# include # include # include # include using namespace std; # include "fem1d_heat_steady.hpp" int main ( ); void fem1d_heat_steady_test01 ( ); double k1 ( double x ); double f1 ( double x ); double exact1 ( double x ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for FEM1D_HEAT_STEADY_PRB. // // Discussion: // // FEM1D_HEAT_STEADY_PRB tests the FEM1D_HEAT_STEADY library. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2010 // // Author: // // John Burkardt // { timestamp ( ); cout << "\n"; cout << "FEM1D_BVP_LINEAR_PRB\n"; cout << " C++ version\n"; cout << " Test the FEM1D_HEAT_STEADY library.\n"; fem1d_heat_steady_test01 ( ); // // Terminate. // cout << "\n"; cout << "FEM1D_HEAT_STEADY_PRB\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void fem1d_heat_steady_test01 ( ) //****************************************************************************80 // // Purpose: // // FEM1D_HEAT_STEADY_TEST01 carries out test case #1. // // Discussion: // // Use K1, F1, EXACT1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2011 // // Author: // // John Burkardt // { double a; double b; int i; int n = 11; double *u; double ua; double ub; double uexact; double *x; cout << "\n"; cout << "FEM1D_HEAT_STEADY_TEST01\n"; cout << " K1(X) = 1.0\n"; cout << " F1(X) = X * ( X + 3 ) * exp ( X )\n"; cout << " U1(X) = X * ( 1 - X ) * exp ( X )\n"; // // Geometry definitions. // a = 0.0; b = 1.0; ua = 0.0; ub = 0.0; x = r8vec_even_new ( n, a, b ); cout << "\n"; cout << " Number of nodes = " << n << "\n"; cout << " Left endpoint A = " << a << "\n"; cout << " Right endpoint B = " << b << "\n"; cout << " Prescribed U(A) = " << ua << "\n"; cout << " Prescribed U(B) = " << ub << "\n"; u = fem1d_heat_steady ( n, a, b, ua, ub, k1, f1, x ); cout << "\n"; cout << " I X U Uexact Error\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { uexact = exact1 ( x[i] ); cout << " " << setw(4) << i << " " << setw(8) << x[i] << " " << setw(14) << u[i] << " " << setw(14) << uexact << " " << setw(14) << r8_abs ( u[i] - uexact ) << "\n"; } delete [] u; delete [] x; return; } //****************************************************************************80 double k1 ( double x ) //****************************************************************************80 // // Purpose: // // K1 evaluates K function #1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the evaluation point. // // Output, double K1, the value of K(X). // { double value; value = 1.0; return value; } //****************************************************************************80 double f1 ( double x ) //****************************************************************************80 // // Purpose: // // F1 evaluates right hand side function #1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the evaluation point. // // Output, double F1, the value of F(X). // { double value; value = x * ( x + 3.0 ) * exp ( x ); return value; } //****************************************************************************80 double exact1 ( double x ) //****************************************************************************80 // // Purpose: // // EXACT1 evaluates exact solution #1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the evaluation point. // // Output, double EXACT1, the value of U(X). // { double value; value = x * ( 1.0 - x ) * exp ( x ); return value; }