# include # include # include # include # include using namespace std; # include "fem2d_bvp_linear.hpp" //****************************************************************************80 double *fem2d_bvp_linear ( int nx, int ny, double a ( double x, double y ), double c ( double x, double y ), double f ( double x, double y ), double x[], double y[] ) //****************************************************************************80 // // Purpose: // // FEM2D_BVP_LINEAR solves a boundary value problem on a rectangle. // // Discussion: // // The procedure uses the finite element method, with piecewise linear basis // functions to solve a 2D boundary value problem over a rectangle // // The following differential equation is imposed inside the region: // // - d/dx a(x,y) du/dx - d/dy a(x,y) du/dy + c(x,y) * u(x,y) = f(x,y) // // where a(x,y), c(x,y), and f(x,y) are given functions. // // On the boundary, the solution is constrained to have the value 0. // // The finite element method will use a regular grid of NX nodes in X, and // NY nodes in Y. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 June 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int NX, NY, the number of X and Y grid values. // // Input, double A ( double X, double Y ), evaluates a(x,y); // // Input, double C ( double X, double Y ), evaluates c(x,y); // // Input, double F ( double X, double Y ), evaluates f(x,y); // // Input, double X[NX], Y[NY], the grid coordinates. // // Output, double FEM1D_BVP_LINEAR[NX*NY], the finite element coefficients, // which are also the value of the computed solution at the mesh points. // { # define QUAD_NUM 3 double abscissa[QUAD_NUM] = { -0.774596669241483377035853079956, 0.000000000000000000000000000000, 0.774596669241483377035853079956 }; double *amat; double aq; double *b; double cq; int e; int ex; int ey; double fq; int i; int ierror; int ii; int j; int jj; int k; int mn; int n; int ne; int nw; int quad_num = QUAD_NUM; int qx; int qy; int s; int se; int sw; int w; double weight[QUAD_NUM] = { 0.555555555555555555555555555556, 0.888888888888888888888888888889, 0.555555555555555555555555555556 }; double wq; double *u; double vne; double vnex; double vney; double vnw; double vnwx; double vnwy; double vse; double vsex; double vsey; double vsw; double vswx; double vswy; double xe; double xq; double xw; double yn; double yq; double ys; mn = nx * ny; amat = new double[mn*mn]; b = new double[mn]; for ( jj = 0; jj < mn; jj++ ) { for ( ii = 0; ii < mn; ii++ ) { amat[ii+jj*mn] = 0.0; } } for ( ii = 0; ii < mn; ii++ ) { b[ii] = 0.0; } for ( ex = 0; ex < nx - 1; ex++ ) { w = ex; e = ex + 1; xw = x[w]; xe = x[e]; for ( ey = 0; ey < ny - 1; ey++ ) { s = ey; n = ey + 1; ys = y[s]; yn = y[n]; sw = ey * nx + ex; se = ey * nx + ex + 1; nw = ( ey + 1 ) * nx + ex; ne = ( ey + 1 ) * nx + ex + 1; for ( qx = 0; qx < quad_num; qx++ ) { xq = ( ( 1.0 - abscissa[qx] ) * xw + ( 1.0 + abscissa[qx] ) * xe ) / 2.0; for ( qy = 0; qy < quad_num; qy++ ) { yq = ( ( 1.0 - abscissa[qy] ) * ys + ( 1.0 + abscissa[qy] ) * yn ) / 2.0; wq = weight[qx] * ( xe - xw ) / 2.0 * weight[qy] * ( yn - ys ) / 2.0; aq = a ( xq, yq ); cq = c ( xq, yq ); fq = f ( xq, yq ); vsw = ( xe - xq ) / ( xe - xw ) * ( yn - yq ) / ( yn - ys ); vswx = (-1.0 ) / ( xe - xw ) * ( yn - yq ) / ( yn - ys ); vswy = ( xe - xq ) / ( xe - xw ) * (-1.0 ) / ( yn - ys ); vse = ( xq - xw ) / ( xe - xw ) * ( yn - yq ) / ( yn - ys ); vsex = ( 1.0 ) / ( xe - xw ) * ( yn - yq ) / ( yn - ys ); vsey = ( xq - xw ) / ( xe - xw ) * (-1.0 ) / ( yn - ys ); vnw = ( xe - xq ) / ( xe - xw ) * ( yq - ys ) / ( yn - ys ); vnwx = (-1.0 ) / ( xe - xw ) * ( yq - ys ) / ( yn - ys ); vnwy = ( xe - xq ) / ( xe - xw ) * ( 1.0 ) / ( yn - ys ); vne = ( xq - xw ) / ( xe - xw ) * ( yq - ys ) / ( yn - ys ); vnex = ( 1.0 ) / ( xe - xw ) * ( yq - ys ) / ( yn - ys ); vney = ( xq - xw ) / ( xe - xw ) * ( 1.0 ) / ( yn - ys ); amat[sw+sw*mn] = amat[sw+sw*mn] + wq * ( vswx * aq * vswx + vswy * aq * vswy + vsw * cq * vsw ); amat[sw+se*mn] = amat[sw+se*mn] + wq * ( vswx * aq * vsex + vswy * aq * vsey + vsw * cq * vse ); amat[sw+nw*mn] = amat[sw+nw*mn] + wq * ( vswx * aq * vnwx + vswy * aq * vnwy + vsw * cq * vnw ); amat[sw+ne*mn] = amat[sw+ne*mn] + wq * ( vswx * aq * vnex + vswy * aq * vney + vsw * cq * vne ); b[sw] = b[sw] + wq * ( vsw * fq ); amat[se+sw*mn] = amat[se+sw*mn] + wq * ( vsex * aq * vswx + vsey * aq * vswy + vse * cq * vsw ); amat[se+se*mn] = amat[se+se*mn] + wq * ( vsex * aq * vsex + vsey * aq * vsey + vse * cq * vse ); amat[se+nw*mn] = amat[se+nw*mn] + wq * ( vsex * aq * vnwx + vsey * aq * vnwy + vse * cq * vnw ); amat[se+ne*mn] = amat[se+ne*mn] + wq * ( vsex * aq * vnex + vsey * aq * vney + vse * cq * vne ); b[se] = b[se] + wq * ( vse * fq ); amat[nw+sw*mn] = amat[nw+sw*mn] + wq * ( vnwx * aq * vswx + vnwy * aq * vswy + vnw * cq * vsw ); amat[nw+se*mn] = amat[nw+se*mn] + wq * ( vnwx * aq * vsex + vnwy * aq * vsey + vnw * cq * vse ); amat[nw+nw*mn] = amat[nw+nw*mn] + wq * ( vnwx * aq * vnwx + vnwy * aq * vnwy + vnw * cq * vnw ); amat[nw+ne*mn] = amat[nw+ne*mn] + wq * ( vnwx * aq * vnex + vnwy * aq * vney + vnw * cq * vne ); b[nw] = b[nw] + wq * ( vnw * fq ); amat[ne+sw*mn] = amat[ne+sw*mn] + wq * ( vnex * aq * vswx + vney * aq * vswy + vne * cq * vsw ); amat[ne+se*mn] = amat[ne+se*mn] + wq * ( vnex * aq * vsex + vney * aq * vsey + vne * cq * vse ); amat[ne+nw*mn] = amat[ne+nw*mn] + wq * ( vnex * aq * vnwx + vney * aq * vnwy + vne * cq * vnw ); amat[ne+ne*mn] = amat[ne+ne*mn] + wq * ( vnex * aq * vnex + vney * aq * vney + vne * cq * vne ); b[ne] = b[ne] + wq * ( vne * fq ); } } } } // // Where a node is on the boundary, // replace the finite element equation by a boundary condition. // k = 0; for ( j = 0; j < ny; j++ ) { for ( i = 0; i < nx; i++ ) { if ( i == 0 || i == nx - 1 || j == 0 || j == ny - 1 ) { for ( jj = 0; jj < mn; jj++ ) { amat[k+jj*mn] = 0.0; } for ( ii = 0; ii < mn; ii++ ) { amat[ii+k*mn] = 0.0; } amat[k+k*mn] = 1.0; b[k] = 0.0; } k = k + 1; } } // // Solve the linear system. // u = r8mat_solve2 ( mn, amat, b, ierror ); delete [] amat; delete [] b; return u; # undef QUAD_NUM } //****************************************************************************80 double fem2d_h1s_error_linear ( int nx, int ny, double x[], double y[], double u[], double exact_ux ( double x, double y ), double exact_uy ( double x, double y ) ) //****************************************************************************80 // // Purpose: // // FEM2D_H1S_ERROR_LINEAR: seminorm error of a finite element solution. // // Discussion: // // The finite element method has been used, over a rectangle, // involving a grid of NX*NY nodes, with piecewise linear elements used // for the basis. // // The finite element solution U(x,y) has been computed, and formulas for the // exact derivatives Vx(x,y) and Vy(x,y) are known. // // This function estimates the H1 seminorm of the error: // // H1S = sqrt ( integral ( x, y ) ( Ux(x,y) - Vx(x,y) )^2 // + ( Uy(x,y) - Vy(x,y) )^2 dx dy ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 June 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int NX, NY, the number of X and Y grid values. // // Input, double X[NX], Y[NY], the grid coordinates. // // Input, double U[NX*NY], the finite element coefficients. // // Input, function EXACT_UX(X,Y), EXACT_UY(X,Y) return the // value of the derivatives of the exact solution with respect to // X and Y, respectively, at the point (X,Y). // // Output, double FEM2D_H1S_ERROR_LINEAR, the estimated seminorm of // the error. // { # define QUAD_NUM 3 double abscissa[QUAD_NUM] = { -0.774596669241483377035853079956, 0.000000000000000000000000000000, 0.774596669241483377035853079956 }; int e; int ex; int ey; double exq; double eyq; double h1s; int mn; int n; int ne; int nw; int quad_num = QUAD_NUM; int qx; int qy; int s; int se; int sw; double uxq; double uyq; double vnex; double vney; double vnwx; double vnwy; double vsex; double vsey; double vswx; double vswy; int w; double weight[QUAD_NUM] = { 0.555555555555555555555555555556, 0.888888888888888888888888888889, 0.555555555555555555555555555556 }; double wq; double xe; double xq; double xw; double yn; double yq; double ys; mn = nx * ny; h1s = 0.0; for ( ex = 0; ex < nx - 1; ex++ ) { w = ex; e = ex + 1; xw = x[w]; xe = x[e]; for ( ey = 0; ey < ny - 1; ey++ ) { s = ey; n = ey + 1; ys = y[s]; yn = y[n]; sw = ey * nx + ex; se = ey * nx + ex + 1; nw = ( ey + 1 ) * nx + ex; ne = ( ey + 1 ) * nx + ex + 1; for ( qx = 0; qx < quad_num; qx++ ) { xq = ( ( 1.0 - abscissa[qx] ) * xw + ( 1.0 + abscissa[qx] ) * xe ) / 2.0; for ( qy = 0; qy < quad_num; qy++ ) { yq = ( ( 1.0 - abscissa[qy] ) * ys + ( 1.0 + abscissa[qy] ) * yn ) / 2.0; wq = weight[qx] * ( xe - xw ) / 2.0 * weight[qy] * ( yn - ys ) / 2.0; vswx = (-1.0 ) / ( xe - xw ) * ( yn - yq ) / ( yn - ys ); vswy = ( xe - xq ) / ( xe - xw ) * (-1.0 ) / ( yn - ys ); vsex = ( 1.0 ) / ( xe - xw ) * ( yn - yq ) / ( yn - ys ); vsey = ( xq - xw ) / ( xe - xw ) * (-1.0 ) / ( yn - ys ); vnwx = (-1.0 ) / ( xe - xw ) * ( yq - ys ) / ( yn - ys ); vnwy = ( xe - xq ) / ( xe - xw ) * ( 1.0 ) / ( yn - ys ); vnex = ( 1.0 ) / ( xe - xw ) * ( yq - ys ) / ( yn - ys ); vney = ( xq - xw ) / ( xe - xw ) * ( 1.0 ) / ( yn - ys ); // // Note that the south-west component of U is stored in U(W,S), not U(S,W)! // uxq = u[w+s*nx] * vswx + u[e+s*nx] * vsex + u[w+n*nx] * vnwx + u[e+n*nx] * vnex; uyq = u[w+s*nx] * vswy + u[e+s*nx] * vsey + u[w+n*nx] * vnwy + u[e+n*nx] * vney; exq = exact_ux ( xq, yq ); eyq = exact_uy ( xq, yq ); h1s = h1s + wq * ( pow ( uxq - exq, 2 ) + pow ( uyq - eyq, 2 ) ); } } } } h1s = sqrt ( h1s ); return h1s; # undef QUAD_NUM } //****************************************************************************80 double fem2d_l1_error ( int nx, int ny, double x[], double y[], double u[], double exact ( double x, double y ) ) //****************************************************************************80 // // Purpose: // // FEM2D_L1_ERROR estimates the l1 error norm of a finite element solution. // // Discussion: // // The finite element method has been used, over a rectangle, // involving a grid of NX*NY nodes, with piecewise linear elements used // for the basis. // // The finite element coefficients have been computed, and a formula for the // exact solution is known. // // This function estimates the little l1 norm of the error: // E1 = sum ( 1 <= I <= NX, 1 <= J <= NY ) // abs ( U(i,j) - EXACT(X(i),Y(j)) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 June 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int NX, NY, the number of X and Y grid values. // // Input, double X[NX], Y[NY], the grid coordinates. // // Input, double U[NX*NY], the finite element coefficients. // // Input, function EQ = EXACT(X,Y), returns the value of the exact // solution at the point (X,Y). // // Output, double FEM2D_L1_ERROR, the little l1 norm of the error. // { int i; int j; double e1; int mn; mn = nx * ny; e1 = 0.0; for ( j = 0; j < ny; j++ ) { for ( i = 0; i < nx; i++ ) { e1 = e1 + fabs ( u[i+j*nx] - exact ( x[i], y[j] ) ); } } e1 = e1 / ( double ) ( nx ) / ( double ) ( ny ); return e1; } //****************************************************************************80 double fem2d_l2_error_linear ( int nx, int ny, double x[], double y[], double u[], double exact ( double x, double y ) ) //****************************************************************************80 // // Purpose: // // FEM2D_L2_ERROR_LINEAR: L2 error norm of a finite element solution. // // Discussion: // // The finite element method has been used, over a rectangle, // involving a grid of NX*NY nodes, with piecewise linear elements used // for the basis. // // The finite element coefficients have been computed, and a formula for the // exact solution is known. // // This function estimates E2, the L2 norm of the error: // // E2 = Integral ( X, Y ) ( U(X,Y) - EXACT(X,Y) )^2 dX dY // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 June 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int NX, NY, the number of X and Y grid values. // // Input, double X[NX], Y[NY], the grid coordinates. // // Input, double U[NX*NY], the finite element coefficients. // // Input, function EQ = EXACT(X,Y), returns the value of the exact // solution at the point (X,Y). // // Output, double FEM2D_L2_ERROR_LINEAR, the estimated L2 norm of the error. // { # define QUAD_NUM 3 double abscissa[QUAD_NUM] = { -0.774596669241483377035853079956, 0.000000000000000000000000000000, 0.774596669241483377035853079956 }; int e; double e2; double eq; int ex; int ey; int mn; int n; int ne; int nw; int quad_num = QUAD_NUM; int qx; int qy; int s; int se; int sw; double uq; double vne; double vnw; double vse; double vsw; int w; double weight[QUAD_NUM] = { 0.555555555555555555555555555556, 0.888888888888888888888888888889, 0.555555555555555555555555555556 }; double wq; double xe; double xq; double xw; double yn; double yq; double ys; mn = nx * ny; e2 = 0.0; // // Integrate over each interval. // for ( ex = 0; ex < nx - 1; ex++ ) { w = ex; e = ex + 1; xw = x[w]; xe = x[e]; for ( ey = 0; ey < ny - 1; ey++ ) { s = ey; n = ey + 1; ys = y[s]; yn = y[n]; sw = ey * nx + ex; se = ey * nx + ex + 1; nw = ( ey + 1 ) * nx + ex; ne = ( ey + 1 ) * nx + ex + 1; for ( qx = 0; qx < quad_num; qx++ ) { xq = ( ( 1.0 - abscissa[qx] ) * xw + ( 1.0 + abscissa[qx] ) * xe ) / 2.0; for ( qy = 0; qy < quad_num; qy++ ) { yq = ( ( 1.0 - abscissa[qy] ) * ys + ( 1.0 + abscissa[qy] ) * yn ) / 2.0; wq = weight[qx] * ( xe - xw ) / 2.0 * weight[qy] * ( yn - ys ) / 2.0; vsw = ( xe - xq ) / ( xe - xw ) * ( yn - yq ) / ( yn - ys ); vse = ( xq - xw ) / ( xe - xw ) * ( yn - yq ) / ( yn - ys ); vnw = ( xe - xq ) / ( xe - xw ) * ( yq - ys ) / ( yn - ys ); vne = ( xq - xw ) / ( xe - xw ) * ( yq - ys ) / ( yn - ys ); // // Note that the south-west component of U is stored in U(W,S), not U(S,W)! // uq = u[w+s*nx] * vsw + u[e+s*nx] * vse + u[w+n*nx] * vnw + u[e+n*nx] * vne; eq = exact ( xq, yq ); e2 = e2 + wq * pow ( uq - eq, 2 ); } } } } e2 = sqrt ( e2 ); return e2; # undef QUAD_NUM } //****************************************************************************80 int *i4vec_zero_new ( int n ) //****************************************************************************80 // // Purpose: // // I4VEC_ZERO_NEW creates and zeroes an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, int I4VEC_ZERO_NEW[N], a vector of zeroes. // { int *a; int i; a = new int[n]; for ( i = 0; i < n; i++ ) { a[i] = 0; } return a; } //****************************************************************************80 double *r8mat_solve2 ( int n, double a[], double b[], int &ierror ) //****************************************************************************80 // // Purpose: // // R8MAT_SOLVE2 computes the solution of an N by N linear system. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // The linear system may be represented as // // A*X = B // // If the linear system is singular, but consistent, then the routine will // still produce a solution. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 February 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of equations. // // Input/output, double A[N*N]. // On input, A is the coefficient matrix to be inverted. // On output, A has been overwritten. // // Input/output, double B[N]. // On input, B is the right hand side of the system. // On output, B has been overwritten. // // Output, double R8MAT_SOLVE2[N], the solution of the linear system. // // Output, int &IERROR. // 0, no error detected. // 1, consistent singularity. // 2, inconsistent singularity. // { double amax; int i; int imax; int j; int k; int *piv; double *x; ierror = 0; piv = i4vec_zero_new ( n ); x = r8vec_zero_new ( n ); // // Process the matrix. // for ( k = 1; k <= n; k++ ) { // // In column K: // Seek the row IMAX with the properties that: // IMAX has not already been used as a pivot; // A(IMAX,K) is larger in magnitude than any other candidate. // amax = 0.0; imax = 0; for ( i = 1; i <= n; i++ ) { if ( piv[i-1] == 0 ) { if ( amax < fabs ( a[i-1+(k-1)*n] ) ) { imax = i; amax = fabs ( a[i-1+(k-1)*n] ); } } } // // If you found a pivot row IMAX, then, // eliminate the K-th entry in all rows that have not been used for pivoting. // if ( imax != 0 ) { piv[imax-1] = k; for ( j = k+1; j <= n; j++ ) { a[imax-1+(j-1)*n] = a[imax-1+(j-1)*n] / a[imax-1+(k-1)*n]; } b[imax-1] = b[imax-1] / a[imax-1+(k-1)*n]; a[imax-1+(k-1)*n] = 1.0; for ( i = 1; i <= n; i++ ) { if ( piv[i-1] == 0 ) { for ( j = k+1; j <= n; j++ ) { a[i-1+(j-1)*n] = a[i-1+(j-1)*n] - a[i-1+(k-1)*n] * a[imax-1+(j-1)*n]; } b[i-1] = b[i-1] - a[i-1+(k-1)*n] * b[imax-1]; a[i-1+(k-1)*n] = 0.0; } } } } // // Now, every row with nonzero PIV begins with a 1, and // all other rows are all zero. Begin solution. // for ( j = n; 1 <= j; j-- ) { imax = 0; for ( k = 1; k <= n; k++ ) { if ( piv[k-1] == j ) { imax = k; } } if ( imax == 0 ) { x[j-1] = 0.0; if ( b[j-1] == 0.0 ) { ierror = 1; cout << "\n"; cout << "R8MAT_SOLVE2 - Warning:\n"; cout << " Consistent singularity, equation = " << j << "\n"; } else { ierror = 2; cout << "\n"; cout << "R8MAT_SOLVE2 - Warning:\n"; cout << " Inconsistent singularity, equation = " << j << "\n"; } } else { x[j-1] = b[imax-1]; for ( i = 1; i <= n; i++ ) { if ( i != imax ) { b[i-1] = b[i-1] - a[i-1+(j-1)*n] * x[j-1]; } } } } delete [] piv; return x; } //****************************************************************************80 double *r8mat_zero_new ( int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_ZERO_NEW returns a new zeroed R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Output, double R8MAT_ZERO_NEW[M*N], the new zeroed matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 0.0; } } return a; } //****************************************************************************80 double *r8vec_even_new ( int n, double alo, double ahi ) //****************************************************************************80 // // Purpose: // // R8VEC_EVEN_NEW returns an R8VEC of values evenly spaced between ALO and AHI. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 May 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of values. // // Input, double ALO, AHI, the low and high values. // // Output, double R8VEC_EVEN_NEW[N], N evenly spaced values. // Normally, A[0] = ALO and A[N-1] = AHI. // However, if N = 1, then A[0] = 0.5*(ALO+AHI). // { double *a; int i; a = new double[n]; if ( n == 1 ) { a[0] = 0.5 * ( alo + ahi ); } else { for ( i = 0; i < n; i++ ) { a[i] = ( ( double ) ( n - i - 1 ) * alo + ( double ) ( i ) * ahi ) / ( double ) ( n - 1 ); } } return a; } //****************************************************************************80 double *r8vec_zero_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZERO_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZERO_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }