << "  " << setw(8)  << i
         << ": " << setw(14) << a[i]  << "\n";
  }

  return;
}
//****************************************************************************80

int rs ( int n, double a[], double w[], int matz, double z[] )

//****************************************************************************80
//
//  Purpose:
//
//    RS computes eigenvalues and eigenvectors of real symmetric matrix.
//
//  Discussion:
//
//    This subroutine calls the recommended sequence of
//    subroutines from the eigensystem subroutine package (eispack)
//    to find the eigenvalues and eigenvectors (if desired)
//    of a real symmetric matrix.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    08 November 2012
//
//  Author:
//
//    Original FORTRAN77 version by Smith, Boyle, Dongarra, Garbow, Ikebe,
//    Klema, Moler.
//    C++ version by John Burkardt.
//
//  Reference:
//
//    James Wilkinson, Christian Reinsch,
//    Handbook for Automatic Computation,
//    Volume II, Linear Algebra, Part 2,
//    Springer, 1971,
//    ISBN: 0387054146,
//    LC: QA251.W67.
//
//    Brian Smith, James Boyle, Jack Dongarra, Burton Garbow,
//    Yasuhiko Ikebe, Virginia Klema, Cleve Moler,
//    Matrix Eigensystem Routines, EISPACK Guide,
//    Lecture Notes in Computer Science, Volume 6,
//    Springer Verlag, 1976,
//    ISBN13: 978-3540075462,
//    LC: QA193.M37.
//
//  Parameters:
//
//    Input, int N, the order of the matrix.
//
//    Input, double A[N*N], the real symmetric matrix.
//
//    Input, int MATZ, is zero if only eigenvalues are desired, 
//    and nonzero if both eigenvalues and eigenvectors are desired.
//
//    Output, double W[N], the eigenvalues in ascending order.
//
//    Output, double Z[N*N], contains the eigenvectors, if MATZ
//    is nonzero.
//
//    Output, int RS, is set equal to an error
//    completion code described in the documentation for TQLRAT and TQL2.
//    The normal completion code is zero.
//
{
  double *fv1;
  double *fv2;
  int ierr;

  if ( matz == 0 )
  {
    fv1 = new double[n];
    fv2 = new double[n];

    tred1 ( n, a, w, fv1, fv2 );
    ierr = tqlrat ( n, w, fv2 );

    delete [] fv1;
    delete [] fv2;
  }
  else
  {
    fv1 = new double[n];

    tred2 ( n, a, w, fv1, z );
    ierr = tql2 ( n, w, fv1, z );

    delete [] fv1;
  }

  return ierr;
}
//****************************************************************************80

int rsb ( int n, int mb, double a[], double w[], int matz, double z[] )

//****************************************************************************80
//
//  Purpose:
//
//    RSB computes eigenvalues and eigenvectors of a real symmetric band matrix.
//
//  Discussion:
//
//    This subroutine calls the recommended sequence of
//    subroutines from the eigensystem subroutine package (eispack)
//    to find the eigenvalues and eigenvectors (if desired)
//    of a real symmetric band matrix.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    12 November 2012
//
//  Author:
//
//    Original FORTRAN77 version by Smith, Boyle, Dongarra, Garbow, Ikebe,
//    Klema, Moler.
//    C++ version by John Burkardt.
//
//  Reference:
//
//    James Wilkinson, Christian Reinsch,
//    Handbook for Automatic Computation,
//    Volume II, Linear Algebra, Part 2,
//    Springer, 1971,
//    ISBN: 0387054146,
//    LC: QA251.W67.
//
//    Brian Smith, James Boyle, Jack Dongarra, Burton Garbow,
//    Yasuhiko Ikebe, Virginia Klema, Cleve Moler,
//    Matrix Eigensystem Routines, EISPACK Guide,
//    Lecture Notes in Computer Science, Volume 6,
//    Springer Verlag, 1976,
//    ISBN13: 978-3540075462,
//    LC: QA193.M37.
//
//  Parameters:
//
//    Input, int N, the order of the matrix.
//
//    Input, int MB, the half band width of the matrix,
//    defined as the number of adjacent diagonals, including the principal
//    diagonal, required to specify the non-zero portion of the lower triangle
//    of the matrix.
//
//    Input, double A[N*MB], contains the lower triangle of the real
//    symmetric band matrix.  Its lowest subdiagonal is stored in the last N+1-MB
//    positions of the first column, its next subdiagonal in the last
//    N+2-MB positions of the second column, further subdiagonals similarly,
//    and finally its principal diagonal in the N positions of the last
//    column.  Contents of storages not part of the matrix are arbitrary.
//
//    Input, int MATZ, is zero if only eigenvalues are desired,
//    and nonzero if both eigenvalues and eigenvectors are desired.
//
//    Output, double W[N], the eigenvalues in ascending order.
//
//    Output, double Z[N*N], contains the eigenvectors, if MATZ
//    is nonzero.
//
//    Output, int BANDR, is set to an error
//    completion code described in the documentation for TQLRAT and TQL2.
//    The normal completion code is zero.
//
{
  double *fv1;
  double *fv2;
  int ierr;
  int tf;

  if ( mb <= 0 )
  {
    ierr = 12 * n;
    return ierr;
  }

  if ( n < mb )
  {
    ierr = 12 * n;
    return ierr;
  }

  if ( matz == 0 )
  {
    fv1 = new double[n];
    fv2 = new double[n];
    tf = 0;

    bandr ( n, mb, a, w, fv1, fv2, tf, z );

    ierr = tqlrat ( n, w, fv2 );

    delete [] fv1;
    delete [] fv2;
  }
  else
  {
    fv1 = new double[n];
    tf = 1;

    bandr ( n, mb, a, w, fv1, fv1, tf, z );

    ierr = tql2 ( n, w, fv1, z );

    delete [] fv1;
  }
  return ierr;
}
//****************************************************************************80

void timestamp ( )

//****************************************************************************80
//
//  Purpose:
//
//    TIMESTAMP prints the current YMDHMS date as a time stamp.
//
//  Example:
//
//    31 May 2001 09:45:54 AM
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    08 July 2009
//
//  Author:
//
//    John Burkardt
//
//  Parameters:
//
//    None
//
{
# define TIME_SIZE 40

  static char time_buffer[TIME_SIZE];
  const struct std::tm *tm_ptr;
  size_t len;
  std::time_t now;

  now = std::time ( NULL );
  tm_ptr = std::localtime ( &now );

  len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr );

  std::cout << time_buffer << "\n";

  return;
# undef TIME_SIZE
}
//****************************************************************************80

int tql2 ( int n, double d[], double e[], double z[] )

//****************************************************************************80
//
//  Purpose:
//
//    TQL2 computes all eigenvalues/vectors, real symmetric tridiagonal matrix.
//
//  Discussion:
//
//    This subroutine finds the eigenvalues and eigenvectors of a symmetric
//    tridiagonal matrix by the QL method.  The eigenvectors of a full
//    symmetric matrix can also be found if TRED2 has been used to reduce this
//    full matrix to tridiagonal form.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    08 November 2012
//
//  Author:
//
//    Original FORTRAN77 version by Smith, Boyle, Dongarra, Garbow, Ikebe,
//    Klema, Moler.
//    C++ version by John Burkardt.
//
//  Reference:
//
//    Bowdler, Martin, Reinsch, Wilkinson,
//    TQL2,
//    Numerische Mathematik,
//    Volume 11, pages 293-306, 1968.
//
//    James Wilkinson, Christian Reinsch,
//    Handbook for Automatic Computation,
//    Volume II, Linear Algebra, Part 2,
//    Springer, 1971,
//    ISBN: 0387054146,
//    LC: QA251.W67.
//
//    Brian Smith, James Boyle, Jack Dongarra, Burton Garbow,
//    Yasuhiko Ikebe, Virginia Klema, Cleve Moler,
//    Matrix Eigensystem Routines, EISPACK Guide,
//    Lecture Notes in Computer Science, Volume 6,
//    Springer Verlag, 1976,
//    ISBN13: 978-3540075462,
//    LC: QA193.M37.
//
//  Parameters:
//
//    Input, int N, the order of the matrix.
//
//    Input/output, double D[N].  On input, the diagonal elements of
//    the matrix.  On output, the eigenvalues in ascending order.  If an error
//    exit is made, the eigenvalues are correct but unordered for indices
//    1,2,...,IERR-1.
//
//    Input/output, double E[N].  On input, E(2:N) contains the
//    subdiagonal elements of the input matrix, and E(1) is arbitrary.
//    On output, E has been destroyed.
//
//    Input, double Z[N*N].  On input, the transformation matrix
//    produced in the reduction by TRED2, if performed.  If the eigenvectors of
//    the tridiagonal matrix are desired, Z must contain the identity matrix.
//    On output, Z contains the orthonormal eigenvectors of the symmetric
//    tridiagonal (or full) matrix.  If an error exit is made, Z contains
//    the eigenvectors associated with the stored eigenvalues.
//
//    Output, int TQL2, error flag.
//    0, normal return,
//    J, if the J-th eigenvalue has not been determined after
//    30 iterations.
//
{
  double c;
  double c2;
  double c3;
  double dl1;
  double el1;
  double f;
  double g;
  double h;
  int i;
  int ierr;
  int ii;
  int j;
  int k;
  int l;
  int l1;
  int l2;
  int m;
  int mml;
  double p;
  double r;
  double s;
  double s2;
  double t;
  double tst1;
  double tst2;

  ierr = 0;

  if ( n == 1 )
  {
    return ierr;
  }

  for ( i = 1; i < n; i++ )
  {
    e[i-1] = e[i];
  }

  f = 0.0;
  tst1 = 0.0;
  e[n-1] = 0.0;

  for ( l = 0; l < n; l++ )
  {
    j = 0;
    h = r8_abs ( d[l] ) + r8_abs ( e[l] );
    tst1 = r8_max ( tst1, h );
//
//  Look for a small sub-diagonal element.
//
    for ( m = l; m < n; m++ )
    {
      tst2 = tst1 + r8_abs ( e[m] );
      if ( tst2 == tst1 )
      {
        break;
      }
    }

    if ( m != l )
    {
      for ( ; ; )
      {
        if ( 30 <= j )
        {
          ierr = l + 1;
          return ierr;
        }

        j = j + 1;
//
//  Form shift.
//
        l1 = l + 1;
        l2 = l1 + 1;
        g = d[l];
        p = ( d[l1] - g ) / ( 2.0 * e[l] );
        r = pythag ( p, 1.0 );
        d[l] = e[l] / ( p + r8_sign ( p ) * r8_abs ( r ) );
        d[l1] = e[l] * ( p + r8_sign ( p ) * r8_abs ( r ) );
        dl1 = d[l1];
        h = g - d[l];
        for ( i = l2; i < n; i++ )
        {
          d[i] = d[i] - h;
        }
        f = f + h;
//
//  QL transformation.
//
        p = d[m];
        c = 1.0;
        c2 = c;
        el1 = e[l1];
        s = 0.0;
        mml = m - l;

        for ( ii = 1; ii <= mml; ii++ )
        {
          c3 = c2;
          c2 = c;
          s2 = s;
          i = m - ii;
          g = c * e[i];
          h = c * p;
          r = pythag ( p, e[i] );
          e[i+1] = s * r;
          s = e[i] / r;
          c = p / r;
          p = c * d[i] - s * g;
          d[i+1] = h + s * ( c * g + s * d[i] );
//
//  Form vector.
//
          for ( k = 0; k < n; k++ )
          {
            h = z[k+(i+1)*n];
            z[k+(i+1)*n] = s * z[k+i*n] + c * h;
            z[k+i*n] = c * z[k+i*n] - s * h;
          }
        }
        p = - s * s2 * c3 * el1 * e[l] / dl1;
        e[l] = s * p;
        d[l] = c * p;
        tst2 = tst1 + r8_abs ( e[l] );

        if ( tst2 <= tst1 )
        {
          break;
        }
      }
    }
    d[l] = d[l] + f;
  }
//
//  Order eigenvalues and eigenvectors.
//
  for ( ii = 1; ii < n; ii++ )
  {
    i = ii - 1;
    k = i;
    p = d[i];
    for ( j = ii; j < n; j++ )
    {
      if ( d[j] < p )
      {
        k = j;
        p = d[j];
      }
    }

    if ( k != i )
    {
      d[k] = d[i];
      d[i] = p;
      for ( j = 0; j < n; j++ )
      {
        t        = z[j+i*n];
        z[j+i*n] = z[j+k*n];
        z[j+k*n] = t;
      }
    }
  }
  return ierr;
}
//****************************************************************************80

int tqlrat ( int n, double d[], double e2[] )

//****************************************************************************80
//
//  Purpose:
//
//    TQLRAT computes all eigenvalues of a real symmetric tridiagonal matrix.
//
//  Discussion:
//
//    This subroutine finds the eigenvalues of a symmetric
//    tridiagonal matrix by the rational QL method.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    08 November 2012
//
//  Author:
//
//    Original FORTRAN77 version by Smith, Boyle, Dongarra, Garbow, Ikebe,
//    Klema, Moler.
//    C++ version by John Burkardt.
//
//  Reference:
//
//    Christian Reinsch,
//    Algorithm 464, TQLRAT,
//    Communications of the ACM,
//    Volume 16, page 689, 1973.
//
//    James Wilkinson, Christian Reinsch,
//    Handbook for Automatic Computation,
//    Volume II, Linear Algebra, Part 2,
//    Springer, 1971,
//    ISBN: 0387054146,
//    LC: QA251.W67.
//
//    Brian Smith, James Boyle, Jack Dongarra, Burton Garbow,
//    Yasuhiko Ikebe, Virginia Klema, Cleve Moler,
//    Matrix Eigensystem Routines, EISPACK Guide,
//    Lecture Notes in Computer Science, Volume 6,
//    Springer Verlag, 1976,
//    ISBN13: 978-3540075462,
//    LC: QA193.M37.
//
//  Parameters:
//
//    Input, int N, the order of the matrix.
//
//    Input/output, double D[N].  On input, D contains the diagonal
//    elements of the matrix.  On output, D contains the eigenvalues in ascending
//    order.  If an error exit was made, then the eigenvalues are correct
//    in positions 1 through IERR-1, but may not be the smallest eigenvalues.
//
//    Input/output, double E2[N], contains in positions 2 through N 
//    the squares of the subdiagonal elements of the matrix.  E2(1) is
//    arbitrary.  On output, E2 has been overwritten by workspace
//    information.
//
//    Output, int TQLRAT, error flag.
//    0, for no error,
//    J, if the J-th eigenvalue could not be determined after 30 iterations.
//
{
  double b;
  double c;
  double f;
  double g;
  double h;
  int i;
  int ierr;
  int ii;
  int j;
  int l;
  int l1;
  int m;
  int mml;
  double p;
  double r;
  double s;
  double t;

  ierr = 0;

  if ( n == 1 )
  {
    return ierr;
  }

  for ( i = 1; i < n; i++ )
  {
    e2[i-1] = e2[i];
  }

  f = 0.0;
  t = 0.0;
  e2[n-1] = 0.0;

  for ( l = 0; l < n; l++ )
  {
     j = 0;
     h = r8_abs ( d[l] ) + sqrt ( e2[l] );

     if ( t <= h )
     {
       t = h;
       b = r8_abs ( t ) * r8_epsilon ( );
       c = b * b;
     }
//
//  Look for small squared sub-diagonal element.
//
    for ( m = l; m < n; m++ )
    {  
      if ( e2[m] <= c )
      {
        break;
      }
    }

    if ( m != l )
    {
      for ( ; ; )
      {
        if ( 30 <= j )
        {
          ierr = l + 1;
          return ierr;
        }

        j = j + 1;
//
//  Form shift.
//
        l1 = l + 1;
        s = sqrt ( e2[l] );
        g = d[l];
        p = ( d[l1] - g ) / ( 2.0 * s );
        r = pythag ( p, 1.0 );
        d[l] = s / ( p + r8_abs ( r ) * r8_sign ( p ) );
        h = g - d[l];
        for ( i = l1; i < n; i++ )
        {
          d[i] = d[i] - h;
        }
        f = f + h;
//
//  Rational QL transformation.
//
        g = d[m];
        if ( g == 0.0 )
        {
          g = b;
        }

        h = g;
        s = 0.0;
        mml = m - l;

        for ( ii = 1; ii <= mml; ii++ )
        {
          i = m - ii;
          p = g * h;
          r = p + e2[i];
          e2[i+1] = s * r;
          s = e2[i] / r;
          d[i+1] = h + s * ( h + d[i] );
          g = d[i] - e2[i] / g;
          if ( g == 0.0 )
          {
            g = b;
          }
          h = g * p / r;
        }
        e2[l] = s * g;
        d[l] = h;
//
//  Guard against underflow in convergence test.
//
        if ( h == 0.0 )
        {
          break;
        }

        if ( r8_abs ( e2[l] ) <= r8_abs ( c / h ) )
        {
          break;
        }

        e2[l] = h * e2[l];

        if ( e2[l] == 0.0 )
        {
          break;
        }
      }
    }

    p = d[l] + f;
//
//  Order the eigenvalues.
//
    for ( i = l; 0 <= i; i-- )
    {
      if ( i == 0 )
      {
        d[i] = p;
        break;
      }
      else if ( d[i-1] <= p )
      {
        d[i] = p;
        break;
      }
      d[i] = d[i-1];
    }
  }

  return ierr;
}
//****************************************************************************80

void tred1 ( int n, double a[], double d[], double e[], double e2[] )

//****************************************************************************80
//
//  Purpose:
//
//    TRED1 transforms a real symmetric matrix to symmetric tridiagonal form.
//
//  Discussion:
//
//    The routine reduces a real symmetric matrix to a symmetric
//    tridiagonal matrix using orthogonal similarity transformations.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    08 November 2012
//
//  Author:
//
//    Original FORTRAN77 version by Smith, Boyle, Dongarra, Garbow, Ikebe,
//    Klema, Moler.
//    C version by John Burkardt.
//
//  Reference:
//
//    Martin, Reinsch, Wilkinson,
//    TRED1,
//    Numerische Mathematik,
//    Volume 11, pages 181-195, 1968.
//
//    James Wilkinson, Christian Reinsch,
//    Handbook for Automatic Computation,
//    Volume II, Linear Algebra, Part 2,
//    Springer, 1971,
//    ISBN: 0387054146,
//    LC: QA251.W67.
//
//    Brian Smith, James Boyle, Jack Dongarra, Burton Garbow,
//    Yasuhiko Ikebe, Virginia Klema, Cleve Moler,
//    Matrix Eigensystem Routines, EISPACK Guide,
//    Lecture Notes in Computer Science, Volume 6,
//    Springer Verlag, 1976,
//    ISBN13: 978-3540075462,
//    LC: QA193.M37.
//
//  Parameters:
//
//    Input, int N, the order of the matrix A.
//
//    Input/output, double A[N*N], on input, contains the real
//    symmetric matrix.  Only the lower triangle of the matrix need be supplied.
//    On output, A contains information about the orthogonal transformations
//    used in the reduction in its strict lower triangle.
//    The full upper triangle of A is unaltered.
//
//    Output, double D[N], contains the diagonal elements of the
//    tridiagonal matrix.
//
//    Output, double E[N], contains the subdiagonal elements of the
//    tridiagonal matrix in its last N-1 positions.  E(1) is set to zero.
//
//    Output, double E2[N], contains the squares of the corresponding
//    elements of E.  E2 may coincide with E if the squares are not needed.
//
{
  double f;
  double g;
  double h;
  int i;
  int ii;
  int j;
  int k;
  int l;
  double scale;

  for ( j = 0; j < n; j++ )
  {
    d[j] = a[n-1+j*n];
  }

  for ( i = 0; i < n; i++ )
  {
    a[n-1+i*n] = a[i+i*n];
  }

  for ( i = n - 1; 0 <= i; i-- )
  {
    l = i - 1;
    h = 0.0;
//
//  Scale row.
//
    scale = 0.0;
    for ( k = 0; k <= l; k++ )
    {
      scale = scale + r8_abs ( d[k] );
    }

    if ( scale == 0.0 )
    {
      for ( j = 0; j <= l; j++ )
      {
        d[j]     = a[l+j*n];
        a[l+j*n] = a[i+j*n];
        a[i+j*n] = 0.0;
      }

      e[i] = 0.0;
      e2[i] = 0.0;
      continue;
    }

    for ( k = 0; k <= l; k++ )
    {
      d[k] = d[k] / scale;
    }

    for ( k = 0; k <= l; k++ )
    {
      h = h + d[k] * d[k];
    }

    e2[i] = h * scale * scale;
    f = d[l];
    g = - sqrt ( h ) * r8_sign ( f );
    e[i] = scale * g;
    h = h - f * g;
    d[l] = f - g;

    if ( 0 <= l )
    {
//
//  Form A * U.
//
      for ( k = 0; k <= l; k++ )
      {
        e[k] = 0.0;
      }

      for ( j = 0; j <= l; j++ )
      {
        f = d[j];
        g = e[j] + a[j+j*n] * f;

        for ( k = j + 1; k <= l; k++ )
        {
          g = g + a[k+j*n] * d[k];
          e[k] = e[k] + a[k+j*n] * f;
        }
        e[j] = g;
      }
//
//  Form P.
//
      f = 0.0;
      for ( j = 0; j <= l; j++ )
      {
        e[j] = e[j] / h;
        f = f + e[j] * d[j];
      }

      h = f / ( h + h );
//
//  Form Q.
//
      for ( j = 0; j <= l; j++ )
      {
        e[j] = e[j] - h * d[j];
      }
//
//  Form reduced A.
//
      for ( j = 0; j <= l; j++ )
      {
        f = d[j];
        g = e[j];
        for ( k = j; k <= l; k++ )
        {
          a[k+j*n] = a[k+j*n] - f * e[k] - g * d[k];
        }
      }
    }

    for ( j = 0; j <= l; j++ )
    {
      f        = d[j];
      d[j]     = a[l+j*n];
      a[l+j*n] = a[i+j*n];
      a[i+j*n] = f * scale;
    }
  }
  return;
}
//****************************************************************************80

void tred2 ( int n, double a[], double d[], double e[], double z[] )

//****************************************************************************80
//
//  Purpose:
//
//    TRED2 transforms a real symmetric matrix to symmetric tridiagonal form.
//
//  Discussion:
//
//    This subroutine reduces a real symmetric matrix to a
//    symmetric tridiagonal matrix using and accumulating
//    orthogonal similarity transformations.
//
//    A and Z may coincide, in which case a single storage area is used
//    for the input of A and the output of Z.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    03 November 2012
//
//  Author:
//
//    Original FORTRAN77 version by Smith, Boyle, Dongarra, Garbow, Ikebe,
//    Klema, Moler.
//    C version by John Burkardt.
//
//  Reference:
//
//    Martin, Reinsch, Wilkinson,
//    TRED2,
//    Numerische Mathematik,
//    Volume 11, pages 181-195, 1968.
//
//    James Wilkinson, Christian Reinsch,
//    Handbook for Automatic Computation,
//    Volume II, Linear Algebra, Part 2,
//    Springer, 1971,
//    ISBN: 0387054146,
//    LC: QA251.W67.
//
//    Brian Smith, James Boyle, Jack Dongarra, Burton Garbow,
//    Yasuhiko Ikebe, Virginia Klema, Cleve Moler,
//    Matrix Eigensystem Routines, EISPACK Guide,
//    Lecture Notes in Computer Science, Volume 6,
//    Springer Verlag, 1976,
//    ISBN13: 978-3540075462,
//    LC: QA193.M37.
//
//  Parameters:
//
//    Input, int N, the order of the matrix.
//
//    Input, double A[N*N], the real symmetric input matrix.  Only the
//    lower triangle of the matrix need be supplied.
//
//    Output, double D[N], the diagonal elements of the tridiagonal
//    matrix.
//
//    Output, double E[N], contains the subdiagonal elements of the
//    tridiagonal matrix in E(2:N).  E(1) is set to zero.
//
//    Output, double Z[N*N], the orthogonal transformation matrix
//    produced in the reduction.
//
{
  double f;
  double g;
  double h;
  double hh;
  int i;
  int ii;
  int j;
  int k;
  int l;
  double scale;

  for ( j = 0; j < n; j++ )
  {
    for ( i = j; i < n; i++ )
    {
      z[i+j*n] = a[i+j*n];
    }
  }

  for ( j = 0; j < n; j++ )
  {
    d[j] = a[n-1+j*n];
  }

  for ( i = n - 1; 1 <= i; i-- )
  {
    l = i - 1;
    h = 0.0;
//
//  Scale row.
//
    scale = 0.0;
    for ( k = 0; k <= l; k++ )
    {
      scale = scale + r8_abs ( d[k] );
    }

    if ( scale == 0.0 )
    {
      e[i] = d[l];

      for ( j = 0; j <= l; j++ )
      {
        d[j]     = z[l+j*n];
        z[i+j*n] = 0.0;
        z[j+i*n] = 0.0;
      }
      d[i] = 0.0;
      continue;
    }

    for ( k = 0; k <= l; k++ )
    {
      d[k] = d[k] / scale;
    }

    h = 0.0;
    for ( k = 0; k <= l; k++ )
    {
      h = h + d[k] * d[k];
    }

    f = d[l];
    g = - sqrt ( h ) * r8_sign ( f );
    e[i] = scale * g;
    h = h - f * g;
    d[l] = f - g;
//
//  Form A*U.
//
    for ( k = 0; k <= l; k++ )
    {
      e[k] = 0.0;
    }

    for ( j = 0; j <= l; j++ )
    {
      f = d[j];
      z[j+i*n] = f;
      g = e[j] + z[j+j*n] * f;

      for ( k = j + 1; k <= l; k++ )
      {
        g = g + z[k+j*n] * d[k];
        e[k] = e[k] + z[k+j*n] * f;
      }
      e[j] = g;
    }
//
//  Form P.
//
    for ( k = 0; k <= l; k++ )
    {
      e[k] = e[k] / h;
    }
    f = 0.0;
    for ( k = 0; k <= l; k++ )
    {
      f = f + e[k] * d[k];
    }
    hh = 0.5 * f / h;
//
//  Form Q.
//
    for ( k = 0; k <= l; k++ )
    {
      e[k] = e[k] - hh * d[k];
    }
//
//  Form reduced A.
//
    for ( j = 0; j <= l; j++ )
    {
      f = d[j];
      g = e[j];

      for ( k = j; k <= l; k++ )
      {
        z[k+j*n] = z[k+j*n] - f * e[k] - g * d[k];
      }
      d[j] = z[l+j*n];
      z[i+j*n] = 0.0;
    }
    d[i] = h;
  }
//
//  Accumulation of transformation matrices.
//
  for ( i = 1; i < n; i++ )
  {
    l = i - 1;
    z[n-1+l*n] = z[l+l*n];
    z[l+l*n] = 1.0;
    h = d[i];

    if ( h != 0.0 )
    {
      for ( k = 0; k <= l; k++ )
      {
        d[k] = z[k+i*n] / h;
      }
      for ( j = 0; j <= l; j++ )
      {
        g = 0.0;
        for ( k = 0; k <= l; k++ )
        {
          g = g + z[k+i*n] * z[k+j*n];
        }
        for ( k = 0; k <= l; k++ )
        {
          z[k+j*n] = z[k+j*n] - g * d[k];
        }
      }
    }
    for ( k = 0; k <= l; k++ )
    {
      z[k+i*n] = 0.0;
    }
  }

  for ( j = 0; j < n; j++ )
  {
    d[j] = z[n-1+j*n];
  }

  for ( j = 0; j < n - 1; j++ )
  {
    z[n-1+j*n] = 0.0;
  }
  z[n-1+(n-1)*n] = 1.0;

  e[0] = 0.0;

  return;
}