# include # include # include # include # include # include using namespace std; int main ( ); double *r8vec_linspace_new ( int n, double a, double b ); void timestamp ( ); double *trisolve ( int n, double a[], double b[] ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // FD1D_ADVECTION_DIFFUSION_STEADY solves steady advection diffusion equation. // // Discussion: // // The steady advection diffusion equation has the form: // // v ux - k * uxx = 0 // // where V (the advection velocity) and K (the diffusivity) are positive // constants, posed in the region // // a = 0 < x < 1 = b // // with boundary conditions // // u(0) = 0, u(1) = 1. // // The discrete solution is unreliable when dx > 2 * k / v / ( b - a ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 May 2014 // // Author: // // John Burkardt // { double a; double *a3; double b; string command_filename = "fd1d_advection_diffusion_steady_commands.txt"; ofstream command_unit; string data_filename = "fd1d_advection_diffusion_steady_data.txt"; ofstream data_unit; double dx; double *f; int i; int j; double k; int nx; double r; double *u; double v; double *w; double *x; timestamp ( ); cout << "\n"; cout << "FD1D_ADVECTION_DIFFUSION_STEADY:\n"; cout << " C++ version\n"; cout << "\n"; cout << " Solve the 1D steady advection diffusion equation:,\n"; cout << " v du/dx - k d2u/dx2 = 0\n"; cout << " with constant, positive velocity V and diffusivity K\n"; cout << " over the interval:\n"; cout << " 0.0 <= x <= 1.0\n"; cout << " with boundary conditions:\n"; cout << " u(0) = 0, u(1) = 1.\n"; cout << "\n"; cout << " Use finite differences\n"; cout << " d u/dx = (u(t,x+dx)-u(t,x-dx))/2/dx\n"; cout << " d2u/dx2 = (u(x+dx)-2u(x)+u(x-dx))/dx^2\n"; // // Physical constants. // v = 1.0; k = 0.05; cout << "\n"; cout << " Diffusivity K = " << k << "\n"; cout << " Velocity V = " << v << "\n"; // // Spatial discretization. // nx = 101; a = 0.0; b = 1.0; dx = ( b - a ) / ( double ) ( nx - 1 ); x = r8vec_linspace_new ( nx, a, b ); cout << " Number of nodes NX = " << nx << "\n"; cout << " DX = " << dx << "\n"; cout << " Maximum safe DX is " << 2.0 * k / v / ( b - a ) << "\n"; // // Set up the tridiagonal linear system corresponding to the boundary // conditions and advection-diffusion equation. // a3 = new double[nx*3]; f = new double[nx]; a3[0+1*nx] = 1.0; f[0] = 0.0; for ( i = 1; i < nx - 1; i++ ) { a3[i+0*nx] = - v / dx / 2.0 - k / dx / dx; a3[i+1*nx] = + 2.0 * k / dx / dx; a3[i+2*nx] = + v / dx / 2.0 - k / dx / dx; f[i] = 0.0; } a3[nx-1+1*nx] = 1.0; f[nx-1] = 1.0; u = trisolve ( nx, a3, f ); // // The exact solution to the differential equation is known. // r = v * ( b - a ) / k; w = new double[nx]; for ( i = 0; i < nx; i++ ) { w[i] = ( 1.0 - exp ( r * x[i] ) ) / ( 1.0 - exp ( r ) ); } // // Write data file. // data_unit.open ( data_filename.c_str ( ) ); for ( j = 0; j < nx; j++ ) { data_unit << x[j] << " " << u[j] << " " << w[j] << "\n"; } data_unit.close ( ); cout << "\n"; cout << " Gnuplot data written to file '" << data_filename << "'.\n"; // // Write command file. // command_unit.open ( command_filename.c_str ( ) ); command_unit << "set term png\n"; command_unit << "set output 'fd1d_advection_diffusion_steady.png'\n"; command_unit << "set grid\n"; command_unit << "set style data lines\n"; command_unit << "unset key\n"; command_unit << "set xlabel '<---X--->'\n"; command_unit << "set ylabel '<---U(X)--->'\n"; command_unit << "set title 'Exact: green line, Approx: red dots'\n"; command_unit << "plot '" << data_filename << "' using 1:2 with points pt 7 ps 2,\\\n"; command_unit << "'' using 1:3 with lines lw 3\n"; command_unit << "quit\n"; command_unit.close ( ); cout << " Gnuplot commands written to '" << command_filename << "'\n"; // // Free memory. // delete [] a3; delete [] f; delete [] u; delete [] w; delete [] x; // // Terminate. // cout << "\n"; cout << "FD1D_ADVECTION_DIFFUSION_STEADY\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 double *r8vec_linspace_new ( int n, double a_first, double a_last ) //****************************************************************************80 // // Purpose: // // R8VEC_LINSPACE_NEW creates a vector of linearly spaced values. // // Discussion: // // An R8VEC is a vector of R8's. // // 4 points evenly spaced between 0 and 12 will yield 0, 4, 8, 12. // // In other words, the interval is divided into N-1 even subintervals, // and the endpoints of intervals are used as the points. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A_FIRST, A_LAST, the first and last entries. // // Output, double R8VEC_LINSPACE_NEW[N], a vector of linearly spaced data. // { double *a; int i; a = new double[n]; if ( n == 1 ) { a[0] = ( a_first + a_last ) / 2.0; } else { for ( i = 0; i < n; i++ ) { a[i] = ( ( double ) ( n - 1 - i ) * a_first + ( double ) ( i ) * a_last ) / ( double ) ( n - 1 ); } } return a; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double *trisolve ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // TRISOLVE factors and solves a tridiagonal system. // // Discussion: // // The three nonzero diagonals of the N by N matrix are stored as 3 // columns of an N by 3 matrix. // // Example: // // Here is how a tridiagonal matrix of order 5 would be stored: // // * A11 A12 // A21 A22 A23 // A32 A33 A34 // A43 A44 A45 // A54 A55 * // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 May 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the linear system. // // Input/output, double A[N*3]. // On input, the tridiagonal matrix. // On output, the data in these vectors has been overwritten // by factorization information. // // Input, double B[N], the right hand side of the linear system. // // Output, double TRISOLVE[N], the solution of the linear system. // { int i; double *x; double xmult; // // The diagonal entries can't be zero. // for ( i = 0; i < n; i++ ) { if ( a[i+1*n] == 0.0 ) { cerr << "\n"; cerr << "TRISOLVE - Fatal error!\n"; cerr << " A(" << i << ",2) = 0.\n"; exit ( 1 ); } } x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = b[i]; } for ( i = 1; i < n; i++ ) { xmult = a[i+0*n] / a[i-1+1*n]; a[i+1*n] = a[i+1*n] - xmult * a[i-1+2*n]; x[i] = x[i] - xmult * x[i-1]; } x[n-1] = x[n-1] / a[n-1+1*n]; for ( i = n - 2; 0 <= i; i-- ) { x[i] = ( x[i] - a[i+2*n] * x[i+1] ) / a[i+1*n]; } return x; }