# include # include # include # include # include using namespace std; # include "fem1d_pack.hpp" //****************************************************************************80 void bandwidth_mesh ( int element_order, int element_num, int element_node[], int *ml, int *mu, int *m ) //****************************************************************************80 // // Purpose: // // BANDWIDTH_MESH determines the bandwidth of the coefficient matrix. // // Discussion: // // The quantity computed here is the "geometric" bandwidth determined // by the finite element mesh alone. // // If a single finite element variable is associated with each node // of the mesh, and if the nodes and variables are numbered in the // same way, then the geometric bandwidth is the same as the bandwidth // of a typical finite element matrix. // // The bandwidth M is defined in terms of the lower and upper bandwidths: // // M = ML + 1 + MU // // where // // ML = maximum distance from any diagonal entry to a nonzero // entry in the same row, but earlier column, // // MU = maximum distance from any diagonal entry to a nonzero // entry in the same row, but later column. // // Because the finite element node adjacency relationship is symmetric, // we are guaranteed that ML = MU. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 January 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int ELEMENT_ORDER, the order of the elements. // // Input, int ELEMENT_NUM, the number of elements. // // Input, int ELEMENT_NODE[ELEMENT_ORDER*ELEMENT_NUM]; // ELEMENT_NODE(I,J) is the global index of local node I in element J. // // Output, int *ML, *MU, the lower and upper bandwidths of the matrix. // // Output, int *M, the bandwidth of the matrix. // { int element; int global_i; int global_j; int local_i; int local_j; *ml = 0; *mu = 0; for ( element = 0; element < element_num; element++ ) { for ( local_i = 0; local_i < element_order; local_i++ ) { global_i = element_node[local_i+element*element_order]; for ( local_j = 0; local_j < element_order; local_j++ ) { global_j = element_node[local_j+element*element_order]; *mu = i4_max ( *mu, global_j - global_i ); *ml = i4_max ( *ml, global_i - global_j ); } } } *m = *ml + 1 + *mu; return; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 void legendre_com ( int order, double xtab[], double weight[] ) //****************************************************************************80 // // Purpose: // // LEGENDRE_COM computes abscissas and weights for Gauss-Legendre quadrature. // // Integration interval: // // [ -1, 1 ] // // Weight function: // // 1. // // Integral to approximate: // // Integral ( -1 <= X <= 1 ) F(X) dX. // // Approximate integral: // // sum ( 1 <= I <= NORDER ) WEIGHT(I) * F ( XTAB(I) ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 March 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NORDER, the order of the rule. // NORDER must be greater than 0. // // Output, double XTAB[NORDER], the abscissas of the rule. // // Output, double WEIGHT[NORDER], the weights of the rule. // The weights are positive, symmetric, and should sum to 2. // { # define PI 3.141592653589793 double d1; double d2pn; double d3pn; double d4pn; double dp; double dpn; double e1; double fx; double h; int i; int iback; int k; int m; int mp1mi; int ncopy; int nmove; double p; double pk; double pkm1; double pkp1; double t; double u; double v; double x0; double xtemp; if ( order < 1 ) { cerr << "\n"; cerr << "LEGENDRE_COM - Fatal error!\n"; cerr << " Illegal value of NORDER = " << order << "\n"; exit ( 1 ); } e1 = ( double ) ( order * ( order + 1 ) ); m = ( order + 1 ) / 2; for ( i = 1; i <= ( order + 1 ) / 2; i++ ) { mp1mi = m + 1 - i; t = PI * ( double ) ( 4 * i - 1 ) / ( double ) ( 4 * order + 2 ); x0 = cos(t) * ( 1.0 - ( 1.0 - 1.0 / ( double ) ( order ) ) / ( double ) ( 8 * order * order ) ); pkm1 = 1.0; pk = x0; for ( k = 2; k <= order; k++ ) { pkp1 = 2.0 * x0 * pk - pkm1 - ( x0 * pk - pkm1 ) / ( double ) ( k ); pkm1 = pk; pk = pkp1; } d1 = ( double ) ( order ) * ( pkm1 - x0 * pk ); dpn = d1 / ( 1.0 - x0 * x0 ); d2pn = ( 2.0 * x0 * dpn - e1 * pk ) / ( 1.0 - x0 * x0 ); d3pn = ( 4.0 * x0 * d2pn + ( 2.0 - e1 ) * dpn ) / ( 1.0 - x0 * x0 ); d4pn = ( 6.0 * x0 * d3pn + ( 6.0 - e1 ) * d2pn ) / ( 1.0 - x0 * x0 ); u = pk / dpn; v = d2pn / dpn; // // Initial approximation H: // h = - u * ( 1.0 + 0.5 * u * ( v + u * ( v * v - d3pn / ( 3.0 * dpn ) ) ) ); // // Refine H using one step of Newton's method: // p = pk + h * ( dpn + 0.5 * h * ( d2pn + h / 3.0 * ( d3pn + 0.25 * h * d4pn ) ) ); dp = dpn + h * ( d2pn + 0.5 * h * ( d3pn + h * d4pn / 3.0 ) ); h = h - p / dp; xtemp = x0 + h; xtab[mp1mi-1] = xtemp; fx = d1 - h * e1 * ( pk + 0.5 * h * ( dpn + h / 3.0 * ( d2pn + 0.25 * h * ( d3pn + 0.2 * h * d4pn ) ) ) ); weight[mp1mi-1] = 2.0 * ( 1.0 - xtemp * xtemp ) / ( fx * fx ); } if ( ( order % 2 ) == 1 ) { xtab[0] = 0.0; } // // Shift the data up. // nmove = ( order + 1 ) / 2; ncopy = order - nmove; for ( i = 1; i <= nmove; i++ ) { iback = order + 1 - i; xtab[iback-1] = xtab[iback-ncopy-1]; weight[iback-1] = weight[iback-ncopy-1]; } // // Reflect values for the negative abscissas. // for ( i = 0; i < order - nmove; i++ ) { xtab[i] = - xtab[order-1-i]; weight[i] = weight[order-1-i]; } return; # undef PI } //****************************************************************************80 double *local_basis_1d ( int order, double node_x[], double x ) //****************************************************************************80 // // Purpose: // // LOCAL_BASIS_1D evaluates the basis functions in an element. // // Discussion: // // PHI(I)(X) = product ( J ~= I ) ( X - NODE_X(I) ) // / ( NODE_X(J) - NODE_X(I) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order of the element. // 0 <= ORDER. ORDER = 1 means piecewise linear. // // Input, double NODE_X[ORDER], the element nodes. // These must be distinct. Basis function I is 1 when X = NODE_X(I) // and 0 when X is equal to any other node. // // Input, double X, the point at which the basis functions are to // be evaluated. // // Output, double LOCAL_BASIS_1D[ORDER], the basis functions. // { int i; int j; double *phi; phi = new double[order]; for ( j = 0; j < order; j++ ) { phi[j] = 1.0; for ( i = 0; i < order; i++ ) { if ( j != i ) { phi[j] = ( phi[j] * ( x - node_x[i] ) ) / ( node_x[j] - node_x[i] ); } } } return phi; } //****************************************************************************80 double *local_basis_prime_1d ( int order, double node_x[], double x ) //****************************************************************************80 // // Purpose: // // LOCAL_BASIS_PRIME_1D evaluates the basis function derivatives in an element. // // Discussion: // // PHI(I)(X) = product ( J ~= I ) ( X - NODE_X(I) ) // / ( NODE_X(J) - NODE_X(I) ) // // dPHIdx(I)(X) = sum ( J ~= I ) ( 1 / ( NODE_X(J) - NODE_X(I) ) * // product ( K ~= ( J, I ) ) ( X - NODE_X(I) ) / ( NODE_X(J) - NODE_X(I) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order of the element. // 0 <= ORDER. ORDER = 1 means piecewise linear. // // Input, double NODE_X[ORDER], the element nodes. // These must be distinct. Basis function I is 1 when X = NODE_X(I) // and 0 when X is equal to any other node. // // Input, double X, the point at which the basis functions are to // be evaluated. // // Output, double LOCAL_BASIS_PRIME_1D[ORDER], the basis functions. // { double *dphidx; int i; int j; int k; double term; dphidx = new double[order]; for ( i = 0; i < order; i++ ) { dphidx[i] = 0.0; for ( j = 0; j < order; j++ ) { if ( j != i ) { term = 1.0 / ( node_x[j] - node_x[i] ); for ( k = 0; k < order; k++ ) { if ( k != i && k != j ) { term = term * ( x - node_x[i] ) / ( node_x[k] - node_x[i] ); } } dphidx[i] = dphidx[i] + term; } } } return dphidx; } //****************************************************************************80 double *local_fem_1d ( int order, double node_x[], double node_v[], int sample_num, double sample_x[] ) //****************************************************************************80 // // Purpose: // // LOCAL_FEM_1D evaluates a local finite element function. // // Discussion: // // A local finite element function is a finite element function // defined over a single element. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int ORDER, the order of the element. // 0 <= ORDER. ORDER = 1 means piecewise linear. // // Input, double NODE_X[ORDER], the element nodes. // These must be distinct. Basis function I is 1 when X = NODE_X(I) and 0 // when X is equal to any other node. // // Input, double NODE_V[ORDER], the value of the finite element // function at each node. // // Input, int SAMPLE_NUM, the number of sample points. // // Input, double SAMPLE_X[SAMPLE_NUM], the sample points at which // the local finite element function is to be evaluated. // // Output, double LOCAL_FEM_1D[SAMPLE_NUM], the values of the local // finite element basis functions. // { double *phi; int sample; double *sample_v; double x; sample_v = new double[sample_num]; for ( sample = 0; sample < sample_num; sample++ ) { x = sample_x[sample]; phi = local_basis_1d ( order, node_x, x ); sample_v[sample] = r8vec_dot_product ( order, node_v, phi ); delete [] phi; } return sample_v; } //****************************************************************************80 double r8_uniform ( double a, double b, int *seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM returns a scaled pseudorandom R8. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 November 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double A, B, the limits of the interval. // // Input/output, int *SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, double R8_UNIFORM, a number strictly between A and B. // { int i4_huge = 2147483647; int k; double value; if ( *seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } value = ( double ) ( *seed ) * 4.656612875E-10; value = a + ( b - a ) * value; return value; } //****************************************************************************80 void r8mat_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT prints an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Entry A(I,J) is stored as A[I+J*M] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { r8mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT_SOME prints some of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j - 1 << " "; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i - 1 << ": "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double r8vec_dot_product ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of a pair of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 double r8vec_sum ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_SUM returns the sum of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A[N], the vector. // // Output, double R8VEC_SUM, the sum of the vector. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a[i]; } return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }