# include # include # include # include # include # include using namespace std; # include "exactness.hpp" int main ( ); void test01 ( ); void test015 ( ); void test02 ( ); void test03 ( ); void test04 ( ); void test05 ( ); void test06 ( ); void test07 ( ); void test08 ( ); void test085 ( ); void test09 ( ); void chebyshev1_set ( int n, double x[], double w[] ); void chebyshev2_set ( int n, double x[], double w[] ); void chebyshev3_set ( int n, double x[], double w[] ); void clenshaw_curtis_set ( int n, double x[], double w[] ); void fejer1_set ( int n, double x[], double w[] ); void fejer2_set ( int n, double x[], double w[] ); void hermite_set ( int n, double x[], double w[] ); void hermite_1_set ( int n, double x[], double w[] ); void laguerre_set ( int n, double x[], double w[] ); void laguerre_1_set ( int n, double x[], double w[] ); void legendre_set ( int n, double x[], double w[] ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for EXACTNESS_PRB. // // Discussion: // // EXACTNESS_PRB tests the EXACTNESS library. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 May 2014 // // Author: // // John Burkardt // { timestamp ( ); cout << "\n"; cout << "EXACTNESS_PRB\n"; cout << " C++ version\n"; cout << " Test the EXACTNESS library.\n"; test01 ( ); test015 ( ); test02 ( ); test03 ( ); test04 ( ); test05 ( ); test06 ( ); test07 ( ); test08 ( ); test085 ( ); test09 ( ); // // Terminate. // cout << "\n"; cout << "EXACTNESS_PRB\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void test01 ( ) //****************************************************************************80 // // Purpose: // // TEST01 tests Gauss-Legendre rules for the Legendre integral. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 May 2014 // // Author: // // John Burkardt // { int n; int p_max; double *w; double *x; cout << "\n"; cout << "TEST01\n"; cout << " Gauss-Legendre rules for the Legendre integral.\n"; cout << " Density function rho(x) = 1.\n"; cout << " Region: -1 <= x <= +1.\n"; cout << " Exactness: 2*N-1.\n"; for ( n = 1; n <= 5; n++ ) { x = new double[n]; w = new double[n]; legendre_set ( n, x, w ); p_max = 2 * n; legendre_exactness ( n, x, w, p_max ); delete [] x; delete [] w; } return; } //****************************************************************************80 void test015 ( ) //****************************************************************************80 // // Purpose: // // TEST015 tests Fejer Type 1 rules for the Legendre integral. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 May 2014 // // Author: // // John Burkardt // { int n; int p_max; double *w; double *x; cout << "\n"; cout << "TEST015\n"; cout << " Fejer Type 1 rules for the Legendre integral.\n"; cout << " Density function rho(x) = 1.\n"; cout << " Region: -1 <= x <= +1.\n"; cout << " Exactness: N for N odd,\n"; cout << " N-1 for N even.\n"; for ( n = 1; n <= 5; n++ ) { x = new double[n]; w = new double[n]; fejer1_set ( n, x, w ); if ( ( n % 2 ) == 1 ) { p_max = n + 1; } else { p_max = n; } legendre_exactness ( n, x, w, p_max ); delete [] x; delete [] w; } return; } //****************************************************************************80 void test02 ( ) //****************************************************************************80 // // Purpose: // // TEST02 tests Fejer Type 2 rules for the Legendre integral. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 May 2014 // // Author: // // John Burkardt // { int n; int p_max; double *w; double *x; cout << "\n"; cout << "TEST02\n"; cout << " Fejer Type 2 rules for the Legendre integral.\n"; cout << " Density function rho(x) = 1.\n"; cout << " Region: -1 <= x <= +1.\n"; cout << " Exactness: N for N odd,\n"; cout << " N-1 for N even.\n"; for ( n = 1; n <= 5; n++ ) { x = new double[n]; w = new double[n]; fejer2_set ( n, x, w ); if ( ( n % 2 ) == 1 ) { p_max = n + 1; } else { p_max = n; } legendre_exactness ( n, x, w, p_max ); delete [] x; delete [] w; } return; } //****************************************************************************80 void test03 ( ) //****************************************************************************80 // // Purpose: // // TEST03 tests Clenshaw-Curtis rules for the Legendre integral. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 May 2014 // // Author: // // John Burkardt // { int n; int p_max; double *w; double *x; cout << "\n"; cout << "TEST03\n"; cout << " Clenshaw-Curtis rules for the Legendre integral.\n"; cout << " Density function rho(x) = 1.\n"; cout << " Region: -1 <= x <= +1.\n"; cout << " Exactness: N for N odd,\n"; cout << " N-1 for N even.\n"; for ( n = 1; n <= 5; n++ ) { x = new double[n]; w = new double[n]; clenshaw_curtis_set ( n, x, w ); if ( ( n % 2 ) == 1 ) { p_max = n + 1; } else { p_max = n; } legendre_exactness ( n, x, w, p_max ); delete [] x; delete [] w; } return; } //****************************************************************************80 void test04 ( ) //****************************************************************************80 // // Purpose: // // TEST04 tests Gauss-Laguerre rules for the Laguerre integral. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 May 2014 // // Author: // // John Burkardt // { int n; int p_max; double *w; double *x; cout << "\n"; cout << "TEST04\n"; cout << " Gauss-Laguerre rules for the Laguerre integral.\n"; cout << " Density function rho(x) = exp(-x).\n"; cout << " Region: 0 <= x < +oo.\n"; cout << " Exactness: 2N-1.\n"; for ( n = 1; n <= 5; n++ ) { x = new double[n]; w = new double[n]; laguerre_set ( n, x, w ); p_max = 2 * n; laguerre_exactness ( n, x, w, p_max ); delete [] x; delete [] w; } return; } //****************************************************************************80 void test05 ( ) //****************************************************************************80 // // Purpose: // // TEST05 tests Gauss-Laguerre rules for the Laguerre integral with rho=1. // // Discussion: // // Instead of the usual density rho(x)=exp(-x), these rules apply to // approximating the integral: // I(f) = integral ( 0 <= x < +oo ) f(x) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 May 2014 // // Author: // // John Burkardt // { int i; int n; int p_max; double *w; double *x; cout << "\n"; cout << "TEST05\n"; cout << " Gauss-Laguerre rules for the Laguerre integral.\n"; cout << " Density function rho(x) = 1.\n"; cout << " Region: 0 <= x < +oo.\n"; cout << " Exactness: 2N-1.\n"; for ( n = 1; n <= 5; n++ ) { x = new double[n]; w = new double[n]; laguerre_1_set ( n, x, w ); // // Standardize the rule by multiplying every weight w(i) by exp(-x(i)). // for ( i = 0; i < n; i++ ) { w[i] = exp ( - x[i] ) * w[i]; } // // Now test the rule in standard form. // p_max = 2 * n; laguerre_exactness ( n, x, w, p_max ); delete [] x; delete [] w; } return; } //****************************************************************************80 void test06 ( ) //****************************************************************************80 // // Purpose: // // TEST06 tests Gauss-Hermite rules for the Hermite integral. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 May 2014 // // Author: // // John Burkardt // { int n; int p_max; double *w; double *x; cout << "\n"; cout << "TEST06\n"; cout << " Gauss-Hermite rules for the Hermite integral.\n"; cout << " Density function rho(x) = exp(-x^2).\n"; cout << " Region: -oo < x < +oo.\n"; cout << " Exactness: 2N-1.\n"; for ( n = 1; n <= 5; n++ ) { x = new double[n]; w = new double[n]; hermite_set ( n, x, w ); p_max = 2 * n; hermite_exactness ( n, x, w, p_max ); delete [] x; delete [] w; } return; } //****************************************************************************80 void test07 ( ) //****************************************************************************80 // // Purpose: // // TEST07 tests Gauss-Hermite rules for the Hermite integral. // // Discussion: // // Instead of the usual density rho(x)=exp(-x*x), these rules apply to // approximating the integral: // I(f) = integral ( -oo < x < +oo ) f(x) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 May 2014 // // Author: // // John Burkardt // { int i; int n; int p_max; double *w; double *x; cout << "\n"; cout << "TEST07\n"; cout << " Gauss-Hermite rules for the Hermite integral.\n"; cout << " Density function rho(x) = 1.\n"; cout << " Region: -oo < x < +oo.\n"; cout << " Exactness: 2N-1.\n"; for ( n = 1; n <= 5; n++ ) { x = new double[n]; w = new double[n]; hermite_1_set ( n, x, w ); // // Standardize the rule by multiplying every weight w(i) by exp(-x(i)^2). // for ( i = 0; i < n; i++ ) { w[i] = exp ( - x[i] * x[i] ) * w[i]; } // // Now test the rule in standard form. // p_max = 2 * n; hermite_exactness ( n, x, w, p_max ); delete [] x; delete [] w; } return; } //****************************************************************************80 void test08 ( ) //****************************************************************************80 // // Purpose: // // TEST08 tests Gauss-Chebyshev1 rules for the Chebyshev1 integral. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 May 2014 // // Author: // // John Burkardt // { int i; int n; int p_max; double *w; double *x; cout << "\n"; cout << "TEST08\n"; cout << " Gauss-Chebyshev1 rules for the Chebyshev1 integral.\n"; cout << " Density function rho(x) = 1/sqrt(1-x^2).\n"; cout << " Region: -1 <= x <= +1.\n"; cout << " Exactness: 2N-1.\n"; for ( n = 1; n <= 5; n++ ) { x = new double[n]; w = new double[n]; chebyshev1_set ( n, x, w ); p_max = 2 * n; chebyshev1_exactness ( n, x, w, p_max ); delete [] x; delete [] w; } return; } //****************************************************************************80 void test085 ( ) //****************************************************************************80 // // Purpose: // // TEST085 tests Gauss-Chebyshev3 rules for the Chebyshev1 integral. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 May 2014 // // Author: // // John Burkardt // { int i; int n; int p_max; double *w; double *x; cout << "\n"; cout << "TEST085\n"; cout << " Gauss-Chebyshev3 rules for the Chebyshev1 integral.\n"; cout << " Density function rho(x) = 1/sqrt(1-x^2).\n"; cout << " Region: -1 <= x <= +1.\n"; cout << " Exactness: 2N-3.\n"; for ( n = 1; n <= 5; n++ ) { x = new double[n]; w = new double[n]; chebyshev3_set ( n, x, w ); if ( n == 1 ) { p_max = 2 * n; } else { p_max = 2 * n - 2; } chebyshev1_exactness ( n, x, w, p_max ); delete [] x; delete [] w; } return; } //****************************************************************************80 void test09 ( ) //****************************************************************************80 // // Purpose: // // TEST09 tests Gauss-Chebyshev2 rules for the Chebyshev2 integral. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 May 2014 // // Author: // // John Burkardt // { int i; int n; int p_max; double *w; double *x; cout << "\n"; cout << "TEST09\n"; cout << " Gauss-Chebyshev2 rules for the Chebyshev2 integral.\n"; cout << " Density function rho(x) = sqrt(1-x^2).\n"; cout << " Region: -1 <= x <= +1.\n"; cout << " Exactness: 2N-1.\n"; for ( n = 1; n <= 5; n++ ) { x = new double[n]; w = new double[n]; chebyshev2_set ( n, x, w ); p_max = 2 * n; chebyshev2_exactness ( n, x, w, p_max ); delete [] x; delete [] w; } return; } //****************************************************************************80 void chebyshev1_set ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CHEBYSHEV1_SET sets a Chebyshev Type 1 quadrature rule. // // Discussion: // // The integral: // // integral ( -1 <= x <= 1 ) f(x) / sqrt ( 1 - x * x ) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 May 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // N must be between 1 and 10. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { if ( n == 1 ) { x[0] = 0.0; w[0] = 3.141592653589793; } else if ( n == 2 ) { x[0] = -0.7071067811865475; x[1] = 0.7071067811865476; w[0] = 1.570796326794897; w[1] = 1.570796326794897; } else if ( n == 3 ) { x[0] = -0.8660254037844387; x[1] = 0.0; x[2] = 0.8660254037844387; w[0] = 1.047197551196598; w[1] = 1.047197551196598; w[2] = 1.047197551196598; } else if ( n == 4 ) { x[0] = -0.9238795325112867; x[1] = -0.3826834323650897; x[2] = 0.3826834323650898; x[3] = 0.9238795325112867; w[0] = 0.7853981633974483; w[1] = 0.7853981633974483; w[2] = 0.7853981633974483; w[3] = 0.7853981633974483; } else if ( n == 5 ) { x[0] = -0.9510565162951535; x[1] = -0.5877852522924730; x[2] = 0.0; x[3] = 0.5877852522924731; x[4] = 0.9510565162951535; w[0] = 0.6283185307179586; w[1] = 0.6283185307179586; w[2] = 0.6283185307179586; w[3] = 0.6283185307179586; w[4] = 0.6283185307179586; } else if ( n == 6 ) { x[0] = -0.9659258262890682; x[1] = -0.7071067811865475; x[2] = -0.2588190451025206; x[3] = 0.2588190451025207; x[4] = 0.7071067811865476; x[5] = 0.9659258262890683; w[0] = 0.5235987755982988; w[1] = 0.5235987755982988; w[2] = 0.5235987755982988; w[3] = 0.5235987755982988; w[4] = 0.5235987755982988; w[5] = 0.5235987755982988; } else if ( n == 7 ) { x[0] = -0.9749279121818237; x[1] = -0.7818314824680295; x[2] = -0.4338837391175581; x[3] = 0.0; x[4] = 0.4338837391175582; x[5] = 0.7818314824680298; x[6] = 0.9749279121818236; w[0] = 0.4487989505128276; w[1] = 0.4487989505128276; w[2] = 0.4487989505128276; w[3] = 0.4487989505128276; w[4] = 0.4487989505128276; w[5] = 0.4487989505128276; w[6] = 0.4487989505128276; } else if ( n == 8 ) { x[0] = -0.9807852804032304; x[1] = -0.8314696123025453; x[2] = -0.5555702330196020; x[3] = -0.1950903220161282; x[4] = 0.1950903220161283; x[5] = 0.5555702330196023; x[6] = 0.8314696123025452; x[7] = 0.9807852804032304; w[0] = 0.3926990816987241; w[1] = 0.3926990816987241; w[2] = 0.3926990816987241; w[3] = 0.3926990816987241; w[4] = 0.3926990816987241; w[5] = 0.3926990816987241; w[6] = 0.3926990816987241; w[7] = 0.3926990816987241; } else if ( n == 9 ) { x[0] = -0.9848077530122080; x[1] = -0.8660254037844385; x[2] = -0.6427876096865394; x[3] = -0.3420201433256685; x[4] = 0.0; x[5] = 0.3420201433256688; x[6] = 0.6427876096865394; x[7] = 0.8660254037844387; x[8] = 0.9848077530122080; w[0] = 0.3490658503988659; w[1] = 0.3490658503988659; w[2] = 0.3490658503988659; w[3] = 0.3490658503988659; w[4] = 0.3490658503988659; w[5] = 0.3490658503988659; w[6] = 0.3490658503988659; w[7] = 0.3490658503988659; w[8] = 0.3490658503988659; } else if ( n == 10 ) { x[0] = -0.9876883405951377; x[1] = -0.8910065241883678; x[2] = -0.7071067811865475; x[3] = -0.4539904997395467; x[4] = -0.1564344650402306; x[5] = 0.1564344650402309; x[6] = 0.4539904997395468; x[7] = 0.7071067811865476; x[8] = 0.8910065241883679; x[9] = 0.9876883405951378; w[0] = 0.3141592653589793; w[1] = 0.3141592653589793; w[2] = 0.3141592653589793; w[3] = 0.3141592653589793; w[4] = 0.3141592653589793; w[5] = 0.3141592653589793; w[6] = 0.3141592653589793; w[7] = 0.3141592653589793; w[8] = 0.3141592653589793; w[9] = 0.3141592653589793; } else { cerr << "\n"; cerr << "CHEBYSHEV1_SET - Fatal error!\n"; cerr << " Illegal value of N = " << n << "\n"; cerr << " Legal values are 1 through 10.\n"; exit ( 1 ); } return; } //****************************************************************************80 void chebyshev2_set ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CHEBYSHEV2_SET sets a Chebyshev Type 2 quadrature rule. // // Discussion: // // The integral: // // integral ( -1 <= x <= 1 ) f(x) * sqrt ( 1 - x * x ) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w[i) * f ( x[i) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 May 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // N must be between 1 and 10. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { if ( n == 1 ) { x[0] = 0.0; w[0] = 1.570796326794897; } else if ( n == 2 ) { x[0] = -0.5000000000000000; x[1] = 0.5000000000000000; w[0] = 0.7853981633974484; w[1] = 0.7853981633974481; } else if ( n == 3 ) { x[0] = -0.7071067811865475; x[1] = 0.0; x[2] = 0.7071067811865476; w[0] = 0.3926990816987243; w[1] = 0.7853981633974483; w[2] = 0.3926990816987240; } else if ( n == 4 ) { x[0] = -0.8090169943749473; x[1] = -0.3090169943749473; x[2] = 0.3090169943749475; x[3] = 0.8090169943749475; w[0] = 0.2170787134227061; w[1] = 0.5683194499747424; w[2] = 0.5683194499747423; w[3] = 0.2170787134227060; } else if ( n == 5 ) { x[0] = -0.8660254037844387; x[1] = -0.5000000000000000; x[2] = 0.0; x[3] = 0.5000000000000000; x[4] = 0.8660254037844387; w[0] = 0.1308996938995747; w[1] = 0.3926990816987242; w[2] = 0.5235987755982988; w[3] = 0.3926990816987240; w[4] = 0.1308996938995747; } else if ( n == 6 ) { x[0] = -0.9009688679024190; x[1] = -0.6234898018587335; x[2] = -0.2225209339563143; x[3] = 0.2225209339563144; x[4] = 0.6234898018587336; x[5] = 0.9009688679024191; w[0] = 0.08448869089158863; w[1] = 0.2743330560697779; w[2] = 0.4265764164360819; w[3] = 0.4265764164360819; w[4] = 0.2743330560697778; w[5] = 0.08448869089158857; } else if ( n == 7 ) { x[0] = -0.9238795325112867; x[1] = -0.7071067811865475; x[2] = -0.3826834323650897; x[3] = 0.0; x[4] = 0.3826834323650898; x[5] = 0.7071067811865476; x[6] = 0.9238795325112867; w[0] = 0.05750944903191316; w[1] = 0.1963495408493621; w[2] = 0.3351896326668110; w[3] = 0.3926990816987241; w[4] = 0.3351896326668110; w[5] = 0.1963495408493620; w[6] = 0.05750944903191313; } else if ( n == 8 ) { x[0] = -0.9396926207859083; x[1] = -0.7660444431189779; x[2] = -0.5000000000000000; x[3] = -0.1736481776669303; x[4] = 0.1736481776669304; x[5] = 0.5000000000000000; x[6] = 0.7660444431189780; x[7] = 0.9396926207859084; w[0] = 0.04083294770910712; w[1] = 0.1442256007956728; w[2] = 0.2617993877991495; w[3] = 0.3385402270935190; w[4] = 0.3385402270935190; w[5] = 0.2617993877991494; w[6] = 0.1442256007956727; w[7] = 0.04083294770910708; } else if ( n == 9 ) { x[0] = -0.9510565162951535; x[1] = -0.8090169943749473; x[2] = -0.5877852522924730; x[3] = -0.3090169943749473; x[4] = 0.0; x[5] = 0.3090169943749475; x[6] = 0.5877852522924731; x[7] = 0.8090169943749475; x[8] = 0.9510565162951535; w[0] = 0.02999954037160818; w[1] = 0.1085393567113530; w[2] = 0.2056199086476263; w[3] = 0.2841597249873712; w[4] = 0.3141592653589793; w[5] = 0.2841597249873711; w[6] = 0.2056199086476263; w[7] = 0.1085393567113530; w[8] = 0.02999954037160816; } else if ( n == 10 ) { x[0] = -0.9594929736144974; x[1] = -0.8412535328311811; x[2] = -0.6548607339452850; x[3] = -0.4154150130018863; x[4] = -0.1423148382732850; x[5] = 0.1423148382732851; x[6] = 0.4154150130018864; x[7] = 0.6548607339452851; x[8] = 0.8412535328311812; x[9] = 0.9594929736144974; w[0] = 0.02266894250185884; w[1] = 0.08347854093418908; w[2] = 0.1631221774548166; w[3] = 0.2363135602034873; w[4] = 0.2798149423030966; w[5] = 0.2798149423030965; w[6] = 0.2363135602034873; w[7] = 0.1631221774548166; w[8] = 0.08347854093418902; w[9] = 0.02266894250185884; } else { cerr << "\n"; cerr << "CHEBYSHEV2_SET - Fatal error!\n"; cerr << " Illegal value of N = " << n << "\n"; cerr << " Legal values are 1 through 10.\n"; exit ( 1 ); } return; } //****************************************************************************80 void chebyshev3_set ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CHEBYSHEV3_SET sets a Chebyshev Type 3 quadrature rule. // // Discussion: // // The integral: // // integral ( -1 <= x <= 1 ) f(x) / sqrt ( 1 - x * x ) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 May 2014 // // Author: // // John Burkardt // // Parameters: // // Input, integer N, the order. // N must be between 1 and 10. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { if ( n == 1 ) { x[0] = 0.000000000000000; w[0] = 3.141592653589793; } else if ( n == 2 ) { x[0] = -1.000000000000000; x[1] = 1.000000000000000; w[0] = 1.570796326794897; w[1] = 1.570796326794897; } else if ( n == 3 ) { x[0] = -1.000000000000000; x[1] = 0.0; x[2] = 1.000000000000000; w[0] = 0.7853981633974483; w[1] = 1.570796326794897; w[2] = 0.7853981633974483; } else if ( n == 4 ) { x[0] = -1.000000000000000; x[1] = -0.5000000000000000; x[2] = 0.5000000000000000; x[3] = 1.000000000000000; w[0] = 0.5235987755982988; w[1] = 1.047197551196598; w[2] = 1.047197551196598; w[3] = 0.5235987755982988; } else if ( n == 5 ) { x[0] = -1.000000000000000; x[1] = -0.7071067811865475; x[2] = 0.0; x[3] = 0.7071067811865476; x[4] = 1.000000000000000; w[0] = 0.3926990816987241; w[1] = 0.7853981633974483; w[2] = 0.7853981633974483; w[3] = 0.7853981633974483; w[4] = 0.3926990816987241; } else if ( n == 6 ) { x[0] = -1.000000000000000; x[1] = -0.8090169943749473; x[2] = -0.3090169943749473; x[3] = 0.3090169943749475; x[4] = 0.8090169943749475; x[5] = 1.000000000000000; w[0] = 0.3141592653589793; w[1] = 0.6283185307179586; w[2] = 0.6283185307179586; w[3] = 0.6283185307179586; w[4] = 0.6283185307179586; w[5] = 0.3141592653589793; } else if ( n == 7 ) { x[0] = -1.000000000000000; x[1] = -0.8660254037844387; x[2] = -0.5000000000000000; x[3] = 0.0; x[4] = 0.5000000000000001; x[5] = 0.8660254037844387; x[6] = 1.000000000000000; w[0] = 0.2617993877991494; w[1] = 0.5235987755982988; w[2] = 0.5235987755982988; w[3] = 0.5235987755982988; w[4] = 0.5235987755982988; w[5] = 0.5235987755982988; w[6] = 0.2617993877991494; } else if ( n == 8 ) { x[0] = -1.000000000000000; x[1] = -0.9009688679024190; x[2] = -0.6234898018587335; x[3] = -0.2225209339563143; x[4] = 0.2225209339563144; x[5] = 0.6234898018587336; x[6] = 0.9009688679024191; x[7] = 1.000000000000000; w[0] = 0.2243994752564138; w[1] = 0.4487989505128276; w[2] = 0.4487989505128276; w[3] = 0.4487989505128276; w[4] = 0.4487989505128276; w[5] = 0.4487989505128276; w[6] = 0.4487989505128276; w[7] = 0.2243994752564138; } else if ( n == 9 ) { x[0] = -1.000000000000000; x[1] = -0.9238795325112867; x[2] = -0.7071067811865475; x[3] = -0.3826834323650897; x[4] = 0.0; x[5] = 0.3826834323650898; x[6] = 0.7071067811865476; x[7] = 0.9238795325112867; x[8] = 1.000000000000000; w[0] = 0.1963495408493621; w[1] = 0.3926990816987241; w[2] = 0.3926990816987241; w[3] = 0.3926990816987241; w[4] = 0.3926990816987241; w[5] = 0.3926990816987241; w[6] = 0.3926990816987241; w[7] = 0.3926990816987241; w[8] = 0.1963495408493621; } else if ( n == 10 ) { x[0] = -1.000000000000000; x[1] = -0.9396926207859083; x[2] = -0.7660444431189779; x[3] = -0.5000000000000000; x[4] = -0.1736481776669303; x[5] = 0.1736481776669304; x[6] = 0.5000000000000001; x[7] = 0.7660444431189780; x[8] = 0.9396926207859084; x[9] = 1.000000000000000; w[0] = 0.1745329251994329; w[1] = 0.3490658503988659; w[2] = 0.3490658503988659; w[3] = 0.3490658503988659; w[4] = 0.3490658503988659; w[5] = 0.3490658503988659; w[6] = 0.3490658503988659; w[7] = 0.3490658503988659; w[8] = 0.3490658503988659; w[9] = 0.1745329251994329; } else { cerr << "\n"; cerr << "CHEBYSHEV3_SET - Fatal error!\n"; cerr << " Illegal value of N = " << n << "\n"; cerr << " Legal values are 1 through 10.\n"; exit ( 1 ); } return; } //****************************************************************************80 void clenshaw_curtis_set ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // CLENSHAW_CURTIS_SET sets a Clenshaw-Curtis quadrature rule. // // Discussion: // // The integral: // // Integral ( -1 <= X <= 1 ) F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= N ) W(I) * F ( X(I) ) // // The abscissas for the rule of order N can be regarded // as the cosines of equally spaced angles between 180 and 0 degrees: // // X(I) = cos ( ( I - 1 ) * PI / ( N - 1 ) ) // // except for the basic case N = 1, when // // X(1) = 0. // // A Clenshaw-Curtis rule that uses N points will integrate // exactly all polynomials of degrees 0 through N-1. If N // is odd, then by symmetry the polynomial of degree N will // also be integrated exactly. // // If the value of N is increased in a sensible way, then // the new set of abscissas will include the old ones. One such // sequence would be N(K) = 2*K+1 for K = 0, 1, 2, ... // Thus, in the table below, the abscissas for order 9 include // those for order 5. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 May 2007 // // Author: // // John Burkardt // // Reference: // // Charles Clenshaw, Alan Curtis, // A Method for Numerical Integration on an Automatic Computer, // Numerische Mathematik, // Volume 2, Number 1, December 1960, pages 197-205. // // Parameters: // // Input, int N, the order. // N must be between 1 and 17, 33, 65 or 129. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { if ( n == 1 ) { x[0] = 0.00000000000000000000; w[0] = 2.00000000000000000000; } else if ( n == 2 ) { x[0] = -1.00000000000000000000; x[1] = 1.00000000000000000000; w[0] = 1.00000000000000000000; w[1] = 1.00000000000000000000; } else if ( n == 3 ) { x[0] = -1.00000000000000000000; x[1] = 0.00000000000000000000; x[2] = 1.00000000000000000000; w[0] = 0.33333333333333333333; w[1] = 1.33333333333333333333; w[2] = 0.33333333333333333333; } else if ( n == 4 ) { x[0] = -1.00000000000000000000; x[1] = -0.50000000000000000000; x[2] = 0.50000000000000000000; x[3] = 1.00000000000000000000; w[0] = 0.11111111111111111111; w[1] = 0.88888888888888888889; w[2] = 0.88888888888888888889; w[3] = 0.11111111111111111111; } else if ( n == 5 ) { x[0] = -1.00000000000000000000; x[1] = -0.70710678118654752440; x[2] = 0.00000000000000000000; x[3] = 0.70710678118654752440; x[4] = 1.00000000000000000000; w[0] = 0.06666666666666666667; w[1] = 0.53333333333333333333; w[2] = 0.80000000000000000000; w[3] = 0.53333333333333333333; w[4] = 0.06666666666666666667; } else if ( n == 6 ) { x[0] = -1.00000000000000000000; x[1] = -0.80901699437494742410; x[2] = -0.30901699437494742410; x[3] = 0.30901699437494742410; x[4] = 0.80901699437493732410; x[5] = 1.00000000000000000000; w[0] = 0.04000000000000000000; w[1] = 0.36074304120001121619; w[2] = 0.59925695879998878381; w[3] = 0.59925695879998878381; w[4] = 0.36074304120001121619; w[5] = 0.04000000000000000000; } else if ( n == 7 ) { x[0] = -1.00000000000000000000; x[1] = -0.86602540378443864676; x[2] = -0.50000000000000000000; x[3] = 0.00000000000000000000; x[4] = 0.50000000000000000000; x[5] = 0.86602540378443864676; x[6] = 1.00000000000000000000; w[0] = 0.02857142857142857143; w[1] = 0.25396825396825396825; w[2] = 0.45714285714285714286; w[3] = 0.52063492063492063492; w[4] = 0.45714285714285714286; w[5] = 0.25396825396825396825; w[6] = 0.02857142857142857143; } else if ( n == 8 ) { x[0] = -1.00000000000000000000; x[1] = -0.90096886790241912624; x[2] = -0.62348980185873353053; x[3] = -0.22252093395631440429; x[4] = 0.22252093395631440429; x[5] = 0.62348980185873353053; x[6] = 0.90096886790241910624; x[7] = 1.00000000000000000000; w[0] = 0.02040816326530612245; w[1] = 0.19014100721820835178; w[2] = 0.35224242371815911533; w[3] = 0.43720840579832641044; w[4] = 0.43720840579832641044; w[5] = 0.35224242371815911533; w[6] = 0.19014100721820835178; w[7] = 0.02040816326530612245; } else if ( n == 9 ) { x[0] = -1.00000000000000000000; x[1] = -0.92387953251128675613; x[2] = -0.70710678118654752440; x[3] = -0.38268343236508977173; x[4] = 0.00000000000000000000; x[5] = 0.38268343236508977173; x[6] = 0.70710678118654752440; x[7] = 0.92387953251128675613; x[8] = 1.00000000000000000000; w[0] = 0.01587301587301587302; w[1] = 0.14621864921601815501; w[2] = 0.27936507936507936508; w[3] = 0.36171785872048978150; w[4] = 0.39365079365079365079; w[5] = 0.36171785872048978150; w[6] = 0.27936507936507936508; w[7] = 0.14621864921601815501; w[8] = 0.01587301587301587302; } else if ( n == 10 ) { x[0] = -1.00000000000000000000; x[1] = -0.93969262078590838405; x[2] = -0.76604444311897903520; x[3] = -0.50000000000000000000; x[4] = -0.17364817766693034885; x[5] = 0.17364817766693034885; x[6] = 0.50000000000000000000; x[7] = 0.76604444311897903520; x[8] = 0.93969262078590838405; x[9] = 1.00000000000000000000; w[0] = 0.01234567901234567901; w[1] = 0.11656745657203712296; w[2] = 0.22528432333810440813; w[3] = 0.30194003527336860670; w[4] = 0.34386250580414418320; w[5] = 0.34386250580414418320; w[6] = 0.30194003527336860670; w[7] = 0.22528432333810440813; w[8] = 0.11656745657203712296; w[9] = 0.01234567901234567901; } else { cout << "\n"; cout << "CLENSHAW_CURTIS_SET - Fatal error!\n"; cout << " Illegal value of N = " << n << "\n"; cout << " Legal values are 1 to 10.\n"; exit ( 1 ); } return; } //****************************************************************************80 void fejer1_set ( int n, double xtab[], double weight[] ) //****************************************************************************80 // // Purpose: // // FEJER1_SET sets abscissas and weights for Fejer type 1 quadrature. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 March 2007 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Walter Gautschi, // Numerical Quadrature in the Presence of a Singularity, // SIAM Journal on Numerical Analysis, // Volume 4, Number 3, 1967, pages 357-362. // // Joerg Waldvogel, // Fast Construction of the Fejer and Clenshaw-Curtis Quadrature Rules, // BIT Numerical Mathematics, // Volume 43, Number 1, 2003, pages 1-18. // // Parameters: // // Input, int N, the order. N should be // between 1 and 10. // // Output, double XTAB[N], the abscissas. // // Output, double WEIGHT[N], the weights. // { if ( n == 1 ) { xtab[0] = 0.000000000000000; weight[0] = 2.000000000000000; } else if ( n == 2 ) { xtab[0] = -0.7071067811865475; xtab[1] = 0.7071067811865475; weight[0] = 1.000000000000000; weight[1] = 1.000000000000000; } else if ( n == 3 ) { xtab[0] = -0.8660254037844387; xtab[1] = 0.0000000000000000; xtab[2] = 0.8660254037844387; weight[0] = 0.4444444444444444; weight[1] = 1.111111111111111; weight[2] = 0.4444444444444444; } else if ( n == 4 ) { xtab[0] = -0.9238795325112867; xtab[1] = -0.3826834323650897; xtab[2] = 0.3826834323650898; xtab[3] = 0.9238795325112867; weight[0] = 0.2642977396044841; weight[1] = 0.7357022603955158; weight[2] = 0.7357022603955158; weight[3] = 0.2642977396044841; } else if ( n == 5 ) { xtab[0] = -0.9510565162951535; xtab[1] = -0.5877852522924730; xtab[2] = 0.0000000000000000; xtab[3] = 0.5877852522924731; xtab[4] = 0.9510565162951535; weight[0] = 0.1677812284666835; weight[1] = 0.5255521048666498; weight[2] = 0.6133333333333333; weight[3] = 0.5255521048666498; weight[4] = 0.1677812284666835; } else if ( n == 6 ) { xtab[0] = -0.9659258262890682; xtab[1] = -0.7071067811865475; xtab[2] = -0.2588190451025206; xtab[3] = 0.2588190451025207; xtab[4] = 0.7071067811865476; xtab[5] = 0.9659258262890683; weight[0] = 0.1186610213812358; weight[1] = 0.3777777777777778; weight[2] = 0.5035612008409863; weight[3] = 0.5035612008409863; weight[4] = 0.3777777777777778; weight[5] = 0.1186610213812358; } else if ( n == 7 ) { xtab[0] = -0.9749279121818237; xtab[1] = -0.7818314824680295; xtab[2] = -0.4338837391175581; xtab[3] = 0.0000000000000000; xtab[4] = 0.4338837391175582; xtab[5] = 0.7818314824680298; xtab[6] = 0.9749279121818236; weight[0] = 0.08671618072672234; weight[1] = 0.2878313947886919; weight[2] = 0.3982415401308441; weight[3] = 0.4544217687074830; weight[4] = 0.3982415401308441; weight[5] = 0.2878313947886919; weight[6] = 0.08671618072672234; } else if ( n == 8 ) { xtab[0] = -0.9807852804032304; xtab[1] = -0.8314696123025453; xtab[2] = -0.5555702330196020; xtab[3] = -0.1950903220161282; xtab[4] = 0.1950903220161283; xtab[5] = 0.5555702330196023; xtab[6] = 0.8314696123025452; xtab[7] = 0.9807852804032304; weight[0] = 0.06698294569858981; weight[1] = 0.2229879330145788; weight[2] = 0.3241525190645244; weight[3] = 0.3858766022223071; weight[4] = 0.3858766022223071; weight[5] = 0.3241525190645244; weight[6] = 0.2229879330145788; weight[7] = 0.06698294569858981; } else if ( n == 9 ) { xtab[0] = -0.9848077530122080; xtab[1] = -0.8660254037844385; xtab[2] = -0.6427876096865394; xtab[3] = -0.3420201433256685; xtab[4] = 0.0000000000000000; xtab[5] = 0.3420201433256688; xtab[6] = 0.6427876096865394; xtab[7] = 0.8660254037844387; xtab[8] = 0.9848077530122080; weight[0] = 0.05273664990990676; weight[1] = 0.1791887125220458; weight[2] = 0.2640372225410044; weight[3] = 0.3308451751681364; weight[4] = 0.3463844797178130; weight[5] = 0.3308451751681364; weight[6] = 0.2640372225410044; weight[7] = 0.1791887125220458; weight[8] = 0.05273664990990676; } else if ( n == 10 ) { xtab[0] = -0.9876883405951377; xtab[1] = -0.8910065241883678; xtab[2] = -0.7071067811865475; xtab[3] = -0.4539904997395467; xtab[4] = -0.1564344650402306; xtab[5] = 0.1564344650402309; xtab[6] = 0.4539904997395468; xtab[7] = 0.7071067811865476; xtab[8] = 0.8910065241883679; xtab[9] = 0.9876883405951378; weight[0] = 0.04293911957413078; weight[1] = 0.1458749193773909; weight[2] = 0.2203174603174603; weight[3] = 0.2808792186638755; weight[4] = 0.3099892820671425; weight[5] = 0.3099892820671425; weight[6] = 0.2808792186638755; weight[7] = 0.2203174603174603; weight[8] = 0.1458749193773909; weight[9] = 0.04293911957413078; } else { cerr << "\n"; cerr << "FEJER1_SET - Fatal error!\n"; cerr << " Illegal value of N = " << n << "\n"; cerr << " Legal values are 1 through 10.\n"; exit ( 1 ); } return; } //****************************************************************************80 void fejer2_set ( int n, double xtab[], double weight[] ) //****************************************************************************80 // // Purpose: // // FEJER2_SET sets abscissas and weights for Fejer type 2 quadrature. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 March 2007 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Walter Gautschi, // Numerical Quadrature in the Presence of a Singularity, // SIAM Journal on Numerical Analysis, // Volume 4, Number 3, 1967, pages 357-362. // // Joerg Waldvogel, // Fast Construction of the Fejer and Clenshaw-Curtis Quadrature Rules, // BIT Numerical Mathematics, // Volume 43, Number 1, 2003, pages 1-18. // // Parameters: // // Input, int N, the order. // N should be between 1 and 10. // // Output, double XTAB[N], the abscissas. // // Output, double WEIGHT[N], the weights. // { if ( n == 1 ) { xtab[0] = 0.000000000000000; weight[0] = 2.000000000000000; } else if ( n == 2 ) { xtab[0] = -0.5000000000000000; xtab[1] = 0.5000000000000000; weight[0] = 1.0000000000000000; weight[1] = 1.0000000000000000; } else if ( n == 3 ) { xtab[0] = -0.7071067811865476; xtab[1] = 0.0000000000000000; xtab[2] = 0.7071067811865476; weight[0] = 0.6666666666666666; weight[1] = 0.6666666666666666; weight[2] = 0.6666666666666666; } else if ( n == 4 ) { xtab[0] = -0.8090169943749475; xtab[1] = -0.3090169943749475; xtab[2] = 0.3090169943749475; xtab[3] = 0.8090169943749475; weight[0] = 0.4254644007500070; weight[1] = 0.5745355992499930; weight[2] = 0.5745355992499930; weight[3] = 0.4254644007500070; } else if ( n == 5 ) { xtab[0] = -0.8660254037844387; xtab[1] = -0.5000000000000000; xtab[2] = 0.0000000000000000; xtab[3] = 0.5000000000000000; xtab[4] = 0.8660254037844387; weight[0] = 0.3111111111111111; weight[1] = 0.4000000000000000; weight[2] = 0.5777777777777777; weight[3] = 0.4000000000000000; weight[4] = 0.3111111111111111; } else if ( n == 6 ) { xtab[0] = -0.9009688679024191; xtab[1] = -0.6234898018587336; xtab[2] = -0.2225209339563144; xtab[3] = 0.2225209339563144; xtab[4] = 0.6234898018587336; xtab[5] = 0.9009688679024191; weight[0] = 0.2269152467244296; weight[1] = 0.3267938603769863; weight[2] = 0.4462908928985841; weight[3] = 0.4462908928985841; weight[4] = 0.3267938603769863; weight[5] = 0.2269152467244296; } else if ( n == 7 ) { xtab[0] = -0.9238795325112867; xtab[1] = -0.7071067811865476; xtab[2] = -0.3826834323650898; xtab[3] = 0.0000000000000000; xtab[4] = 0.3826834323650898; xtab[5] = 0.7071067811865476; xtab[6] = 0.9238795325112867; weight[0] = 0.1779646809620499; weight[1] = 0.2476190476190476; weight[2] = 0.3934638904665215; weight[3] = 0.3619047619047619; weight[4] = 0.3934638904665215; weight[5] = 0.2476190476190476; weight[6] = 0.1779646809620499; } else if ( n == 8 ) { xtab[0] = -0.9396926207859084; xtab[1] = -0.7660444431189780; xtab[2] = -0.5000000000000000; xtab[3] = -0.1736481776669304; xtab[4] = 0.1736481776669304; xtab[5] = 0.5000000000000000; xtab[6] = 0.7660444431189780; xtab[7] = 0.9396926207859084; weight[0] = 0.1397697435050225; weight[1] = 0.2063696457302284; weight[2] = 0.3142857142857143; weight[3] = 0.3395748964790348; weight[4] = 0.3395748964790348; weight[5] = 0.3142857142857143; weight[6] = 0.2063696457302284; weight[7] = 0.1397697435050225; } else if ( n == 9 ) { xtab[0] = -0.9510565162951535; xtab[1] = -0.8090169943749475; xtab[2] = -0.5877852522924731; xtab[3] = -0.3090169943749475; xtab[4] = 0.0000000000000000; xtab[5] = 0.3090169943749475; xtab[6] = 0.5877852522924731; xtab[7] = 0.8090169943749475; xtab[8] = 0.9510565162951535; weight[0] = 0.1147810750857217; weight[1] = 0.1654331942222276; weight[2] = 0.2737903534857068; weight[3] = 0.2790112502222170; weight[4] = 0.3339682539682539; weight[5] = 0.2790112502222170; weight[6] = 0.2737903534857068; weight[7] = 0.1654331942222276; weight[8] = 0.1147810750857217; } else if ( n == 10 ) { xtab[0] = -0.9594929736144974; xtab[1] = -0.8412535328311812; xtab[2] = -0.6548607339452851; xtab[3] = -0.4154150130018864; xtab[4] = -0.1423148382732851; xtab[5] = 0.1423148382732851; xtab[6] = 0.4154150130018864; xtab[7] = 0.6548607339452851; xtab[8] = 0.8412535328311812; xtab[9] = 0.9594929736144974; weight[0] = 0.09441954173982806; weight[1] = 0.1411354380109716; weight[2] = 0.2263866903636005; weight[3] = 0.2530509772156453; weight[4] = 0.2850073526699544; weight[5] = 0.2850073526699544; weight[6] = 0.2530509772156453; weight[7] = 0.2263866903636005; weight[8] = 0.1411354380109716; weight[9] = 0.09441954173982806; } else { cerr << "\n"; cerr << "FEJER2_SET - Fatal error!\n"; cerr << " Illegal value of N = " << n << "\n"; cerr << " Legal values are 1 through 10.\n"; exit ( 1 ); } return; } //****************************************************************************80 void hermite_set ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // HERMITE_SET sets abscissas and weights for Hermite quadrature. // // Discussion: // // The integral: // // integral ( -oo < x < +oo ) f(x) * rho(x) dx // // The weight: // // rho(x) = exp ( - x * x ) // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ). // // Mathematica can numerically estimate the abscissas // of order N to P digits by the command: // // NSolve [ HermiteH [ n, x ] == 0, x, p ] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 April 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Vladimir Krylov, // Approximate Calculation of Integrals, // Dover, 2006, // ISBN: 0486445798, // LC: QA311.K713. // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, // ISBN: 0-8493-2479-3, // LC: QA47.M315. // // Parameters: // // Input, int N, the order. // N must be between 1 and 20, or 31/32/33, 63/64/65, 127/128/129. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { if ( n == 1 ) { x[0] = 0.0; w[0] = 1.77245385090551602729816748334; } else if ( n == 2 ) { x[0] = - 0.707106781186547524400844362105; x[1] = 0.707106781186547524400844362105; w[0] = 0.886226925452758013649083741671; w[1] = 0.886226925452758013649083741671; } else if ( n == 3 ) { x[0] = - 0.122474487139158904909864203735E+01; x[1] = 0.0; x[2] = 0.122474487139158904909864203735E+01; w[0] = 0.295408975150919337883027913890; w[1] = 0.118163590060367735153211165556E+01; w[2] = 0.295408975150919337883027913890; } else if ( n == 4 ) { x[0] = - 0.165068012388578455588334111112E+01; x[1] = - 0.524647623275290317884060253835; x[2] = 0.524647623275290317884060253835; x[3] = 0.165068012388578455588334111112E+01; w[0] = 0.813128354472451771430345571899E-01; w[1] = 0.804914090005512836506049184481; w[2] = 0.804914090005512836506049184481; w[3] = 0.813128354472451771430345571899E-01; } else if ( n == 5 ) { x[0] = - 0.202018287045608563292872408814E+01; x[1] = - 0.958572464613818507112770593893; x[2] = 0.0; x[3] = 0.958572464613818507112770593893; x[4] = 0.202018287045608563292872408814E+01; w[0] = 0.199532420590459132077434585942E-01; w[1] = 0.393619323152241159828495620852; w[2] = 0.945308720482941881225689324449; w[3] = 0.393619323152241159828495620852; w[4] = 0.199532420590459132077434585942E-01; } else if ( n == 6 ) { x[0] = - 0.235060497367449222283392198706E+01; x[1] = - 0.133584907401369694971489528297E+01; x[2] = - 0.436077411927616508679215948251; x[3] = 0.436077411927616508679215948251; x[4] = 0.133584907401369694971489528297E+01; x[5] = 0.235060497367449222283392198706E+01; w[0] = 0.453000990550884564085747256463E-02; w[1] = 0.157067320322856643916311563508; w[2] = 0.724629595224392524091914705598; w[3] = 0.724629595224392524091914705598; w[4] = 0.157067320322856643916311563508; w[5] = 0.453000990550884564085747256463E-02; } else if ( n == 7 ) { x[0] = - 0.265196135683523349244708200652E+01; x[1] = - 0.167355162876747144503180139830E+01; x[2] = - 0.816287882858964663038710959027; x[3] = 0.0; x[4] = 0.816287882858964663038710959027; x[5] = 0.167355162876747144503180139830E+01; x[6] = 0.265196135683523349244708200652E+01; w[0] = 0.971781245099519154149424255939E-03; w[1] = 0.545155828191270305921785688417E-01; w[2] = 0.425607252610127800520317466666; w[3] = 0.810264617556807326764876563813; w[4] = 0.425607252610127800520317466666; w[5] = 0.545155828191270305921785688417E-01; w[6] = 0.971781245099519154149424255939E-03; } else if ( n == 8 ) { x[0] = - 0.293063742025724401922350270524E+01; x[1] = - 0.198165675669584292585463063977E+01; x[2] = - 0.115719371244678019472076577906E+01; x[3] = - 0.381186990207322116854718885584; x[4] = 0.381186990207322116854718885584; x[5] = 0.115719371244678019472076577906E+01; x[6] = 0.198165675669584292585463063977E+01; x[7] = 0.293063742025724401922350270524E+01; w[0] = 0.199604072211367619206090452544E-03; w[1] = 0.170779830074134754562030564364E-01; w[2] = 0.207802325814891879543258620286; w[3] = 0.661147012558241291030415974496; w[4] = 0.661147012558241291030415974496; w[5] = 0.207802325814891879543258620286; w[6] = 0.170779830074134754562030564364E-01; w[7] = 0.199604072211367619206090452544E-03; } else if ( n == 9 ) { x[0] = - 0.319099320178152760723004779538E+01; x[1] = - 0.226658058453184311180209693284E+01; x[2] = - 0.146855328921666793166701573925E+01; x[3] = - 0.723551018752837573322639864579; x[4] = 0.0; x[5] = 0.723551018752837573322639864579; x[6] = 0.146855328921666793166701573925E+01; x[7] = 0.226658058453184311180209693284E+01; x[8] = 0.319099320178152760723004779538E+01; w[0] = 0.396069772632643819045862946425E-04; w[1] = 0.494362427553694721722456597763E-02; w[2] = 0.884745273943765732879751147476E-01; w[3] = 0.432651559002555750199812112956; w[4] = 0.720235215606050957124334723389; w[5] = 0.432651559002555750199812112956; w[6] = 0.884745273943765732879751147476E-01; w[7] = 0.494362427553694721722456597763E-02; w[8] = 0.396069772632643819045862946425E-04; } else if ( n == 10 ) { x[0] = - 0.343615911883773760332672549432E+01; x[1] = - 0.253273167423278979640896079775E+01; x[2] = - 0.175668364929988177345140122011E+01; x[3] = - 0.103661082978951365417749191676E+01; x[4] = - 0.342901327223704608789165025557; x[5] = 0.342901327223704608789165025557; x[6] = 0.103661082978951365417749191676E+01; x[7] = 0.175668364929988177345140122011E+01; x[8] = 0.253273167423278979640896079775E+01; x[9] = 0.343615911883773760332672549432E+01; w[0] = 0.764043285523262062915936785960E-05; w[1] = 0.134364574678123269220156558585E-02; w[2] = 0.338743944554810631361647312776E-01; w[3] = 0.240138611082314686416523295006; w[4] = 0.610862633735325798783564990433; w[5] = 0.610862633735325798783564990433; w[6] = 0.240138611082314686416523295006; w[7] = 0.338743944554810631361647312776E-01; w[8] = 0.134364574678123269220156558585E-02; w[9] = 0.764043285523262062915936785960E-05; } else { cout << "\n"; cout << "HERMITE_SET - Fatal error!\n"; cout << " Illegal value of N = " << n << "\n"; cout << " Legal values are 1 to 10.\n"; exit ( 1 ); } return; } //****************************************************************************80 void hermite_1_set ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // HERMITE_1_SET sets abscissas and weights for Hermite quadrature. // // Discussion: // // This routine is for the case with unit density: // integral ( -oo < x < +oo ) f(x) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 May 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // N must be between 1 and 10. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { if ( n == 1 ) { x[0] = 0.0; w[0] = 1.7724538509055161; } else if ( n == 2 ) { x[0] = - 0.707106781186547524400844362105; x[1] = 0.707106781186547524400844362105; w[0] = 1.4611411826611391; w[1] = 1.4611411826611391; } else if ( n == 3 ) { x[0] = - 0.122474487139158904909864203735E+01; x[1] = 0.0; x[2] = 0.122474487139158904909864203735E+01; w[0] = 1.3239311752136438; w[1] = 1.1816359006036774; w[2] = 1.3239311752136438; } else if ( n == 4 ) { x[0] = - 0.165068012388578455588334111112E+01; x[1] = - 0.524647623275290317884060253835; x[2] = 0.524647623275290317884060253835; x[3] = 0.165068012388578455588334111112E+01; w[0] = 1.2402258176958150; w[1] = 1.0599644828949693; w[2] = 1.0599644828949693; w[3] = 1.2402258176958150; } else if ( n == 5 ) { x[0] = - 0.202018287045608563292872408814E+01; x[1] = - 0.958572464613818507112770593893; x[2] = 0.0; x[3] = 0.958572464613818507112770593893; x[4] = 0.202018287045608563292872408814E+01; w[0] = 1.1814886255359869; w[1] = 0.98658099675142830; w[2] = 0.94530872048294190; w[3] = 0.98658099675142830; w[4] = 1.1814886255359869; } else if ( n == 6 ) { x[0] = - 0.235060497367449222283392198706E+01; x[1] = - 0.133584907401369694971489528297E+01; x[2] = - 0.436077411927616508679215948251; x[3] = 0.436077411927616508679215948251; x[4] = 0.133584907401369694971489528297E+01; x[5] = 0.235060497367449222283392198706E+01; w[0] = 1.1369083326745253; w[1] = 0.93558055763118075; w[2] = 0.87640133443623058; w[3] = 0.87640133443623058; w[4] = 0.93558055763118075; w[5] = 1.1369083326745253; } else if ( n == 7 ) { x[0] = - 0.265196135683523349244708200652E+01; x[1] = - 0.167355162876747144503180139830E+01; x[2] = - 0.816287882858964663038710959027; x[3] = 0.0; x[4] = 0.816287882858964663038710959027; x[5] = 0.167355162876747144503180139830E+01; x[6] = 0.265196135683523349244708200652E+01; w[0] = 1.1013307296103216; w[1] = 0.89718460022518409; w[2] = 0.82868730328363926; w[3] = 0.81026461755680734; w[4] = 0.82868730328363926; w[5] = 0.89718460022518409; w[6] = 1.1013307296103216; } else if ( n == 8 ) { x[0] = - 0.293063742025724401922350270524E+01; x[1] = - 0.198165675669584292585463063977E+01; x[2] = - 0.115719371244678019472076577906E+01; x[3] = - 0.381186990207322116854718885584; x[4] = 0.381186990207322116854718885584; x[5] = 0.115719371244678019472076577906E+01; x[6] = 0.198165675669584292585463063977E+01; x[7] = 0.293063742025724401922350270524E+01; w[0] = 1.0719301442479805; w[1] = 0.86675260656338138; w[2] = 0.79289004838640131; w[3] = 0.76454412865172916; w[4] = 0.76454412865172916; w[5] = 0.79289004838640131; w[6] = 0.86675260656338138; w[7] = 1.0719301442479805; } else if ( n == 9 ) { x[0] = - 0.319099320178152760723004779538E+01; x[1] = - 0.226658058453184311180209693284E+01; x[2] = - 0.146855328921666793166701573925E+01; x[3] = - 0.723551018752837573322639864579; x[4] = 0.0; x[5] = 0.723551018752837573322639864579; x[6] = 0.146855328921666793166701573925E+01; x[7] = 0.226658058453184311180209693284E+01; x[8] = 0.319099320178152760723004779538E+01; w[0] = 1.0470035809766838; w[1] = 0.84175270147867043; w[2] = 0.76460812509455023; w[3] = 0.73030245274509220; w[4] = 0.72023521560605097; w[5] = 0.73030245274509220; w[6] = 0.76460812509455023; w[7] = 0.84175270147867043; w[8] = 1.0470035809766838; } else if ( n == 10 ) { x[0] = - 0.343615911883773760332672549432E+01; x[1] = - 0.253273167423278979640896079775E+01; x[2] = - 0.175668364929988177345140122011E+01; x[3] = - 0.103661082978951365417749191676E+01; x[4] = - 0.342901327223704608789165025557; x[5] = 0.342901327223704608789165025557; x[6] = 0.103661082978951365417749191676E+01; x[7] = 0.175668364929988177345140122011E+01; x[8] = 0.253273167423278979640896079775E+01; x[9] = 0.343615911883773760332672549432E+01; w[0] = 1.0254516913657352; w[1] = 0.82066612640481640; w[2] = 0.74144193194356511; w[3] = 0.70329632310490608; w[4] = 0.68708185395127341; w[5] = 0.68708185395127341; w[6] = 0.70329632310490608; w[7] = 0.74144193194356511; w[8] = 0.82066612640481640; w[9] = 1.0254516913657352; } else { cerr << "\n"; cerr << "HERMITE_1_SET - Fatal error!\n"; cerr << " Illegal value of N = " << n << "\n"; cerr << " Legal values are 1 to 10.\n"; exit ( 1 ); } return; } //****************************************************************************80 void laguerre_set ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // LAGUERRE_SET sets abscissas and weights for Laguerre quadrature. // // Discussion: // // The abscissas are the zeroes of the Laguerre polynomial L(N)(X). // // The integral: // // Integral ( 0 <= X < +oo ) exp ( -X ) * F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= N ) W(I) * f ( X(I) ) // // The integral: // // Integral ( 0 <= X < +oo ) F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= N ) W(I) * exp ( X(I) ) * f ( X(I) ) // // Mathematica can numerically estimate the abscissas for the // n-th order polynomial to p digits of precision by the command: // // NSolve [ LaguerreL[n,x] == 0, x, p ] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 April 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Vladimir Krylov, // Approximate Calculation of Integrals, // Dover, 2006, // ISBN: 0486445798, // LC: QA311.K713. // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, // ISBN: 0-8493-2479-3. // // Parameters: // // Input, int N, the order. // N must be between 1 and 20, 31/32/33, 63/64/65, 127/128/129. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { if ( n == 1 ) { x[0] = 1.00000000000000000000000000000E+00; w[0] = 1.00000000000000000000000000000E+00; } else if ( n == 2 ) { x[0] = 0.585786437626904951198311275790E+00; x[1] = 3.41421356237309504880168872421E+00; w[0] = 0.85355339059327376220042218105E+00; w[1] = 0.146446609406726237799577818948E+00; } else if ( n == 3 ) { x[0] = 0.415774556783479083311533873128E+00; x[1] = 2.29428036027904171982205036136E+00; x[2] = 6.28994508293747919686641576551E+00; w[0] = 0.71109300992917301544959019114E+00; w[1] = 0.27851773356924084880144488846E+00; w[2] = 0.010389256501586135748964920401E+00; } else if ( n == 4 ) { x[0] = 0.322547689619392311800361459104E+00; x[1] = 1.74576110115834657568681671252E+00; x[2] = 4.53662029692112798327928538496E+00; x[3] = 9.39507091230113312923353644342E+00; w[0] = 0.60315410434163360163596602382E+00; w[1] = 0.35741869243779968664149201746E+00; w[2] = 0.03888790851500538427243816816E+00; w[3] = 0.0005392947055613274501037905676E+00; } else if ( n == 5 ) { x[0] = 0.263560319718140910203061943361E+00; x[1] = 1.41340305910651679221840798019E+00; x[2] = 3.59642577104072208122318658878E+00; x[3] = 7.08581000585883755692212418111E+00; x[4] = 12.6408008442757826594332193066E+00; w[0] = 0.52175561058280865247586092879E+00; w[1] = 0.3986668110831759274541333481E+00; w[2] = 0.0759424496817075953876533114E+00; w[3] = 0.00361175867992204845446126257E+00; w[4] = 0.00002336997238577622789114908455E+00; } else if ( n == 6 ) { x[0] = 0.222846604179260689464354826787E+00; x[1] = 1.18893210167262303074315092194E+00; x[2] = 2.99273632605931407769132528451E+00; x[3] = 5.77514356910451050183983036943E+00; x[4] = 9.83746741838258991771554702994E+00; x[5] = 15.9828739806017017825457915674E+00; w[0] = 0.45896467394996359356828487771E+00; w[1] = 0.4170008307721209941133775662E+00; w[2] = 0.1133733820740449757387061851E+00; w[3] = 0.01039919745314907489891330285E+00; w[4] = 0.000261017202814932059479242860E+00; w[5] = 8.98547906429621238825292053E-07; } else if ( n == 7 ) { x[0] = 0.193043676560362413838247885004E+00; x[1] = 1.02666489533919195034519944317E+00; x[2] = 2.56787674495074620690778622666E+00; x[3] = 4.90035308452648456810171437810E+00; x[4] = 8.18215344456286079108182755123E+00; x[5] = 12.7341802917978137580126424582E+00; x[6] = 19.3957278622625403117125820576E+00; w[0] = 0.40931895170127390213043288002E+00; w[1] = 0.4218312778617197799292810054E+00; w[2] = 0.1471263486575052783953741846E+00; w[3] = 0.0206335144687169398657056150E+00; w[4] = 0.00107401014328074552213195963E+00; w[5] = 0.0000158654643485642012687326223E+00; w[6] = 3.17031547899558056227132215E-08; } else if ( n == 8 ) { x[0] = 0.170279632305100999788861856608E+00; x[1] = 0.903701776799379912186020223555E+00; x[2] = 2.25108662986613068930711836697E+00; x[3] = 4.26670017028765879364942182690E+00; x[4] = 7.04590540239346569727932548212E+00; x[5] = 10.7585160101809952240599567880E+00; x[6] = 15.7406786412780045780287611584E+00; x[7] = 22.8631317368892641057005342974E+00; w[0] = 0.36918858934163752992058283938E+00; w[1] = 0.4187867808143429560769785813E+00; w[2] = 0.175794986637171805699659867E+00; w[3] = 0.033343492261215651522132535E+00; w[4] = 0.0027945362352256725249389241E+00; w[5] = 0.00009076508773358213104238501E+00; w[6] = 8.4857467162725315448680183E-07; w[7] = 1.04800117487151038161508854E-09; } else if ( n == 9 ) { x[0] = 0.152322227731808247428107073127E+00; x[1] = 0.807220022742255847741419210952E+00; x[2] = 2.00513515561934712298303324701E+00; x[3] = 3.78347397333123299167540609364E+00; x[4] = 6.20495677787661260697353521006E+00; x[5] = 9.37298525168757620180971073215E+00; x[6] = 13.4662369110920935710978818397E+00; x[7] = 18.8335977889916966141498992996E+00; x[8] = 26.3740718909273767961410072937E+00; w[0] = 0.336126421797962519673467717606E+00; w[1] = 0.411213980423984387309146942793E+00; w[2] = 0.199287525370885580860575607212E+00; w[3] = 0.0474605627656515992621163600479E+00; w[4] = 0.00559962661079458317700419900556E+00; w[5] = 0.000305249767093210566305412824291E+00; w[6] = 6.59212302607535239225572284875E-06; w[7] = 4.1107693303495484429024104033E-08; w[8] = 3.29087403035070757646681380323E-11; } else if ( n == 10 ) { x[0] = 0.137793470540492430830772505653E+00; x[1] = 0.729454549503170498160373121676E+00; x[2] = 1.80834290174031604823292007575E+00; x[3] = 3.40143369785489951448253222141E+00; x[4] = 5.55249614006380363241755848687E+00; x[5] = 8.33015274676449670023876719727E+00; x[6] = 11.8437858379000655649185389191E+00; x[7] = 16.2792578313781020995326539358E+00; x[8] = 21.9965858119807619512770901956E+00; x[9] = 29.9206970122738915599087933408E+00; w[0] = 0.30844111576502014154747083468E+00; w[1] = 0.4011199291552735515157803099E+00; w[2] = 0.218068287611809421588648523E+00; w[3] = 0.062087456098677747392902129E+00; w[4] = 0.009501516975181100553839072E+00; w[5] = 0.0007530083885875387754559644E+00; w[6] = 0.00002825923349599565567422564E+00; w[7] = 4.249313984962686372586577E-07; w[8] = 1.839564823979630780921535E-09; w[9] = 9.911827219609008558377547E-13; } else { cout << "\n"; cout << "LAGUERRE_SET - Fatal error!\n"; cout << " Illegal value of N = " << n << "\n"; cout << " Legal values are 1 to 10\n"; exit ( 1 ); } return; } //****************************************************************************80 void laguerre_1_set ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // LAGUERRE_1_SET sets abscissas and weights for Laguerre quadrature. // // Discussion: // // This routine is specialized for the case where the density function is 1. // // The integral: // I(f) = integral ( 0 <= x < +oo ) f(x) dx // The quadrature rule: // Q(f) = sum ( 1 <= i <= n ) w(i) * f ( x(i) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 May 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order. // N must be between 1 and 10. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { if ( n == 1 ) { x[0] = 1.00000000000000000000000000000E+00; w[0] = 2.7182818284590451; } else if ( n == 2 ) { x[0] = 0.585786437626904951198311275790E+00; x[1] = 3.41421356237309504880168872421E+00; w[0] = 1.5333260331194167; w[1] = 4.4509573350545928; } else if ( n == 3 ) { x[0] = 0.415774556783479083311533873128E+00; x[1] = 2.29428036027904171982205036136E+00; x[2] = 6.28994508293747919686641576551E+00; w[0] = 1.0776928592709207; w[1] = 2.7621429619015876; w[2] = 5.6010946254344267; } else if ( n == 4 ) { x[0] = 0.322547689619392311800361459104E+00; x[1] = 1.74576110115834657568681671252E+00; x[2] = 4.53662029692112798327928538496E+00; x[3] = 9.39507091230113312923353644342E+00; w[0] = 0.83273912383788917; w[1] = 2.0481024384542965; w[2] = 3.6311463058215168; w[3] = 6.4871450844076604; } else if ( n == 5 ) { x[0] = 0.263560319718140910203061943361E+00; x[1] = 1.41340305910651679221840798019E+00; x[2] = 3.59642577104072208122318658878E+00; x[3] = 7.08581000585883755692212418111E+00; x[4] = 12.6408008442757826594332193066E+00; w[0] = 0.67909404220775038; w[1] = 1.6384878736027471; w[2] = 2.7694432423708375; w[3] = 4.3156569009208940; w[4] = 7.2191863543544450; } else if ( n == 6 ) { x[0] = 0.222846604179260689464354826787E+00; x[1] = 1.18893210167262303074315092194E+00; x[2] = 2.99273632605931407769132528451E+00; x[3] = 5.77514356910451050183983036943E+00; x[4] = 9.83746741838258991771554702994E+00; x[5] = 15.9828739806017017825457915674E+00; w[0] = 0.57353550742273818; w[1] = 1.3692525907123045; w[2] = 2.2606845933826722; w[3] = 3.3505245823554555; w[4] = 4.8868268002108213; w[5] = 7.8490159455958279; } else if ( n == 7 ) { x[0] = 0.193043676560362413838247885004E+00; x[1] = 1.02666489533919195034519944317E+00; x[2] = 2.56787674495074620690778622666E+00; x[3] = 4.90035308452648456810171437810E+00; x[4] = 8.18215344456286079108182755123E+00; x[5] = 12.7341802917978137580126424582E+00; x[6] = 19.3957278622625403117125820576E+00; w[0] = 0.49647759753997234; w[1] = 1.1776430608611976; w[2] = 1.9182497816598063; w[3] = 2.7718486362321113; w[4] = 3.8412491224885148; w[5] = 5.3806782079215330; w[6] = 8.4054324868283103; } else if ( n == 8 ) { x[0] = 0.170279632305100999788861856608E+00; x[1] = 0.903701776799379912186020223555E+00; x[2] = 2.25108662986613068930711836697E+00; x[3] = 4.26670017028765879364942182690E+00; x[4] = 7.04590540239346569727932548212E+00; x[5] = 10.7585160101809952240599567880E+00; x[6] = 15.7406786412780045780287611584E+00; x[7] = 22.8631317368892641057005342974E+00; w[0] = 0.43772341049291136; w[1] = 1.0338693476655976; w[2] = 1.6697097656587756; w[3] = 2.3769247017585995; w[4] = 3.2085409133479259; w[5] = 4.2685755108251344; w[6] = 5.8180833686719184; w[7] = 8.9062262152922216; } else if ( n == 9 ) { x[0] = 0.152322227731808247428107073127E+00; x[1] = 0.807220022742255847741419210952E+00; x[2] = 2.00513515561934712298303324701E+00; x[3] = 3.78347397333123299167540609364E+00; x[4] = 6.20495677787661260697353521006E+00; x[5] = 9.37298525168757620180971073215E+00; x[6] = 13.4662369110920935710978818397E+00; x[7] = 18.8335977889916966141498992996E+00; x[8] = 26.3740718909273767961410072937E+00; w[0] = 0.39143112431563987; w[1] = 0.92180502852896307; w[2] = 1.4801279099429154; w[3] = 2.0867708075492613; w[4] = 2.7729213897119713; w[5] = 3.5916260680922663; w[6] = 4.6487660021402037; w[7] = 6.2122754197471348; w[8] = 9.3632182377057980; } else if ( n == 10 ) { x[0] = 0.137793470540492430830772505653E+00; x[1] = 0.729454549503170498160373121676E+00; x[2] = 1.80834290174031604823292007575E+00; x[3] = 3.40143369785489951448253222141E+00; x[4] = 5.55249614006380363241755848687E+00; x[5] = 8.33015274676449670023876719727E+00; x[6] = 11.8437858379000655649185389191E+00; x[7] = 16.2792578313781020995326539358E+00; x[8] = 21.9965858119807619512770901956E+00; x[9] = 29.9206970122738915599087933408E+00; w[0] = 0.35400973860699630; w[1] = 0.83190230104358065; w[2] = 1.3302885617493283; w[3] = 1.8630639031111309; w[4] = 2.4502555580830108; w[5] = 3.1227641551351848; w[6] = 3.9341526955615240; w[7] = 4.9924148721930299; w[8] = 6.5722024851307994; w[9] = 9.7846958403746243; } else { cerr << "\n"; cerr << "LAGUERRE_1_SET - Fatal error!\n"; cerr << " Illegal value of N = " << n << "\n"; cerr << " Legal values are 1 to 10\n"; exit ( 1 ); } return; } //****************************************************************************80 void legendre_set ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // LEGENDRE_SET sets abscissas and weights for Gauss-Legendre quadrature. // // Discussion: // // The integral: // // Integral ( -1 <= X <= 1 ) F(X) dX // // Quadrature rule: // // Sum ( 1 <= I <= N ) W(I) * F ( X(I) ) // // The quadrature rule is exact for all polynomials through degree 2*N-1. // // The abscissas are the zeroes of the Legendre polynomial P(N)(X). // // Mathematica can compute the abscissas and weights of a Gauss-Legendre // rule of order N for the interval [A,B] with P digits of precision // by the commands: // // Needs["NumericalDifferentialEquationAnalysis`"] // GaussianQuadratureWeights [ n, a, b, p ] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 April 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Vladimir Krylov, // Approximate Calculation of Integrals, // Dover, 2006, // ISBN: 0486445798. // LC: QA311.K713. // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, // ISBN: 0-8493-2479-3, // LC: QA47.M315. // // Parameters: // // Input, int N, the order. // N must be between 1 and 33 or 63/64/65, 127/128/129, // 255/256/257. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { if ( n == 1 ) { x[0] = 0.000000000000000000000000000000; w[0] = 2.000000000000000000000000000000; } else if ( n == 2 ) { x[0] = -0.577350269189625764509148780502; x[1] = 0.577350269189625764509148780502; w[0] = 1.000000000000000000000000000000; w[1] = 1.000000000000000000000000000000; } else if ( n == 3 ) { x[0] = -0.774596669241483377035853079956; x[1] = 0.000000000000000000000000000000; x[2] = 0.774596669241483377035853079956; w[0] = 0.555555555555555555555555555556; w[1] = 0.888888888888888888888888888889; w[2] = 0.555555555555555555555555555556; } else if ( n == 4 ) { x[0] = -0.861136311594052575223946488893; x[1] = -0.339981043584856264802665759103; x[2] = 0.339981043584856264802665759103; x[3] = 0.861136311594052575223946488893; w[0] = 0.347854845137453857373063949222; w[1] = 0.652145154862546142626936050778; w[2] = 0.652145154862546142626936050778; w[3] = 0.347854845137453857373063949222; } else if ( n == 5 ) { x[0] = -0.906179845938663992797626878299; x[1] = -0.538469310105683091036314420700; x[2] = 0.000000000000000000000000000000; x[3] = 0.538469310105683091036314420700; x[4] = 0.906179845938663992797626878299; w[0] = 0.236926885056189087514264040720; w[1] = 0.478628670499366468041291514836; w[2] = 0.568888888888888888888888888889; w[3] = 0.478628670499366468041291514836; w[4] = 0.236926885056189087514264040720; } else if ( n == 6 ) { x[0] = -0.932469514203152027812301554494; x[1] = -0.661209386466264513661399595020; x[2] = -0.238619186083196908630501721681; x[3] = 0.238619186083196908630501721681; x[4] = 0.661209386466264513661399595020; x[5] = 0.932469514203152027812301554494; w[0] = 0.171324492379170345040296142173; w[1] = 0.360761573048138607569833513838; w[2] = 0.467913934572691047389870343990; w[3] = 0.467913934572691047389870343990; w[4] = 0.360761573048138607569833513838; w[5] = 0.171324492379170345040296142173; } else if ( n == 7 ) { x[0] = -0.949107912342758524526189684048; x[1] = -0.741531185599394439863864773281; x[2] = -0.405845151377397166906606412077; x[3] = 0.000000000000000000000000000000; x[4] = 0.405845151377397166906606412077; x[5] = 0.741531185599394439863864773281; x[6] = 0.949107912342758524526189684048; w[0] = 0.129484966168869693270611432679; w[1] = 0.279705391489276667901467771424; w[2] = 0.381830050505118944950369775489; w[3] = 0.417959183673469387755102040816; w[4] = 0.381830050505118944950369775489; w[5] = 0.279705391489276667901467771424; w[6] = 0.129484966168869693270611432679; } else if ( n == 8 ) { x[0] = -0.960289856497536231683560868569; x[1] = -0.796666477413626739591553936476; x[2] = -0.525532409916328985817739049189; x[3] = -0.183434642495649804939476142360; x[4] = 0.183434642495649804939476142360; x[5] = 0.525532409916328985817739049189; x[6] = 0.796666477413626739591553936476; x[7] = 0.960289856497536231683560868569; w[0] = 0.101228536290376259152531354310; w[1] = 0.222381034453374470544355994426; w[2] = 0.313706645877887287337962201987; w[3] = 0.362683783378361982965150449277; w[4] = 0.362683783378361982965150449277; w[5] = 0.313706645877887287337962201987; w[6] = 0.222381034453374470544355994426; w[7] = 0.101228536290376259152531354310; } else if ( n == 9 ) { x[0] = -0.968160239507626089835576203; x[1] = -0.836031107326635794299429788; x[2] = -0.613371432700590397308702039; x[3] = -0.324253423403808929038538015; x[4] = 0.000000000000000000000000000; x[5] = 0.324253423403808929038538015; x[6] = 0.613371432700590397308702039; x[7] = 0.836031107326635794299429788; x[8] = 0.968160239507626089835576203; w[0] = 0.081274388361574411971892158111; w[1] = 0.18064816069485740405847203124; w[2] = 0.26061069640293546231874286942; w[3] = 0.31234707704000284006863040658; w[4] = 0.33023935500125976316452506929; w[5] = 0.31234707704000284006863040658; w[6] = 0.26061069640293546231874286942; w[7] = 0.18064816069485740405847203124; w[8] = 0.081274388361574411971892158111; } else if ( n == 10 ) { x[0] = -0.973906528517171720077964012; x[1] = -0.865063366688984510732096688; x[2] = -0.679409568299024406234327365; x[3] = -0.433395394129247190799265943; x[4] = -0.148874338981631210884826001; x[5] = 0.148874338981631210884826001; x[6] = 0.433395394129247190799265943; x[7] = 0.679409568299024406234327365; x[8] = 0.865063366688984510732096688; x[9] = 0.973906528517171720077964012; w[0] = 0.066671344308688137593568809893; w[1] = 0.14945134915058059314577633966; w[2] = 0.21908636251598204399553493423; w[3] = 0.26926671930999635509122692157; w[4] = 0.29552422471475287017389299465; w[5] = 0.29552422471475287017389299465; w[6] = 0.26926671930999635509122692157; w[7] = 0.21908636251598204399553493423; w[8] = 0.14945134915058059314577633966; w[9] = 0.066671344308688137593568809893; } else { cout << "\n"; cout << "LEGENDRE_SET - Fatal error!\n"; cout << " Illegal value of N = " << n << "\n"; cout << " Legal values are 1 to 10.\n"; exit ( 1 ); } return; }