# include # include # include # include # include using namespace std; int main ( void ); void assemble_newton ( double adiag[], double aleft[], double arite[], double f[], double fold[], double h[], int indx[], int n, int nl, int node[], int nquad, int nu, int problem, double ul, double ur, double xn[], double xquad[] ); void assemble_picard ( double adiag[], double aleft[], double arite[], double f[], double fold[], double h[], int indx[], int n, int nl, int node[], int nquad, int nu, int problem, double ul, double ur, double xn[], double xquad[] ); void compare ( double f[], int indx[], int n, int nl, int node[], int nprint, int nu, int problem, double ul, double ur, double xl, double xn[], double xr ); double ff ( double x, int problem ); void geometry ( double h[], int ibc, int indx[], int nl, int node[], int nsub, int *nu, double xl, double xn[], double xquad[], double xr ); void init ( int *ibc, int *imax, int *nprint, int *nquad, int *problem, double *ul, double *ur, double *xl, double *xr ); void output ( double f[], int ibc, int indx[], int nsub, int nu, double ul, double ur, double xn[] ); void phi ( int il, double x, double *phii, double *phiix, double xleft, double xrite ); double pp ( double x, int problem ); void prsys ( double adiag[], double aleft[], double arite[], double f[], int nu ); double qq ( double x, int problem ); void solve ( double adiag[], double aleft[], double arite[], double f[], int nu ); void timestamp ( void ); double u_exact ( double x, int problem ); //****************************************************************************80 int main ( void ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for FEM1D_NONLINEAR. // // Discussion: // // FEM1D_NONLINLEAR solves a nonlinear one dimensional boundary value problem. // // The differential equation has the form: // // -d/dx (p(x) du/dx) + q(x)*u + u*u' = f(x) // // The finite-element method uses piecewise linear basis functions. // // Here U is an unknown scalar function of X defined on the // interval [XL,XR], and P, Q and F are given functions of X. // // The values of U or U' at XL and XR are also specified. // // Sample problem #1: // // u(x) = x, // p(x) = 1, // q(x) = 0, // f(x) = x, // u(0) = 0, // u'(1) = 1. // The code should solve this problem exactly. // // Sample problem #2: // // u(x) = 2*(1-cos(0.5*pi*x))/pi, // p(x) = 1, // q(x) = 0, // f(x) = -0.5*pi*cos(0.5*pi*x) + 2*sin(0.5*pi*x)*(1-cos(0.5*pi*x)/pi // u(0) = 0, // u'(1) = 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 April 2007 // // Author: // // C++ version by John Burkardt // // Parameters: // // double ADIAG(NU). // ADIAG(I) is the "diagonal" coefficient of the I-th // equation in the linear system. That is, ADIAG(I) is // the coefficient of the I-th unknown in the I-th equation. // // double ALEFT(NU). // ALEFT(I) is the "left hand" coefficient of the I-th // equation in the linear system. That is, ALEFT(I) is the // coefficient of the (I-1)-th unknown in the I-th equation. // There is no value in ALEFT(1), since the first equation // does not refer to a "0-th" unknown. // // double ARITE(NU). // ARITE(I) is the "right hand" coefficient of the I-th // equation in the linear system. ARITE(I) is the coefficient // of the (I+1)-th unknown in the I-th equation. There is // no value in ARITE(NU) because the NU-th equation does not // refer to an "NU+1"-th unknown. // // double F(NU). // ASSEMBLE stores into F the right hand side of the linear // equations. // SOLVE replaces those values of F by the solution of the // linear equations. // // double FOLD(NU). // FOLD contains the value of F from the previous iteration, // and is used in ASSEMBLE to add correction terms to the // matrix and right hand side. // // double H(N), the length of the subintervals. // // int IBC. // IBC declares what the boundary conditions are. // 1, at the left endpoint, U has the value UL, // at the right endpoint, U' has the value UR. // 2, at the left endpoint, U' has the value UL, // at the right endpoint, U has the value UR. // 3, at the left endpoint, U has the value UL, // and at the right endpoint, U has the value UR. // 4, at the left endpoint, U' has the value UL, // at the right endpoint U' has the value UR. // // int IMAX. // The number of Newton iterations to carry out. // // int INDX(0:N). // For a node I, INDX(I) is the index of the unknown // associated with node I. // If INDX(I) is equal to -1, then no unknown is associated // with the node, because a boundary condition fixing the // value of U has been applied at the node instead. // Unknowns are numbered beginning with 1. // If IBC is 2 or 4, then there is an unknown value of U // at node 0, which will be unknown number 1. Otherwise, // unknown number 1 will be associated with node 1. // If IBC is 1 or 4, then there is an unknown value of U // at node N, which will be unknown N or N+1, // depending on whether there was an unknown at node 0. // // int NL. // The number of basis functions used in a single // subinterval. (NL-1) is the degree of the polynomials // used. For this code, NL is fixed at 2, meaning that // piecewise linear functions are used as the basis. // // int NODE(NL,N). // For each subinterval I: // NODE(1,I) is the number of the left node, and // NODE(2,I) is the number of the right node. // // int NPRINT. // The number of points at which the computed solution // should be printed out when compared to the exact solution. // // int NQUAD. // The number of quadrature points used in a subinterval. // This code uses NQUAD = 1. // // int N. // The number of subintervals into which the interval // [XL,XR] is broken. // // int NU. // NU is the number of unknowns in the linear system. // Depending on the value of IBC, there will be N-1, // N, or N+1 unknown values, which are the coefficients // of basis functions. // // int PROBLEM, indicates which problem to be solved. // * 1, u = x, p=1, q=0, f=x, u(0)=0, u'(1)=1. // * 2, u = 2*(1-cos(0.5*pi*x))/pi, p=1, q=0, // f = -0.5*pi*cos(0.5*pi*x) + 2*sin(0.5*pi*x)*(1-cos(0.5*pi*x)/pi // u(0) = 0, u'(1)=1. // // double UL. // If IBC is 1 or 3, UL is the value that U is required // to have at X = XL. // If IBC is 2 or 4, UL is the value that U' is required // to have at X = XL. // // double UR. // If IBC is 2 or 3, UR is the value that U is required // to have at X = XR. // If IBC is 1 or 4, UR is the value that U' is required // to have at X = XR. // // double XL. // XL is the left endpoint of the interval over which the // differential equation is being solved. // // double XN(0:N). // XN(I) is the location of the I-th node. XN(0) is XL, // and XN(N) is XR. // // double XQUAD(N) // XQUAD(I) is the location of the single quadrature point // in interval I. // // double XR. // XR is the right endpoint of the interval over which the // differential equation is being solved. // { # define N 10 # define NL 2 double adiag[N+1]; double aleft[N+1]; double arite[N+1]; double f[N+1]; double fold[N+1]; double h[N]; int i; int ibc; int imax; int indx[N+1]; int j; int node[NL*N]; int nprint; int nquad; int nu; int problem; double ul; double ur; double xl; double xn[N+1]; double xquad[N]; double xr; timestamp ( ); cout << "\n"; cout << "FEM1D_NONLINEAR\n"; cout << " C++ version\n"; cout << "\n"; cout << " Solve a nonlinear boundary value problem:\n"; cout << "\n"; cout << " -d/dx (p(x) du/dx) + q(x)*u + u*u' = f(x)\n"; cout << "\n"; cout << " on an interval [xl,xr], with the values of\n"; cout << " u or u' specified at xl and xr.\n"; cout << "\n"; cout << " The interval [XL,XR] is broken into N = " << N << " subintervals\n"; cout << " Number of basis functions per element is NL = " << NL << "\n"; // // Initialize variables that define the problem. // init ( &ibc, &imax, &nprint, &nquad, &problem, &ul, &ur, &xl, &xr ); // // Compute the quantities that describe the geometry of the problem. // geometry ( h, ibc, indx, NL, node, N, &nu, xl, xn, xquad, xr ); // // Initialize the "previous" solution to 0. // for ( i = 0; i < nu; i++ ) { fold[i] = 0.0; } // // Begin the iteration. // for ( i = 1; i <= imax; i++ ) { // // Is it time for full nonlinear Newton iteration? // if ( i <= 3 ) { assemble_picard ( adiag, aleft, arite, f, fold, h, indx, N, NL, node, nquad, nu, problem, ul, ur, xn, xquad ); } else { assemble_newton ( adiag, aleft, arite, f, fold, h, indx, N, NL, node, nquad, nu, problem, ul, ur, xn, xquad ); } // // Print out the linear system, just once. // if ( i == 1 ) { prsys ( adiag, aleft, arite, f, nu ); } // // Solve the linear system. // solve ( adiag, aleft, arite, f, nu ); // // Print the current solution. // output ( f, ibc, indx, N, nu, ul, ur, xn ); // // Save a copy of the current solution in FOLD. // for ( j = 0; j < nu; j++ ) { fold[j] = f[j]; } } // // Compare the solution to the exact solution. // compare ( f, indx, N, NL, node, nprint, nu, problem, ul, ur, xl, xn, xr ); cout << "\n"; cout << "FEM1D_NONLINEAR:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; # undef N # undef NL } //****************************************************************************80 void assemble_newton ( double adiag[], double aleft[], double arite[], double f[], double fold[], double h[], int indx[], int n, int nl, int node[], int nquad, int nu, int problem, double ul, double ur, double xn[], double xquad[] ) //****************************************************************************80 // // Purpose: // // ASSEMBLE_NEWTON assembles the Newton linear system. // // Discussion: // // The linear system being solved here is for the Newton correction // to an approximate solution of a nonlinear system. // // Thus, we suppose that we have a nonlinear function F(X), // and an approximate solution X0. If we can suppose there is an // exact solution X* that is "nearby", and in fact close enough // that Taylor's theorem gives us a useful estimate, then we // may write: // // F(X*) = F(X0) + F'(X0) * ( X* - X0 ) + Order ( X* - X0 )^2 // // and by rearranging, we get the Newton system (which is only // approximately correct): // // F'(X0) * ( X* - X0 ) = - F(X0) // // We solve this system and add the solution to X0 to get a // new approximate solution that, we hope, is much improved. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 April 2007 // // Author: // // C++ version by John Burkardt // // Parameters: // // Output, double ADIAG(NU). // ADIAG(I) is the "diagonal" coefficient of the I-th // equation in the linear system. That is, ADIAG(I) is // the coefficient of the I-th unknown in the I-th equation. // // Output, double ALEFT(NU). // ALEFT(I) is the "left hand" coefficient of the I-th // equation in the linear system. That is, ALEFT(I) is the // coefficient of the (I-1)-th unknown in the I-th equation. // There is no value in ALEFT(1), since the first equation // does not refer to a "0-th" unknown. // // Output, double ARITE(NU). // ARITE(I) is the "right hand" coefficient of the I-th // equation in the linear system. ARITE(I) is the coefficient // of the (I+1)-th unknown in the I-th equation. There is // no value in ARITE(NU) because the NU-th equation does not // refer to an "NU+1"-th unknown. // // Output, double F(NU), the right hand side of the linear // equations. // // Input, double FOLD(NU), the solution value // from the previous iteration, // // Input, double H(N), the length of the subintervals. // // Input, int INDX(0:N). // For a node I, INDX(I) is the index of the unknown // associated with node I. // If INDX(I) is equal to -1, then no unknown is associated // with the node, because a boundary condition fixing the // value of U has been applied at the node instead. // Unknowns are numbered beginning with 1. // If IBC is 2 or 4, then there is an unknown value of U // at node 0, which will be unknown number 1. Otherwise, // unknown number 1 will be associated with node 1. // If IBC is 1 or 4, then there is an unknown value of U // at node N, which will be unknown N or N+1, // depending on whether there was an unknown at node 0. // // Input, int N. // The number of subintervals into which the interval // [XL,XR] is broken. // // Input, int NL. // The number of basis functions used in a single // subinterval. (NL-1) is the degree of the polynomials // used. For this code, NL is fixed at 2, meaning that // piecewise linear functions are used as the basis. // // Input, int NODE(NL,N). // For each subinterval I: // NODE(1,I) is the number of the left node, and // NODE(2,I) is the number of the right node. // // Input, int NQUAD. // The number of quadrature points used in a subinterval. // This code uses NQUAD = 1. // // Input, int NU. // NU is the number of unknowns in the linear system. // Depending on the value of IBC, there will be N-1, // N, or N+1 unknown values, which are the coefficients // of basis functions. // // Input, int PROBLEM, indicates which problem to be solved. // * 1, u = x, p=1, q=0, f=x, u(0)=0, u'(1)=1. // * 2, u = 2*(1-cos(0.5*pi*x))/pi, p=1, q=0, // f = -0.5*pi*cos(0.5*pi*x) + 2*sin(0.5*pi*x)*(1-cos(0.5*pi*x)/pi // u(0) = 0, u'(1)=1. // // Input, double UL. // If IBC is 1 or 3, UL is the value that U is required // to have at X = XL. // If IBC is 2 or 4, UL is the value that U' is required // to have at X = XL. // // Input, double UR. // If IBC is 2 or 3, UR is the value that U is required // to have at X = XR. // If IBC is 1 or 4, UR is the value that U' is required // to have at X = XR. // // Input, double XN(0:N). // XN(I) is the location of the I-th node. XN(0) is XL, // and XN(N) is XR. // // Input, double XQUAD(N) // XQUAD(I) is the location of the single quadrature point // in interval I. // { double aij; double he; int i; int ie; int ig; int il; int iu; int iul; int iur; int iq; int jg; int jl; int jr; int ju; double phii; double phiix; double phij; double phijx; double total; double uold; double uoldx; double x; double xleft; double xqe; double xrite; for ( i = 0; i < nu; i++ ) { f[i] = 0.0; } for ( i = 0; i < nu; i++ ) { adiag[i] = 0.0; } for ( i = 0; i < nu; i++ ) { aleft[i] = 0.0; } for ( i = 0; i < nu; i++ ) { arite[i] = 0.0; } // // For element IE... // for ( ie = 0; ie < n; ie++ ) { he = h[ie]; xleft = xn[node[0+ie*2]]; xrite = xn[node[1+ie*2]]; // // For quadrature point IQ... // for ( iq = 0; iq < nquad; iq++ ) { xqe = xquad[ie]; // // Compute value of U for previous solution. // total = 0.0; for ( il = 1; il <= nl; il++ ) { ig = node[il-1+ie*2]; iu = indx[ig] - 1; if ( iu < 0 ) { if ( il == 1 ) { total = total + ul; } else { total = total + ur; } } else { total = total + fold[iu]; } } uold = total / ( double ) ( nl ); // // Compute value of U' for previous solution. // jl = node[0+ie*2]; jr = node[1+ie*2]; iul = indx[jl] - 1; iur = indx[jr] - 1; if ( iul < 0 ) { uoldx = ( fold[iur] - ul ) / he; } else if ( iur < 0 ) { uoldx = ( ur - fold[iul] ) / he; } else { uoldx = ( fold[iur] - fold[iul] ) / he; } // // For basis function IL... // for ( il = 1; il <= nl; il++ ) { ig = node[il-1+ie*2]; iu = indx[ig] - 1; if ( 0 <= iu ) { phi ( il, xqe, &phii, &phiix, xleft, xrite ); f[iu] = f[iu] + he * phii * ( ff ( xqe, problem ) + uold * uoldx ); // // Handle boundary conditions that prescribe the value of U'. // if ( ig == 0 ) { x = 0.0; f[iu] = f[iu] - pp ( x, problem ) * ul; } else if ( ig == n ) { x = 1.0; f[iu] = f[iu] + pp ( x, problem ) * ur; } // // For basis function JL... // for ( jl = 1; jl <= nl; jl++ ) { jg = node[jl-1+ie*2]; ju = indx[jg] - 1; phi ( jl, xqe, &phij, &phijx, xleft, xrite ); aij = he * ( pp ( xqe, problem ) * phiix * phijx + qq ( xqe, problem ) * phii * phij + uold * phii * phijx + uoldx * phij * phii ); if ( ju < 0 ) { if ( jg == 0 ) { f[iu] = f[iu] - aij * ul; } else if ( jg == n ) { f[iu] = f[iu] - aij * ur; } } else if ( iu == ju ) { adiag[iu] = adiag[iu] + aij; } else if ( ju < iu ) { aleft[iu] = aleft[iu] + aij; } else { arite[iu] = arite[iu] + aij; } } } } } } return; } //****************************************************************************80 void assemble_picard ( double adiag[], double aleft[], double arite[], double f[], double fold[], double h[], int indx[], int n, int nl, int node[], int nquad, int nu, int problem, double ul, double ur, double xn[], double xquad[] ) //****************************************************************************80 // // Purpose: // // ASSEMBLE_PICARD assembles the Picard linear system. // // Discussion: // // The equation we are trying to solve has the form: // // -d/dx ( p(x) du/dx ) + q(x) * u + u * u' = f(x) // // For the Picard iteration, we need to modify the nonlinear term u * u' // so that it is linear in the unknown u, and any other factors of u are // lagged. One way to do this gives us the following equation: // // -d/dx ( p(x) du/dx ) + q(x) * u + u * uold' = f(x) // // where uold is the previous iterate. // // Now we can formulate this system as a (linear) finite element problem // // A * u = rhs // // to be solved for the new approximate solution u. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 April 2007 // // Author: // // C++ version by John Burkardt // // Parameters: // // Output, double ADIAG(NU). // ADIAG(I) is the "diagonal" coefficient of the I-th // equation in the linear system. That is, ADIAG(I) is // the coefficient of the I-th unknown in the I-th equation. // // Output, double ALEFT(NU). // ALEFT(I) is the "left hand" coefficient of the I-th // equation in the linear system. That is, ALEFT(I) is the // coefficient of the (I-1)-th unknown in the I-th equation. // There is no value in ALEFT(1), since the first equation // does not refer to a "0-th" unknown. // // Output, double ARITE(NU). // ARITE(I) is the "right hand" coefficient of the I-th // equation in the linear system. ARITE(I) is the coefficient // of the (I+1)-th unknown in the I-th equation. There is // no value in ARITE(NU) because the NU-th equation does not // refer to an "NU+1"-th unknown. // // Output, double F(NU), the right hand side of the linear // equations. // // Input, double FOLD(NU), the solution value // from the previous iteration, // // Input, double H(N), the length of the subintervals. // // Input, int INDX(0:N). // For a node I, INDX(I) is the index of the unknown // associated with node I. // If INDX(I) is equal to -1, then no unknown is associated // with the node, because a boundary condition fixing the // value of U has been applied at the node instead. // Unknowns are numbered beginning with 1. // If IBC is 2 or 4, then there is an unknown value of U // at node 0, which will be unknown number 1. Otherwise, // unknown number 1 will be associated with node 1. // If IBC is 1 or 4, then there is an unknown value of U // at node N, which will be unknown N or N+1, // depending on whether there was an unknown at node 0. // // Input, int N. // The number of subintervals into which the interval // [XL,XR] is broken. // // Input, int NL. // The number of basis functions used in a single // subinterval. (NL-1) is the degree of the polynomials // used. For this code, NL is fixed at 2, meaning that // piecewise linear functions are used as the basis. // // Input, int NODE(NL,N). // For each subinterval I: // NODE(1,I) is the number of the left node, and // NODE(2,I) is the number of the right node. // // Input, int NQUAD. // The number of quadrature points used in a subinterval. // This code uses NQUAD = 1. // // Input, int NU. // NU is the number of unknowns in the linear system. // Depending on the value of IBC, there will be N-1, // N, or N+1 unknown values, which are the coefficients // of basis functions. // // Input, int PROBLEM, indicates which problem to be solved. // * 1, u = x, p=1, q=0, f=x, u(0)=0, u'(1)=1. // * 2, u = 2*(1-cos(0.5*pi*x))/pi, p=1, q=0, // f = -0.5*pi*cos(0.5*pi*x) + 2*sin(0.5*pi*x)*(1-cos(0.5*pi*x)/pi // u(0) = 0, u'(1)=1. // // Input, double UL. // If IBC is 1 or 3, UL is the value that U is required // to have at X = XL. // If IBC is 2 or 4, UL is the value that U' is required // to have at X = XL. // // Input, double UR. // If IBC is 2 or 3, UR is the value that U is required // to have at X = XR. // If IBC is 1 or 4, UR is the value that U' is required // to have at X = XR. // // Input, double XN(0:N). // XN(I) is the location of the I-th node. XN(0) is XL, // and XN(N) is XR. // // Input, double XQUAD(N) // XQUAD(I) is the location of the single quadrature point // in interval I. // { double aij; double he; int i; int ie; int ig; int il; int iu; int iul; int iur; int iq; int jg; int jl; int jr; int ju; double phii; double phiix; double phij; double phijx; double total; double uold; double uoldx; double x; double xleft; double xqe; double xrite; for ( i = 0; i < nu; i++ ) { f[i] = 0.0; } for ( i = 0; i < nu; i++ ) { adiag[i] = 0.0; } for ( i = 0; i < nu; i++ ) { aleft[i] = 0.0; } for ( i = 0; i < nu; i++ ) { arite[i] = 0.0; } // // For element IE... // for ( ie = 0; ie < n; ie++ ) { he = h[ie]; xleft = xn[node[0+ie*2]]; xrite = xn[node[1+ie*2]]; // // For quadrature point IQ... // for ( iq = 0; iq < nquad; iq++ ) { xqe = xquad[ie]; // // Compute value of U for previous solution. // total = 0.0; for ( il = 1; il <= nl; il++ ) { ig = node[il-1+ie*2]; iu = indx[ig] - 1; if ( iu < 0 ) { if ( il == 1 ) { total = total + ul; } else { total = total + ur; } } else { total = total + fold[iu]; } } uold = total / ( double ) ( nl ); // // Compute value of U' for previous solution. // jl = node[0+ie*2]; jr = node[1+ie*2]; iul = indx[jl] - 1; iur = indx[jr] - 1; if ( iul < 0 ) { uoldx = ( fold[iur] - ul ) / he; } else if ( iur < 0 ) { uoldx = ( ur - fold[iul] ) / he; } else { uoldx = ( fold[iur] - fold[iul] ) / he; } // // For basis function IL... // for ( il = 1; il <= nl; il++ ) { ig = node[il-1+ie*2]; iu = indx[ig] - 1; if ( 0 <= iu ) { phi ( il, xqe, &phii, &phiix, xleft, xrite ); f[iu] = f[iu] + he * phii * ( ff ( xqe, problem ) ); // // Handle boundary conditions that prescribe the value of U'. // if ( ig == 0 ) { x = 0.0; f[iu] = f[iu] - pp ( x, problem ) * ul; } else if ( ig == n ) { x = 1.0; f[iu] = f[iu] + pp ( x, problem ) * ur; } // // For basis function JL... // for ( jl = 1; jl <= nl; jl++ ) { jg = node[jl-1+ie*2]; ju = indx[jg] - 1; phi ( jl, xqe, &phij, &phijx, xleft, xrite ); aij = he * ( pp ( xqe, problem ) * phiix * phijx + qq ( xqe, problem ) * phii * phij + uold * phii * phijx ); if ( ju < 0 ) { if ( jg == 0 ) { f[iu] = f[iu] - aij * ul; } else if ( jg == n ) { f[iu] = f[iu] - aij * ur; } } else if ( iu == ju ) { adiag[iu] = adiag[iu] + aij; } else if ( ju < iu ) { aleft[iu] = aleft[iu] + aij; } else { arite[iu] = arite[iu] + aij; } } } } } } return; } //****************************************************************************80 void compare ( double f[], int indx[], int n, int nl, int node[], int nprint, int nu, int problem, double ul, double ur, double xl, double xn[], double xr ) //****************************************************************************80 // // Purpose: // // COMPARE compares the computed and exact solutions. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, double F(NU), the solution of the linear equations. // // Input, int INDX(0:N). // For a node I, INDX(I) is the index of the unknown // associated with node I. // If INDX(I) is equal to -1, then no unknown is associated // with the node, because a boundary condition fixing the // value of U has been applied at the node instead. // Unknowns are numbered beginning with 1. // If IBC is 2 or 4, then there is an unknown value of U // at node 0, which will be unknown number 1. Otherwise, // unknown number 1 will be associated with node 1. // If IBC is 1 or 4, then there is an unknown value of U // at node N, which will be unknown N or N+1, // depending on whether there was an unknown at node 0. // // Input, int N. // The number of subintervals into which the interval // [XL,XR] is broken. // // Input, int NL. // The number of basis functions used in a single // subinterval. (NL-1) is the degree of the polynomials // used. For this code, NL is fixed at 2, meaning that // piecewise linear functions are used as the basis. // // Input, int NODE(NL,N). // For each subinterval I: // NODE(1,I) is the number of the left node, and // NODE(2,I) is the number of the right node. // // Input, int NPRINT. // The number of points at which the computed solution // should be printed out when compared to the exact solution. // // Input, int NU. // NU is the number of unknowns in the linear system. // Depending on the value of IBC, there will be N-1, // N, or N+1 unknown values, which are the coefficients // of basis functions. // // Input, int PROBLEM, indicates which problem to be solved. // * 1, u = x, p=1, q=0, f=x, u(0)=0, u'(1)=1. // * 2, u = 2*(1-cos(0.5*pi*x))/pi, p=1, q=0, // f = -0.5*pi*cos(0.5*pi*x) + 2*sin(0.5*pi*x)*(1-cos(0.5*pi*x)/pi // u(0) = 0, u'(1)=1. // // Input, double UL. // If IBC is 1 or 3, UL is the value that U is required // to have at X = XL. // If IBC is 2 or 4, UL is the value that U' is required // to have at X = XL. // // Input, double UR. // If IBC is 2 or 3, UR is the value that U is required // to have at X = XR. // If IBC is 1 or 4, UR is the value that U' is required // to have at X = XR. // // Input, double XL. // XL is the left endpoint of the interval over which the // differential equation is being solved. // // Input, double XN(0:N). // XN(I) is the location of the I-th node. XN(0) is XL, // and XN(N) is XR. // // Input, double XR. // XR is the right endpoint of the interval over which the // differential equation is being solved. // { int i; int ig; int iu; int j; int k; double phii; double phiix; double u; double ux; double x; double xleft; double xrite; cout << "\n"; cout << "Compare computed and exact solutions:\n"; cout << "\n"; cout << " X Computed U Exact U\n"; cout << "\n"; for ( i = 1; i <= nprint; i++ ) { x = ( ( double ) ( nprint - i ) * xl + ( double ) ( i - 1 ) * xr ) / ( double ) ( nprint - 1 ); ux = u_exact ( x, problem ); for ( j = 1; j <= n; j++ ) { xleft = xn[j-1]; xrite = xn[j]; // // Search for the interval that X lies in. // if ( xleft <= x && x <= xrite ) { u = 0.0; for ( k = 1; k <= nl; k++ ) { ig = node[k-1+(j-1)*2]; iu = indx[ig]; phi ( k, x, &phii, &phiix, xleft, xrite ); if ( iu <= 0 ) { if ( j == 1 && k == 1 ) { u = u + ul * phii; } else if ( j == n && k == nl ) { u = u + ur * phii; } } else { u = u + f[iu-1] * phii; } } break; } } cout << " " << setw(12) << x << " " << setw(12) << u << " " << setw(12) << ux << "\n"; } return; } //****************************************************************************80 double ff ( double x, int problem ) //****************************************************************************80 // // Purpose: // // FF returns the right hand side of the differential equation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, double X, the evaluation point. // // Input, int PROBLEM, indicates which problem to be solved. // * 1, u = x, p=1, q=0, f=x, u(0)=0, u'(1)=1. // * 2, u = 2*(1-cos(0.5*pi*x))/pi, p=1, q=0, // f = -0.5*pi*cos(0.5*pi*x) + 2*sin(0.5*pi*x)*(1-cos(0.5*pi*x)/pi // u(0) = 0, u'(1)=1. // // Output, double FF, the value of F(X). // { double pi = 3.141592653589793; double value; // // Test problem 1 // if ( problem == 1 ) { value = x; } // // Test problem 2 // else if ( problem == 2 ) { value = - 0.5 * pi * cos ( 0.5 * pi * x ) + 2.0 * sin ( 0.5 * pi * x ) * ( 1.0 - cos ( 0.5 * pi * x ) ) / pi; } return value; } //****************************************************************************80 void geometry ( double h[], int ibc, int indx[], int nl, int node[], int nsub, int *nu, double xl, double xn[], double xquad[], double xr ) //****************************************************************************80 // // Purpose: // // GEOMETRY sets up the geometry for the interval [XL,XR]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Output, double H(N), the length of the subintervals. // // Input, int IBC. // IBC declares what the boundary conditions are. // 1, at the left endpoint, U has the value UL, // at the right endpoint, U' has the value UR. // 2, at the left endpoint, U' has the value UL, // at the right endpoint, U has the value UR. // 3, at the left endpoint, U has the value UL, // and at the right endpoint, U has the value UR. // 4, at the left endpoint, U' has the value UL, // at the right endpoint U' has the value UR. // // Output, int INDX(0:N). // For a node I, INDX(I) is the index of the unknown // associated with node I. // If INDX(I) is equal to -1, then no unknown is associated // with the node, because a boundary condition fixing the // value of U has been applied at the node instead. // Unknowns are numbered beginning with 1. // If IBC is 2 or 4, then there is an unknown value of U // at node 0, which will be unknown number 1. Otherwise, // unknown number 1 will be associated with node 1. // If IBC is 1 or 4, then there is an unknown value of U // at node N, which will be unknown N or N+1, // depending on whether there was an unknown at node 0. // // Input, int NL. // The number of basis functions used in a single // subinterval. (NL-1) is the degree of the polynomials // used. For this code, NL is fixed at 2, meaning that // piecewise linear functions are used as the basis. // // Output, int NODE(NL,N). // For each subinterval I: // NODE(1,I) is the number of the left node, and // NODE(2,I) is the number of the right node. // // Input, int NSUB. // The number of subintervals into which the interval // [XL,XR] is broken. // // Output, int NU. // NU is the number of unknowns in the linear system. // Depending on the value of IBC, there will be N-1, // N, or N+1 unknown values, which are the coefficients // of basis functions. // // Input, double XL. // XL is the left endpoint of the interval over which the // differential equation is being solved. // // Output, double XN(0:N). // XN(I) is the location of the I-th node. XN(0) is XL, // and XN(N) is XR. // // Output, double XQUAD(N) // XQUAD(I) is the location of the single quadrature point // in interval I. // // Input, double XR. // XR is the right endpoint of the interval over which the // differential equation is being solved. // { int i; // // Set the value of XN, the locations of the nodes. // cout << "\n"; cout << " Node Location\n"; cout << "\n"; for ( i = 0; i <= nsub; i++ ) { xn[i] = ( ( double ) ( nsub - i ) * xl + ( double ) i * xr ) / ( double ) ( nsub ); cout << " " << setw(8) << i << " " << setw(14) << xn[i] << "\n"; } // // Set the lengths of each subinterval. // cout << "\n"; cout << "Subint Length\n"; cout << "\n"; for ( i = 0; i < nsub; i++ ) { h[i] = xn[i+1] - xn[i]; cout << " " << setw(8) << i+1 << " " << setw(14) << h[i] << "\n"; } // // Set the quadrature points, each of which is the midpoint // of its subinterval. // cout << "\n"; cout << "Subint Quadrature point\n"; cout << "\n"; for ( i = 0; i < nsub; i++ ) { xquad[i] = 0.5 * ( xn[i] + xn[i+1] ); cout << " " << setw(8) << i+1 << " " << setw(14) << xquad[i] << "\n"; } // // Set the value of NODE, which records, for each interval, // the node numbers at the left and right. // cout << "\n"; cout << "Subint Left Node Right Node\n"; cout << "\n"; for ( i = 0; i < nsub; i++ ) { node[0+i*2] = i; node[1+i*2] = i + 1; cout << " " << setw(8) << i+1 << " " << setw(8) << node[0+i*2] << " " << setw(8) << node[1+i*2] << "\n"; } // // Starting with node 0, see if an unknown is associated with // the node. If so, give it an index. // *nu = 0; // // Handle first node. // i = 0; if ( ibc == 1 || ibc == 3 ) { indx[i] = -1; } else { *nu = *nu + 1; indx[i] = *nu; } // // Handle nodes 1 through nsub-1 // for ( i = 1; i < nsub; i++ ) { *nu = *nu + 1; indx[i] = *nu; } // // Handle the last node. // i = nsub; if ( ibc == 2 || ibc == 3 ) { indx[i] = -1; } else { *nu = *nu + 1; indx[i] = *nu; } cout << "\n"; cout << " Number of unknowns NU = " << *nu << "\n"; cout << "\n"; cout << " Node Unknown\n"; cout << "\n"; for ( i = 0; i <= nsub; i++ ) { cout << " " << setw(8) << i << " " << setw(8) << indx[i] << "\n"; } return; } //****************************************************************************80 void init ( int *ibc, int *imax, int *nprint, int *nquad, int *problem, double *ul, double *ur, double *xl, double *xr ) //****************************************************************************80 // // Purpose: // // INIT initializes variables that define the problem. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Output, int *IBC. // IBC declares what the boundary conditions are. // 1, at the left endpoint, U has the value UL, // at the right endpoint, U' has the value UR. // 2, at the left endpoint, U' has the value UL, // at the right endpoint, U has the value UR. // 3, at the left endpoint, U has the value UL, // and at the right endpoint, U has the value UR. // 4, at the left endpoint, U' has the value UL, // at the right endpoint U' has the value UR. // // Output, int *IMAX. // The number of Newton iterations to carry out. // // Output, int *NPRINT. // The number of points at which the computed solution // should be printed out when compared to the exact solution. // // Output, int *NQUAD. // The number of quadrature points used in a subinterval. // This code uses NQUAD = 1. // // Output, int *PROBLEM, indicates which problem to be solved. // * 1, u = x, p=1, q=0, f=x, u(0)=0, u'(1)=1. // * 2, u = 2*(1-cos(0.5*pi*x))/pi, p=1, q=0, // f = -0.5*pi*cos(0.5*pi*x) + 2*sin(0.5*pi*x)*(1-cos(0.5*pi*x)/pi // u(0) = 0, u'(1)=1. // // Output, double *UL. // If IBC is 1 or 3, UL is the value that U is required // to have at X = XL. // If IBC is 2 or 4, UL is the value that U' is required // to have at X = XL. // // Output, double *UR. // If IBC is 2 or 3, UR is the value that U is required // to have at X = XR. // If IBC is 1 or 4, UR is the value that U' is required // to have at X = XR. // // Output, double *XL. // XL is the left endpoint of the interval over which the // differential equation is being solved. // // Output, double *XR. // XR is the right endpoint of the interval over which the // differential equation is being solved. // { *ibc = 1; *imax = 10; *nprint = 9; *nquad = 1; *problem = 2; *ul = 0.0; *ur = 1.0; *xl = 0.0; *xr = 1.0; // // Print out the values that have been set. // cout << "\n"; cout << " The equation is to be solved for\n"; cout << " X greater than XL = " << *xl << "\n"; cout << " and less than XR = " << *xr << "\n"; cout << "\n"; cout << " The boundary conditions are:\n"; cout << "\n"; if ( *ibc == 1 || *ibc == 3 ) { cout << " At X = XL, U = " << *ul << "\n"; } else { cout << " At X = XL, U' = " << *ul << "\n"; } if ( *ibc == 2 || *ibc == 3 ) { cout << " At X = XR, U = " << *ur << "\n"; } else { cout << " At X = XR, U' = " << *ur << "\n"; } if ( *problem == 1 ) { cout << "\n"; cout << " This is test problem #1:\n"; cout << "\n"; cout << " P(X) = 1, Q(X) = 0, F(X) = X.\n"; cout << " Boundary conditions: U(0) = 0, U''(1) = 1.\n"; cout << "\n"; cout << " The exact solution is U(X) = X\n"; } else if ( *problem == 2 ) { cout << "\n"; cout << " This is test problem #2:\n"; cout << "\n"; cout << " P(X) = 1, Q(X) = 0, \n"; cout << " F(X) = -0.5*pi*cos(0.5*pi*X)\n"; cout << " + 2*sin(0.5*pi*X)*(1-cos(0.5*pi*X)/pi.\n"; cout << " Boundary conditions: U(0) = 0, U''(1) = 1.\n"; cout << "\n"; cout << " The exact solution is U(X) = 2*(1-cos(pi*x/2))/pi\n"; } cout << "\n"; cout << " Number of quadrature points per element is " << *nquad << "\n"; cout << " Number of iterations is " << *imax << "\n"; return; } //****************************************************************************80 void output ( double f[], int ibc, int indx[], int nsub, int nu, double ul, double ur, double xn[] ) //****************************************************************************80 // // Purpose: // // OUTPUT prints out the computed solution at the nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, double F(NU), the solution of the linear equations. // // Input, int IBC. // IBC declares what the boundary conditions are. // 1, at the left endpoint, U has the value UL, // at the right endpoint, U' has the value UR. // 2, at the left endpoint, U' has the value UL, // at the right endpoint, U has the value UR. // 3, at the left endpoint, U has the value UL, // and at the right endpoint, U has the value UR. // 4, at the left endpoint, U' has the value UL, // at the right endpoint U' has the value UR. // // Input, int INDX(0:N). // For a node I, INDX(I) is the index of the unknown // associated with node I. // If INDX(I) is equal to -1, then no unknown is associated // with the node, because a boundary condition fixing the // value of U has been applied at the node instead. // Unknowns are numbered beginning with 1. // If IBC is 2 or 4, then there is an unknown value of U // at node 0, which will be unknown number 1. Otherwise, // unknown number 1 will be associated with node 1. // If IBC is 1 or 4, then there is an unknown value of U // at node N, which will be unknown N or N+1, // depending on whether there was an unknown at node 0. // // int NSUB. // The number of subintervals into which the interval // [XL,XR] is broken. // // Input, int NU. // NU is the number of unknowns in the linear system. // Depending on the value of IBC, there will be N-1, // N, or N+1 unknown values, which are the coefficients // of basis functions. // // Input, double UL. // If IBC is 1 or 3, UL is the value that U is required // to have at X = XL. // If IBC is 2 or 4, UL is the value that U' is required // to have at X = XL. // // Input, double UR. // If IBC is 2 or 3, UR is the value that U is required // to have at X = XR. // If IBC is 1 or 4, UR is the value that U' is required // to have at X = XR. // // Input, double XN(0:N). // XN(I) is the location of the I-th node. XN(0) is XL, // and XN(N) is XR. // { int i; double u; cout << "\n"; cout << "Computed solution:\n"; cout << "\n"; cout << "Node X(I) U(X(I))\n"; cout << "\n"; for ( i = 0; i <= nsub; i++ ) { if ( i == 0 ) { if ( ibc == 1 || ibc == 3 ) { u = ul; } else { u = f[indx[i]-1]; } } else if ( i == nsub ) { if ( ibc == 2 || ibc == 3 ) { u = ur; } else { u = f[indx[i]-1]; } } else { u = f[indx[i]-1]; } cout << " " << setw(6) << i << " " << setw(12) << xn[i] << " " << setw(12) << u << "\n"; } return; } //****************************************************************************80 void phi ( int il, double x, double *phii, double *phiix, double xleft, double xrite ) //****************************************************************************80 // // Purpose: // // PHI evaluates a linear basis function and its derivative. // // Discussion: // // In any interval, there are just two basis functions. The first // basis function is a line which is 1 at the left endpoint // and 0 at the right. The second basis function is 0 at // the left endpoint and 1 at the right. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, int IL, the index of the basis function. // 1, the function which is 1 at XLEFT and 0 at XRITE. // 2, the function which is 0 at XLEFT and 1 at XRITE. // // Input, double X, the evaluation point. // // Output, double PHII, PHIIX, the value of the // basis function and its derivative at X. // // Input, double XLEFT, XRITE, the left and right // endpoints of the interval. // { if ( xleft <= x && x <= xrite ) { if ( il == 1 ) { *phii = ( xrite - x ) / ( xrite - xleft ); *phiix = -1.0 / ( xrite - xleft ); } else { *phii = ( x - xleft ) / ( xrite - xleft ); *phiix = 1.0 / ( xrite - xleft ); } } // // If X is outside of the interval, just set everything to 0. // else { *phii = 0.0; *phiix = 0.0; } return; } //****************************************************************************80 double pp ( double x, int problem ) //****************************************************************************80 // // Purpose: // // PP evaluates the function P in the differential equation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, double X, the evaluation point. // // Input, int PROBLEM, indicates which problem to be solved. // * 1, u = x, p=1, q=0, f=x, u(0)=0, u'(1)=1. // * 2, u = 2*(1-cos(0.5*pi*x))/pi, p=1, q=0, // f = -0.5*pi*cos(0.5*pi*x) + 2*sin(0.5*pi*x)*(1-cos(0.5*pi*x)/pi // u(0) = 0, u'(1)=1. // // Output, double PP, the value of P(X). // { double value; // // Test problem 1 // if ( problem == 1 ) { value = 1.0; } // // Test problem 2 // else if ( problem == 2 ) { value = 1.0; } return value; } //****************************************************************************80 void prsys ( double adiag[], double aleft[], double arite[], double f[], int nu ) //****************************************************************************80 // // Purpose: // // PRSYS prints out the tridiagonal linear system. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 October 2006 // // Author: // // C++ version by John Burkardt // // Parameter: // // Input, double ADIAG(NU), the "diagonal" coefficients. That is, // ADIAG(I) is the coefficient of the I-th unknown in the I-th equation. // // Input, double ALEFT(NU), the "left hand" coefficients. That is, ALEFT(I) // is the coefficient of the (I-1)-th unknown in the I-th equation. // There is no value in ALEFT(1), since the first equation // does not refer to a "0-th" unknown. // // Input, double ARITE(NU). // ARITE(I) is the "right hand" coefficient of the I-th // equation in the linear system. ARITE(I) is the coefficient // of the (I+1)-th unknown in the I-th equation. There is // no value in ARITE(NU) because the NU-th equation does not // refer to an "NU+1"-th unknown. // // Input, double F(NU). // ASSEMBLE stores into F the right hand side of the linear // equations. // SOLVE replaces those values of F by the solution of the // linear equations. // // Input, int NU. // NU is the number of unknowns in the linear system. // Depending on the value of IBC, there will be NSUB-1, // NSUB, or NSUB+1 unknown values, which are the coefficients // of basis functions. // { int i; cout << "\n"; cout << "Printout of tridiagonal linear system:\n"; cout << "\n"; cout << "Equation ALEFT ADIAG ARITE RHS\n"; cout << "\n"; for ( i = 0; i < nu; i++ ) { cout << " " << setw(8) << i + 1 << " " << setw(14) << aleft[i] << " " << setw(14) << adiag[i] << " " << setw(14) << arite[i] << " " << setw(14) << f[i] << "\n"; } return; } //****************************************************************************80 double qq ( double x, int problem ) //****************************************************************************80 // // Purpose: // // QQ returns the value of the coefficient function Q(X). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, double X, the evaluation point. // // Input, int PROBLEM, indicates which problem to be solved. // * 1, u = x, p=1, q=0, f=x, u(0)=0, u'(1)=1. // * 2, u = 2*(1-cos(0.5*pi*x))/pi, p=1, q=0, // f = -0.5*pi*cos(0.5*pi*x) + 2*sin(0.5*pi*x)*(1-cos(0.5*pi*x)/pi // u(0) = 0, u'(1)=1. // // Output, double QQ, the value of Q(X). // { double value; // // Test problem 1 // if ( problem == 1 ) { value = 0.0; } // // Test problem 2 // else if ( problem == 2 ) { value = 0.0; } return value; } //****************************************************************************80 void solve ( double adiag[], double aleft[], double arite[], double f[], int nu ) //****************************************************************************80 // // Purpose: // // SOLVE solves a tridiagonal matrix system of the form A*x = b. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 October 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input/output, double ADIAG(NU), ALEFT(NU), ARITE(NU). // On input, ADIAG, ALEFT, and ARITE contain the diagonal, // left and right entries of the equations. // On output, ADIAG and ARITE have been changed in order // to compute the solution. // Note that for the first equation, there is no ALEFT // coefficient, and for the last, there is no ARITE. // So there is no need to store a value in ALEFT(1), nor // in ARITE(NU). // // Input/output, double F(NU). // On input, F contains the right hand side of the linear // system to be solved. // On output, F contains the solution of the linear system. // // Input, int NU, the number of equations to be solved. // { int i; // // Carry out Gauss elimination on the matrix, saving information // needed for the backsolve. // arite[0] = arite[0] / adiag[0]; for ( i = 1; i < nu - 1; i++ ) { adiag[i] = adiag[i] - aleft[i] * arite[i-1]; arite[i] = arite[i] / adiag[i]; } adiag[nu-1] = adiag[nu-1] - aleft[nu-1] * arite[nu-2]; // // Carry out the same elimination steps on F that were done to the // matrix. // f[0] = f[0] / adiag[0]; for ( i = 1; i < nu; i++ ) { f[i] = ( f[i] - aleft[i] * f[i-1] ) / adiag[i]; } // // And now carry out the steps of "back substitution". // for ( i = nu - 2; 0 <= i; i-- ) { f[i] = f[i] - arite[i] * f[i+1]; } return; } //****************************************************************************80 void timestamp ( void ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double u_exact ( double x, int problem ) //****************************************************************************80 // // Purpose: // // U_EXACT returns the value of the exact solution at a point X. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 November 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, double X, the evaluation point. // // Input, int PROBLEM, indicates which problem to be solved. // * 1, u = x, p=1, q=0, f=x, u(0)=0, u'(1)=1. // * 2, u = 2*(1-cos(0.5*pi*x))/pi, p=1, q=0, // f = -0.5*pi*cos(0.5*pi*x) + 2*sin(0.5*pi*x)*(1-cos(0.5*pi*x)/pi // u(0) = 0, u'(1)=1. // // Output, double U_EXACT, the value of the exact solution at X. // { double pi = 3.141592653589793; double value; // // Test problem 1 // if ( problem == 1 ) { value = x; } // // Test problem 2 // else if ( problem == 2 ) { value = 2.0 * ( 1.0 - cos ( 0.5 * pi * x ) ) / pi; } return value; }