# include # include # include # include # include using namespace std; # include "fd2d_heat_steady.hpp" void boundary ( int nx, int ny, double x[], double y[], int n, double a[], double rhs[] ); //****************************************************************************80 double *fd2d_heat_steady ( int nx, int ny, double x[], double y[], double d ( double x, double y ), double f ( double x, double y ) ) //****************************************************************************80 // // Purpose: // // FD2D_HEAT_STEADY solves the steady 2D heat equation. // // Discussion: // // Nodes are assigned a single index K, which increases as: // // (NY-1)*NX+1 (NY-1)*NX+2 ... NY * NX // .... .... ... ..... // NX+1 NX+2 ... 2 * NX // 1 2 ... NX // // Therefore, the neighbors of an interior node numbered C are // // C+NY // | // C-1 --- C --- C+1 // | // C-NY // // Nodes on the lower boundary satisfy: // 1 <= K <= NX // Nodes on the upper boundary satisfy: // (NY-1)*NX+1 <= K <= NY * NX // Nodes on the left boundary satisfy: // mod ( K, NX ) = 1 // Nodes on the right boundary satisfy: // mod ( K, NX ) = 0 // // If we number rows from bottom I = 1 to top I = NY // and columns from left J = 1 to right J = NX, we have // K = ( I - 1 ) * NX + J // and // J = 1 + mod ( K - 1, NX ) // I = 1 + ( K - J ) / NX // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int NX, NY, the number of grid points in X and Y. // // Input, double X[NX], Y[NY], the coordinates of grid lines. // // Input, double D ( X, Y ), evaluates the thermal // conductivity. // // Input, double F ( X, Y ), evaluates the heat // source term. // // Output, double FD2D_HEAT_STEADY[NX*NY], the approximation to the solution // at the grid points. // { double *a; int n; double *u; // // Set the total number of unknowns. // n = nx * ny; // // Set up the matrix and right hand side. // a = new double[n*n]; u = new double[n]; // // Define the matrix at interior points. // interior ( nx, ny, x, y, d, f, n, a, u ); // // Handle boundary conditions. // boundary ( nx, ny, x, y, n, a, u ); // // Solve the linear system. // r8mat_fs ( n, a, u ); // // Free memory. // delete [] a; return u; } //****************************************************************************80 void interior ( int nx, int ny, double x[], double y[], double d ( double x, double y ), double f ( double x, double y ), int n, double a[], double rhs[] ) //****************************************************************************80 // // Purpose: // // INTERIOR sets up the matrix and right hand side at interior nodes. // // Discussion: // // Nodes are assigned a single index K, which increases as: // // (NY-1)*NX+1 (NY-1)*NX+2 ... NY * NX // .... .... ... ..... // NX+1 NX+2 ... 2 * NX // 1 2 ... NX // // Therefore, the neighbors of an interior node numbered C are // // C+NY // | // C-1 --- C --- C+1 // | // C-NY // // If we number rows from bottom I = 1 to top I = NY // and columns from left J = 1 to right J = NX, then the relationship // between the single index K and the row and column indices I and J is: // K = ( I - 1 ) * NX + J // and // J = 1 + mod ( K - 1, NX ) // I = 1 + ( K - J ) / NX // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int NX, NY, the number of grid points in X and Y. // // Input, double X[NX], Y[NY], the coordinates of grid lines. // // Input, double D ( double X, double Y ), evaluates the thermal // conductivity. // // Input, double function F ( double X, double Y ), evaluates the heat // source term. // // Input, int N, the number of nodes. // // Output, double A[N*N], the system matrix, with the entries for // the interior nodes filled in. // // Output, double RHS[N], the system right hand side, with the // entries for the interior nodes filled in. // { double dc0; double dce; double dcn; double dcs; double dcw; double dx; double dy; int ic; int in; int is; int jc; int je; int jw; int kc; int ke; int kn; int ks; int kw; dc0 = 1.0; // // For now, assume X and Y are equally spaced. // dx = x[1] - x[0]; dy = y[1] - y[0]; for ( ic = 1; ic < ny - 1; ic++ ) { for ( jc = 1; jc < nx - 1; jc++ ) { in = ic + 1; is = ic - 1; je = jc + 1; jw = jc - 1; kc = ic * nx + jc; ke = kc + 1; kw = kc - 1; kn = kc + nx; ks = kc - nx; dce = d ( 0.5 * ( x[jc] + x[je] ), y[ic] ); dcw = d ( 0.5 * ( x[jc] + x[jw] ), y[ic] ); dcn = d ( x[jc], 0.5 * ( y[ic] + y[in] ) ); dcs = d ( x[jc], 0.5 * ( y[ic] + y[is] ) ); a[kc+kc*n] = ( dce + dcw ) / dx / dx + ( dcn + dcs ) / dy / dy; a[kc+ke*n] = - dce / dx / dx; a[kc+kw*n] = - dcw / dx / dx; a[kc+kn*n] = - dcn / dy / dy; a[kc+ks*n] = - dcs / dy / dy; rhs[kc] = f ( x[jc], y[ic] ); } } return; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = + x; } else { value = - x; } return value; } //****************************************************************************80 void r8mat_fs ( int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8MAT_FS factors and solves a system with one right hand side. // // Discussion: // // This routine differs from R8MAT_FSS in two ways: // * only one right hand side is allowed; // * the input matrix A is not modified. // // This routine uses partial pivoting, but no pivot vector is required. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 January 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A[N*N], the coefficient matrix of the linear system. // // Input/output, double X[N], on input, the right hand side of the // linear system. On output, the solution of the linear system. // { double *a2; int i; int ipiv; int j; int jcol; double piv; double t; a2 = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a2[i+j*n] = a[i+j*n]; } } for ( jcol = 1; jcol <= n; jcol++ ) { // // Find the maximum element in column I. // piv = r8_abs ( a2[jcol-1+(jcol-1)*n] ); ipiv = jcol; for ( i = jcol+1; i <= n; i++ ) { if ( piv < r8_abs ( a2[i-1+(jcol-1)*n] ) ) { piv = r8_abs ( a2[i-1+(jcol-1)*n] ); ipiv = i; } } if ( piv == 0.0 ) { cout << "\n"; cout << "R8MAT_FS - Fatal error!\n"; cout << " Zero pivot on step " << jcol << "\n"; exit ( 1 ); } // // Switch rows JCOL and IPIV, and X. // if ( jcol != ipiv ) { for ( j = 1; j <= n; j++ ) { t = a2[jcol-1+(j-1)*n]; a2[jcol-1+(j-1)*n] = a2[ipiv-1+(j-1)*n]; a2[ipiv-1+(j-1)*n] = t; } t = x[jcol-1]; x[jcol-1] = x[ipiv-1]; x[ipiv-1] = t; } // // Scale the pivot row. // t = a2[jcol-1+(jcol-1)*n]; a2[jcol-1+(jcol-1)*n] = 1.0; for ( j = jcol+1; j <= n; j++ ) { a2[jcol-1+(j-1)*n] = a2[jcol-1+(j-1)*n] / t; } x[jcol-1] = x[jcol-1] / t; // // Use the pivot row to eliminate lower entries in that column. // for ( i = jcol+1; i <= n; i++ ) { if ( a2[i-1+(jcol-1)*n] != 0.0 ) { t = - a2[i-1+(jcol-1)*n]; a2[i-1+(jcol-1)*n] = 0.0; for ( j = jcol+1; j <= n; j++ ) { a2[i-1+(j-1)*n] = a2[i-1+(j-1)*n] + t * a2[jcol-1+(j-1)*n]; } x[i-1] = x[i-1] + t * x[jcol-1]; } } } // // Back solve. // for ( jcol = n; 2 <= jcol; jcol-- ) { for ( i = 1; i < jcol; i++ ) { x[i-1] = x[i-1] - a2[i-1+(jcol-1)*n] * x[jcol-1]; } } delete [] a2; return; } //****************************************************************************80 double *r8vec_linspace_new ( int n, double a_first, double a_last ) //****************************************************************************80 // // Purpose: // // R8VEC_LINSPACE_NEW creates a vector of linearly spaced values. // // Discussion: // // An R8VEC is a vector of R8's. // // 4 points evenly spaced between 0 and 12 will yield 0, 4, 8, 12. // // In other words, the interval is divided into N-1 even subintervals, // and the endpoints of intervals are used as the points. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A_FIRST, A_LAST, the first and last entries. // // Output, double R8VEC_LINSPACE_NEW[N], a vector of linearly spaced data. // { double *a; int i; a = new double[n]; if ( n == 1 ) { a[0] = ( a_first + a_last ) / 2.0; } else { for ( i = 0; i < n; i++ ) { a[i] = ( ( double ) ( n - 1 - i ) * a_first + ( double ) ( i ) * a_last ) / ( double ) ( n - 1 ); } } return a; } //****************************************************************************80 void r8vec_mesh_2d ( int nx, int ny, double xvec[], double yvec[], double xmat[], double ymat[] ) //****************************************************************************80 // // Purpose: // // R8VEC_MESH_2D creates a 2D mesh from X and Y vectors. // // Discussion: // // An R8VEC is a vector of R8's. // // NX = 2 // XVEC = ( 1, 2, 3 ) // NY = 3 // YVEC = ( 4, 5 ) // // XMAT = ( // 1, 2, 3 // 1, 2, 3 ) // // YMAT = ( // 4, 4, 4 // 5, 5, 5 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 July 2013 // // Parameters: // // Input, int NX, NY, the number of X and Y values. // // Input, double XVEC[NX], YVEC[NY], the X and Y coordinate // values. // // Output, double XMAT[NX*NY], YMAT[NX*NY], the coordinate // values of points on an NX by NY mesh. // { int i; int j; for ( j = 0; j < ny; j++ ) { for ( i = 0; i < nx; i++ ) { xmat[i+j*nx] = xvec[i]; } } for ( j = 0; j < ny; j++ ) { for ( i = 0; i < nx; i++ ) { ymat[i+j*nx] = yvec[j]; } } return; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }