# include # include # include # include # include # include using namespace std; # include "fd1d_heat_explicit.hpp" //****************************************************************************80 double *fd1d_heat_explicit ( int x_num, double x[], double t, double dt, double cfl, double *rhs ( int x_num, double x[], double t ), void bc ( int x_num, double x[], double t, double h[] ), double h[] ) //****************************************************************************80 // // Purpose: // // FD1D_HEAT_EXPLICIT: Finite difference solution of 1D heat equation. // // Discussion: // // This program takes one time step to solve the 1D heat equation // with an explicit method. // // This program solves // // dUdT - k * d2UdX2 = F(X,T) // // over the interval [A,B] with boundary conditions // // U(A,T) = UA(T), // U(B,T) = UB(T), // // over the time interval [T0,T1] with initial conditions // // U(X,T0) = U0(X) // // The code uses the finite difference method to approximate the // second derivative in space, and an explicit forward Euler approximation // to the first derivative in time. // // The finite difference form can be written as // // U(X,T+dt) - U(X,T) ( U(X-dx,T) - 2 U(X,T) + U(X+dx,T) ) // ------------------ = F(X,T) + k * ------------------------------------ // dt dx * dx // // or, assuming we have solved for all values of U at time T, we have // // U(X,T+dt) = U(X,T) // + cfl * ( U(X-dx,T) - 2 U(X,T) + U(X+dx,T) ) + dt * F(X,T) // // Here "cfl" is the Courant-Friedrichs-Loewy coefficient: // // cfl = k * dt / dx / dx // // In order for accurate results to be computed by this explicit method, // the CFL coefficient must be less than 0.5. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 January 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int X_NUM, the number of points to use in the // spatial dimension. // // Input, double X(X_NUM), the coordinates of the nodes. // // Input, double T, the current time. // // Input, double DT, the size of the time step. // // Input, double CFL, the Courant-Friedrichs-Loewy coefficient, // computed by FD1D_HEAT_EXPLICIT_CFL. // // Input, double H[X_NUM], the solution at the current time. // // Input, double *RHS ( int x_num, double x[], double t ), the function // which evaluates the right hand side. // // Input, void BC ( int x_num, double x[], double t, double h[] ), // the function which evaluates the boundary conditions. // // Output, double FD1D_HEAT_EXPLICIT[X_NUM)], the solution at time T+DT. // { double *f; double *h_new; int j; f = rhs ( x_num, x, t ); h_new = new double[x_num]; h_new[0] = 0.0; for ( j = 1; j < x_num - 1; j++ ) { h_new[j] = h[j] + dt * f[j] + cfl * ( h[j-1] - 2.0 * h[j] + h[j+1] ); } h_new[x_num-1] = 0.0; bc ( x_num, x, t + dt, h_new ); delete [] f; return h_new; } //****************************************************************************80 double fd1d_heat_explicit_cfl ( double k, int t_num, double t_min, double t_max, int x_num, double x_min, double x_max ) //****************************************************************************80 // // Purpose: // // FD1D_HEAT_EXPLICIT_CFL: compute the Courant-Friedrichs-Loewy coefficient. // // Discussion: // // The equation to be solved has the form: // // dUdT - k * d2UdX2 = F(X,T) // // over the interval [X_MIN,X_MAX] with boundary conditions // // U(X_MIN,T) = U_X_MIN(T), // U(X_MIN,T) = U_X_MAX(T), // // over the time interval [T_MIN,T_MAX] with initial conditions // // U(X,T_MIN) = U_T_MIN(X) // // The code uses the finite difference method to approximate the // second derivative in space, and an explicit forward Euler approximation // to the first derivative in time. // // The finite difference form can be written as // // U(X,T+dt) - U(X,T) ( U(X-dx,T) - 2 U(X,T) + U(X+dx,T) ) // ------------------ = F(X,T) + k * ------------------------------------ // dt dx * dx // // or, assuming we have solved for all values of U at time T, we have // // U(X,T+dt) = U(X,T) // + cfl * ( U(X-dx,T) - 2 U(X,T) + U(X+dx,T) ) + dt * F(X,T) // // Here "cfl" is the Courant-Friedrichs-Loewy coefficient: // // cfl = k * dt / dx / dx // // In order for accurate results to be computed by this explicit method, // the CFL coefficient must be less than 0.5! // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 January 2012 // // Author: // // John Burkardt // // Reference: // // George Lindfield, John Penny, // Numerical Methods Using MATLAB, // Second Edition, // Prentice Hall, 1999, // ISBN: 0-13-012641-1, // LC: QA297.P45. // // Parameters: // // Input, double K, the heat conductivity coefficient. // // Input, int T_NUM, the number of time values, including // the initial value. // // Input, double T_MIN, T_MAX, the minimum and maximum times. // // Input, int X_NUM, the number of nodes. // // Input, double X_MIN, X_MAX, the minimum and maximum spatial // coordinates. // // Output, double FD1D_HEAT_EXPLICIT_CFL, the Courant-Friedrichs-Loewy coefficient. // { double cfl; double dx; double dt; dx = ( x_max - x_min ) / ( double ) ( x_num - 1 ); dt = ( t_max - t_min ) / ( double ) ( t_num - 1 ); // // Check the CFL condition, print out its value, and quit if it is too large. // cfl = k * dt / dx / dx; cout << "\n"; cout << " CFL stability criterion value = " << cfl << "\n"; if ( 0.5 <= cfl ) { cerr << "\n"; cerr << "FD1D_HEAT_EXPLICIT_CFL - Fatal error!\n"; cerr << " CFL condition failed.\n"; cerr << " 0.5 <= K * dT / dX / dX = CFL.\n"; exit ( 1 ); } return cfl; } //****************************************************************************80 void r8mat_write ( string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(24) << setprecision(16) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 double *r8vec_linspace_new ( int n, double a_first, double a_last ) //****************************************************************************80 // // Purpose: // // R8VEC_LINSPACE_NEW creates a vector of linearly spaced values. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A_FIRST, A_LAST, the first and last entries. // // Output, double R8VEC_LINSPACE_NEW[N], a vector of linearly spaced data. // { double *a; int i; a = new double[n]; if ( n == 1 ) { a[0] = ( a_first + a_last ) / 2.0; } else { for ( i = 0; i < n; i++ ) { a[i] = ( ( double ) ( n - 1 - i ) * a_first + ( double ) ( i ) * a_last ) / ( double ) ( n - 1 ); } } return a; } //****************************************************************************80 void r8vec_write ( string output_filename, int n, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_WRITE writes an R8VEC file. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 July 2011 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int N, the number of points. // // Input, double X[N], the data. // { int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8VEC_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } // // Write the data. // for ( j = 0; j < n; j++ ) { output << " " << setw(24) << setprecision(16) << x[j] << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }