# include # include # include # include # include using namespace std; # include "fem1d_bvp_linear.hpp" //****************************************************************************80 double *fem1d_bvp_linear ( int n, double a ( double x ), double c ( double x ), double f ( double x ), double x[] ) //****************************************************************************80 // // Purpose: // // FEM1D_BVP_LINEAR solves a two point boundary value problem. // // Location: // // http://people.sc.fsu.edu/~jburkardt/cpp_src/fem1d_bvp_linear/fem1d_bvp_linear.cpp // // Discussion: // // The program uses the finite element method, with piecewise linear basis // functions to solve a boundary value problem in one dimension. // // The problem is defined on the region 0 <= x <= 1. // // The following differential equation is imposed between 0 and 1: // // - d/dx a(x) du/dx + c(x) * u(x) = f(x) // // where a(x), c(x), and f(x) are given functions. // // At the boundaries, the following conditions are applied: // // u(0.0) = 0.0 // u(1.0) = 0.0 // // A set of N equally spaced nodes is defined on this // interval, with 0 = X(1) < X(2) < ... < X(N) = 1.0. // // At each node I, we associate a piecewise linear basis function V(I,X), // which is 0 at all nodes except node I. This implies that V(I,X) is // everywhere 0 except that // // for X(I-1) <= X <= X(I): // // V(I,X) = ( X - X(I-1) ) / ( X(I) - X(I-1) ) // // for X(I) <= X <= X(I+1): // // V(I,X) = ( X(I+1) - X ) / ( X(I+1) - X(I) ) // // We now assume that the solution U(X) can be written as a linear // sum of these basis functions: // // U(X) = sum ( 1 <= J <= N ) U(J) * V(J,X) // // where U(X) on the left is the function of X, but on the right, // is meant to indicate the coefficients of the basis functions. // // To determine the coefficient U(J), we multiply the original // differential equation by the basis function V(J,X), and use // integration by parts, to arrive at the I-th finite element equation: // // Integral A(X) * U'(X) * V'(I,X) + C(X) * U(X) * V(I,X) dx // = Integral F(X) * V(I,X) dx // // We note that the functions U(X) and U'(X) can be replaced by // the finite element form involving the linear sum of basis functions, // but we also note that the resulting integrand will only be nonzero // for terms where J = I - 1, I, or I + 1. // // By writing this equation for basis functions I = 2 through N - 1, // and using the boundary conditions, we have N linear equations // for the N unknown coefficients U(1) through U(N), which can // be easily solved. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 June 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of nodes. // // Input, double A ( double X ), evaluates a(x); // // Input, double C ( double X ), evaluates c(x); // // Input, double F ( double X ), evaluates f(x); // // Input, double X[N], the mesh points. // // Output, double FEM1D_BVP_LINEAR[N], the finite element coefficients, // which are also the value of the computed solution at the mesh points. // { # define QUAD_NUM 2 double abscissa[QUAD_NUM] = { -0.577350269189625764509148780502, +0.577350269189625764509148780502 }; double *amat; double axq; double *b; double cxq; int e; int e_num; double fxq; int i; int ierror; int j; int l; int q; int quad_num = QUAD_NUM; int r; double *u; double weight[QUAD_NUM] = { 1.0, 1.0 }; double wq; double vl; double vlp; double vr; double vrp; double xl; double xq; double xr; // // Zero out the matrix and right hand side. // amat = r8mat_zero_new ( n, n ); b = r8vec_zero_new ( n ); e_num = n - 1; for ( e = 0; e < e_num; e++ ) { l = e; r = e + 1; xl = x[l]; xr = x[r]; for ( q = 0; q < quad_num; q++ ) { xq = ( ( 1.0 - abscissa[q] ) * xl + ( 1.0 + abscissa[q] ) * xr ) / 2.0; wq = weight[q] * ( xr - xl ) / 2.0; vl = ( xr - xq ) / ( xr - xl ); vlp = - 1.0 / ( xr - xl ); vr = ( xq - xl ) / ( xr - xl ); vrp = + 1.0 / ( xr - xl ); axq = a ( xq ); cxq = c ( xq ); fxq = f ( xq ); amat[l+l*n] = amat[l+l*n] + wq * ( vlp * axq * vlp + vl * cxq * vl ); amat[l+r*n] = amat[l+r*n] + wq * ( vlp * axq * vrp + vl * cxq * vr ); b[l] = b[l] + wq * ( vl * fxq ); amat[r+l*n] = amat[r+l*n] + wq * ( vrp * axq * vlp + vr * cxq * vl ); amat[r+r*n] = amat[r+r*n] + wq * ( vrp * axq * vrp + vr * cxq * vr ); b[r] = b[r] + wq * ( vr * fxq ); } } // // Equation 1 is the left boundary condition, U(0.0) = 0.0; // for ( j = 0; j < n; j++ ) { amat[0+j*n] = 0.0; } b[0] = 0.0; for ( i = 1; i < n; i++ ) { b[i] = b[i] - amat[i+0*n] * b[0]; } for ( i = 0; i < n; i++ ) { amat[i+0*n] = 0.0; } amat[0+0*n] = 1.0; // // Equation N is the right boundary condition, U(1.0) = 0.0; // for ( j = 0; j < n; j++ ) { amat[n-1+j*n] = 0.0; } b[n-1] = 0.0; for ( i = 0; i < n - 1; i++ ) { b[i] = b[i] - amat[i+(n-1)*n] * b[n-1]; } for ( i = 0; i < n; i++ ) { amat[i+(n-1)*n] = 0.0; } amat[n-1+(n-1)*n] = 1.0; // // Solve the linear system. // u = r8mat_solve2 ( n, amat, b, &ierror ); delete [] amat; delete [] b; return u; # undef QUAD_NUM } //****************************************************************************80 double h1s_error_linear ( int n, double x[], double u[], double exact_ux ( double x ) ) //****************************************************************************80 // // Purpose: // // H1S_ERROR_LINEAR estimates the seminorm error of a finite element solution. // // Discussion: // // We assume the finite element method has been used, over an interval [A,B] // involving N nodes, with piecewise linear elements used for the basis. // // The coefficients U(1:N) have been computed, and a formula for the // exact derivative is known. // // This function estimates the seminorm of the error: // // SEMINORM = Integral ( A <= X <= B ) ( dU(X)/dx - EXACT_UX(X) )^2 dX // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of nodes. // // Input, double X[N], the mesh points. // // Input, double U[N], the finite element coefficients. // // Input, function EQ = EXACT_UX ( X ), returns the value of the exact // derivative at the point X. // // Output, double H1S_ERROR_LINEAR, the estimated seminorm of // the error. // { # define QUAD_NUM 2 double abscissa[QUAD_NUM] = { -0.577350269189625764509148780502, +0.577350269189625764509148780502 }; double exq; int i; int q; int quad_num = QUAD_NUM; double h1s; double ul; double ur; double uxq; double weight[QUAD_NUM] = { 1.0, 1.0 }; double wq; double xl; double xq; double xr; h1s = 0.0; // // Integrate over each interval. // for ( i = 0; i < n - 1; i++ ) { xl = x[i]; xr = x[i+1]; ul = u[i]; ur = u[i+1]; for ( q = 0; q < quad_num; q++ ) { xq = ( ( 1.0 - abscissa[q] ) * xl + ( 1.0 + abscissa[q] ) * xr ) / 2.0; wq = weight[q] * ( xr - xl ) / 2.0; // // The piecewise linear derivative is a constant in the interval. // uxq = ( ur - ul ) / ( xr - xl ); exq = exact_ux ( xq ); h1s = h1s + wq * pow ( uxq - exq, 2); } } h1s = sqrt ( h1s ); return h1s; # undef QUAD_NUM } //****************************************************************************80 int *i4vec_zero_new ( int n ) //****************************************************************************80 // // Purpose: // // I4VEC_ZERO_NEW creates and zeroes an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, int I4VEC_ZERO_NEW[N], a vector of zeroes. // { int *a; int i; a = new int[n]; for ( i = 0; i < n; i++ ) { a[i] = 0; } return a; } //****************************************************************************80 double l1_error ( int n, double x[], double u[], double exact ( double x ) ) //****************************************************************************80 // // Purpose: // // L1_ERROR estimates the L1 error norm of a finite element solution. // // Discussion: // // We assume the finite element method has been used, over an interval [A,B] // involving N nodes. // // The coefficients U(1:N) have been computed, and a formula for the // exact solution is known. // // This function estimates the little l1 norm of the error: // L1_NORM = sum ( 1 <= I <= N ) abs ( U(i) - EXACT(X(i)) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 June 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of nodes. // // Input, double X[N], the mesh points. // // Input, double U[N], the finite element coefficients. // // Input, function EQ = EXACT ( X ), returns the value of the exact // solution at the point X. // // Output, double L1_ERROR, the estimated L2 norm of the error. // { int i; double e1; e1 = 0.0; for ( i = 0; i < n; i++ ) { e1 = e1 + fabs ( u[i] - exact ( x[i] ) ); } e1 = e1 / ( double ) ( n ); return e1; } //****************************************************************************80 double l2_error_linear ( int n, double x[], double u[], double exact ( double x ) ) //****************************************************************************80 // // Purpose: // // L2_ERROR_LINEAR estimates the L2 error norm of a finite element solution. // // Discussion: // // We assume the finite element method has been used, over an interval [A,B] // involving N nodes, with piecewise linear elements used for the basis. // // The coefficients U(1:N) have been computed, and a formula for the // exact solution is known. // // This function estimates the L2 norm of the error: // // L2_NORM = Integral ( A <= X <= B ) ( U(X) - EXACT(X) )^2 dX // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 June 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of nodes. // // Input, double X[N], the mesh points. // // Input, double U[N], the finite element coefficients. // // Input, function EQ = EXACT ( X ), returns the value of the exact // solution at the point X. // // Output, double L2_ERROR_LINEAR, the estimated L2 norm of the error. // { # define QUAD_NUM 2 double abscissa[QUAD_NUM] = { -0.577350269189625764509148780502, +0.577350269189625764509148780502 }; double eq; int i; double e2; int q; int quad_num = QUAD_NUM; double ul; double ur; double uq; double weight[QUAD_NUM] = { 1.0, 1.0 }; double wq; double xl; double xq; double xr; e2 = 0.0; // // Integrate over each interval. // for ( i = 0; i < n - 1; i++ ) { xl = x[i]; xr = x[i+1]; ul = u[i]; ur = u[i+1]; for ( q = 0; q < quad_num; q++ ) { xq = ( ( 1.0 - abscissa[q] ) * xl + ( 1.0 + abscissa[q] ) * xr ) / 2.0; wq = weight[q] * ( xr - xl ) / 2.0; // // Use the fact that U is a linear combination of piecewise linears. // uq = ( ( xr - xq ) * ul + ( xq - xl ) * ur ) / ( xr - xl ); eq = exact ( xq ); e2 = e2 + wq * pow ( uq - eq, 2 ); } } e2 = sqrt ( e2 ); return e2; # undef QUAD_NUM } //****************************************************************************80 double *r8mat_solve2 ( int n, double a[], double b[], int *ierror ) //****************************************************************************80 // // Purpose: // // R8MAT_SOLVE2 computes the solution of an N by N linear system. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // The linear system may be represented as // // A*X = B // // If the linear system is singular, but consistent, then the routine will // still produce a solution. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of equations. // // Input/output, double A[N*N]. // On input, A is the coefficient matrix to be inverted. // On output, A has been overwritten. // // Input/output, double B[N]. // On input, B is the right hand side of the system. // On output, B has been overwritten. // // Output, int *IERROR. // 0, no error detected. // 1, consistent singularity. // 2, inconsistent singularity. // // Output, double R8MAT_SOLVE2[N], the solution of the linear system. // { double amax; int i; int imax; int j; int k; int *piv; double *x; *ierror = 0; piv = i4vec_zero_new ( n ); x = r8vec_zero_new ( n ); // // Process the matrix. // for ( k = 1; k <= n; k++ ) { // // In column K: // Seek the row IMAX with the properties that: // IMAX has not already been used as a pivot; // A(IMAX,K) is larger in magnitude than any other candidate. // amax = 0.0; imax = 0; for ( i = 1; i <= n; i++ ) { if ( piv[i-1] == 0 ) { if ( amax < fabs ( a[i-1+(k-1)*n] ) ) { imax = i; amax = fabs ( a[i-1+(k-1)*n] ); } } } // // If you found a pivot row IMAX, then, // eliminate the K-th entry in all rows that have not been used for pivoting. // if ( imax != 0 ) { piv[imax-1] = k; for ( j = k+1; j <= n; j++ ) { a[imax-1+(j-1)*n] = a[imax-1+(j-1)*n] / a[imax-1+(k-1)*n]; } b[imax-1] = b[imax-1] / a[imax-1+(k-1)*n]; a[imax-1+(k-1)*n] = 1.0; for ( i = 1; i <= n; i++ ) { if ( piv[i-1] == 0 ) { for ( j = k+1; j <= n; j++ ) { a[i-1+(j-1)*n] = a[i-1+(j-1)*n] - a[i-1+(k-1)*n] * a[imax-1+(j-1)*n]; } b[i-1] = b[i-1] - a[i-1+(k-1)*n] * b[imax-1]; a[i-1+(k-1)*n] = 0.0; } } } } // // Now, every row with nonzero IPIV begins with a 1, and // all other rows are all zero. Begin solution. // for ( j = n; 1 <= j; j-- ) { imax = 0; for ( k = 1; k <= n; k++ ) { if ( piv[k-1] == j ) { imax = k; } } if ( imax == 0 ) { x[j-1] = 0.0; if ( b[j-1] == 0.0 ) { *ierror = 1; cout << "\n"; cout << "R8MAT_SOLVE2 - Warning:\n"; cout << " Consistent singularity, equation = " << j << "\n"; } else { *ierror = 2; cout << "\n"; cout << "R8MAT_SOLVE2 - Warning:\n"; cout << " Inconsistent singularity, equation = " << j << "\n"; } } else { x[j-1] = b[imax-1]; for ( i = 1; i <= n; i++ ) { if ( i != imax ) { b[i-1] = b[i-1] - a[i-1+(j-1)*n] * x[j-1]; } } } } delete [] piv; return x; } //****************************************************************************80 double *r8mat_zero_new ( int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_ZERO_NEW returns a new zeroed R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Output, double R8MAT_ZERO[M*N], the new zeroed matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 0.0; } } return a; } //****************************************************************************80 double *r8vec_even_new ( int n, double alo, double ahi ) //****************************************************************************80 // // Purpose: // // R8VEC_EVEN_NEW returns an R8VEC of values evenly spaced between ALO and AHI. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 May 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of values. // // Input, double ALO, AHI, the low and high values. // // Output, double R8VEC_EVEN_NEW[N], N evenly spaced values. // Normally, A[0] = ALO and A[N-1] = AHI. // However, if N = 1, then A[0] = 0.5*(ALO+AHI). // { double *a; int i; a = new double[n]; if ( n == 1 ) { a[0] = 0.5 * ( alo + ahi ); } else { for ( i = 0; i < n; i++ ) { a[i] = ( ( double ) ( n - i - 1 ) * alo + ( double ) ( i ) * ahi ) / ( double ) ( n - 1 ); } } return a; } //****************************************************************************80 double *r8vec_zero_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZERO_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZERO_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }