# include # include # include # include # include # include # include using namespace std; int main ( void ); void adjust_backward_euler ( int node_num, double node_xy[], int nnodes, int element_num, int element_node[], int quad_num, double wq[], double xq[], double yq[], double element_area[], int ib, double time, double time_step_size, double u_old[], double a[], double f[] ); void adjust_boundary ( int node_num, double node_xy[], int node_boundary[], int ib, double time, double a[], double f[] ); void area_set ( int node_num, double node_xy[], int nnodes, int element_num, int element_node[], double element_area[] ); void assemble ( int node_num, double node_xy[], int nnodes, int element_num, int element_node[], int quad_num, double wq[], double xq[], double yq[], double element_area[], int ib, double time, double a[], double f[] ); int bandwidth ( int nnodes, int element_num, int element_node[], int node_num ); void compare ( int node_num, double node_xy[], double time, double u[] ); int dgb_fa ( int n, int ml, int mu, double a[], int pivot[] ); void dgb_print_some ( int m, int n, int ml, int mu, double a[], int ilo, int jlo, int ihi, int jhi, char *title ); double *dgb_sl ( int n, int ml, int mu, double a[], int pivot[], double b[], int job ); void element_write ( int nnodes, int element_num, int element_node[], char *triangulation_txt_file_name ); void errors ( double element_area[], int element_node[], double node_xy[], double u[], int element_num, int nnodes, int node_num, double time, double *el2, double *eh1 ); void exact_u ( int node_num, double node_xy[], double time, double u_exact[], double dudx_exact[], double dudy_exact[] ); void file_name_inc ( char *file_name ); void grid_t6 ( int nx, int ny, int nnodes, int element_num, int element_node[] ); int i4_max ( int i1, int i2 ); int i4_min ( int i1, int i2 ); void i4vec_print_some ( int n, int a[], int max_print, char *title ); int *node_boundary_set ( int nx, int ny, int node_num ); void nodes_plot ( char *file_name, int node_num, double node_xy[], bool node_label ); void nodes_write ( int node_num, double node_xy[], char *output_filename ); void qbf ( double x, double y, int element, int inode, double node_xy[], int element_node[], int element_num, int nnodes, int node_num, double *bb, double *bx, double *by ); void quad_a ( double node_xy[], int element_node[], int element_num, int node_num, int nnodes, double wq[], double xq[], double yq[] ); void quad_e ( double node_xy[], int element_node[], int element, int element_num, int nnodes, int node_num, int nqe, double wqe[], double xqe[], double yqe[] ); double r8_huge ( void ); double r8_max ( double x, double y ); double r8_min ( double x, double y ); int r8_nint ( double x ); void r8vec_print_some ( int n, double a[], int i_lo, int i_hi, char *title ); double rhs ( double x, double y, double time ); int s_len_trim ( char *s ); void solution_write ( int node_num, double u[], char *u_file_name ) ; void timestamp ( void ); void triangulation_order6_plot ( char *file_name, int node_num, double node_xy[], int tri_num, int triangle_node[], int node_show, int triangle_show ); void xy_set ( int nx, int ny, int node_num, double xl, double xr, double yb, double yt, double node_xy[] ); //****************************************************************************80 int main ( void ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for FEM2D_HEAT_RECTANGLE. // // Discussion: // // FEM2D_HEAT_RECTANGLE solves // // dUdT - Laplacian U(X,Y,T) = F(X,Y,T) // // in a rectangular region in the plane. // // Along the boundary of the region, Dirichlet conditions // are imposed: // // U(X,Y,T) = G(X,Y,T) // // At the initial time T_INIT, the value of U is given at all points // in the region: // // U(X,Y,T) = H(X,Y,T) // // The code uses continuous piecewise quadratic basis functions on // triangles determined by a uniform grid of NX by NY points. // // The backward Euler approximation is used for the time derivatives. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 April 2006 // // Author: // // C++ version by John Burkardt // // Local parameters: // // Local, double A[(3*IB+1)*NODE_NUM], the coefficient matrix. // // Local, double EH1, the H1 seminorm error. // // Local, double EL2, the L2 error. // // Local, double ELEMENT_AREA[ELEMENT_NUM], the area of each element. // // Local, int ELEMENT_NODE[ELEMENT_NUM*NNODES]; ELEMENT_NODE(I,J) is the // global node index of the local node J in element I. // // Local, int ELEMENT_NUM, the number of elements. // // Local, double F[NODE_NUM], the right hand side. // // Local, int IB, the half-bandwidth of the matrix. // // Local, integer NODE_BOUNDARY[NODE_NUM], is // 0, if a node is an interior node; // 1, if a node is a Dirichlet boundary node. // // Local, int NNODES, the number of nodes used to form one element. // // Local, double NODE_XY[2*NODE_NUM], the X and Y coordinates of nodes. // // Local, int NX, the number of points in the X direction. // // Local, int NY, the number of points in the Y direction. // // Local, int QUAD_NUM, the number of quadrature points used for assembly. // // Local, double TIME, the current time. // // Local, double TIME_FINAL, the final time. // // Local, double TIME_INIT, the initial time. // // Local, double TIME_OLD, the time at the previous time step. // // Local, int TIME_STEP_NUM, the number of time steps to take. // // Local, double TIME_STEP_SIZE, the size of the time steps. // // Local, double U[NODE_NUM], the finite element coefficients // defining the solution at the current time. // // Local, double WQ[QUAD_NUM], quadrature weights. // // Local, double XL, XR, YB, YT, the X coordinates of // the left and right sides of the rectangle, and the Y coordinates // of the bottom and top of the rectangle. // // Local, double XQ[QUAD_NUM*ELEMENT_NUM], YQ[QUAD_NUM*ELEMENT_NUM], the X and Y // coordinates of the quadrature points in each element. // { # define NNODES 6 # define QUAD_NUM 3 # define NX 5 # define NY 5 # define ELEMENT_NUM ( NX - 1 ) * ( NY - 1 ) * 2 # define NODE_NUM ( 2 * NX - 1 ) * ( 2 * NY - 1 ) double *a; double dt; double *dudx_exact; double *dudy_exact; double eh1; double el2; int element; double element_area[ELEMENT_NUM]; bool *element_mask; int element_node[NNODES*ELEMENT_NUM]; double *f; int i; int ib; int ierr; int job; int local; int node; int *node_boundary; char *node_eps_file_name; char *node_txt_file_name = "rectangle_nodes.txt"; bool node_label; int node_show; double node_xy[2*NODE_NUM]; int *pivot; double time; char *time_file_name = "rectangle_time.txt"; double time_final; double time_init; double time_old; int time_step; int time_step_num; double time_step_size; ofstream time_unit; int triangle_show; char *triangulation_eps_file_name = "rectangle_elements.eps"; char *triangulation_txt_file_name = "rectangle_elements.txt"; double *u; double *u_exact; char u_file_name[100]; double *u_old; double wq[QUAD_NUM]; double xl = 0.0; double xq[QUAD_NUM*ELEMENT_NUM]; double xr = 1.0; double yb = 0.0; double yq[QUAD_NUM*ELEMENT_NUM]; double yt = 1.0; strcpy ( node_eps_file_name, "rectangle_nodes.eps" ); strcpy ( u_file_name, "rectangle_u0000.txt" ); timestamp ( ); cout << "\n"; cout << "FEM2D_HEAT_RECTANGLE\n"; cout << " C++ version\n"; cout << "\n"; cout << " Compiled on " << __DATE__ << " at " << __TIME__ << ".\n"; cout << "\n"; cout << " Solution of the time-dependent heat equation\n"; cout << " on a unit box in 2 dimensions.\n"; cout << "\n"; cout << " Ut - Uxx - Uyy = F(x,y,t) in the box\n"; cout << " U(x,y,t) = G(x,y,t) for (x,y) on the boundary.\n"; cout << " U(x,y,t) = H(x,y,t) for t = T_INIT.\n"; cout << "\n"; cout << " The finite element method is used, with piecewise\n"; cout << " quadratic basis functions on 6 node triangular\n"; cout << " elements.\n"; cout << "\n"; cout << " The corner nodes of the triangles are generated by an\n"; cout << " underlying grid whose dimensions are\n"; cout << "\n"; cout << " NX = " << NX << "\n"; cout << " NY = " << NY << "\n"; cout << "\n"; cout << " Number of nodes = " << NODE_NUM << "\n"; cout << " Number of elements = " << ELEMENT_NUM << "\n"; // // Set the coordinates of the nodes. // xy_set ( NX, NY, NODE_NUM, xl, xr, yb, yt, node_xy ); // // Organize the nodes into a grid of 6-node triangles. // grid_t6 ( NX, NY, NNODES, ELEMENT_NUM, element_node ); // // Set the quadrature rule for assembly. // quad_a ( node_xy, element_node, ELEMENT_NUM, NODE_NUM, NNODES, wq, xq, yq ); // // Determine the areas of the elements. // area_set ( NODE_NUM, node_xy, NNODES, ELEMENT_NUM, element_node, element_area ); // // Determine which nodes are boundary nodes and which have a // finite element unknown. Then set the boundary values. // node_boundary = node_boundary_set ( NX, NY, NODE_NUM ); if ( false ) { i4vec_print_some ( NODE_NUM, node_boundary, 10, " NODE_BOUNDARY:" ); } // // Determine the bandwidth of the coefficient matrix. // ib = bandwidth ( NNODES, ELEMENT_NUM, element_node, NODE_NUM ); cout << "\n"; cout << " The matrix half bandwidth is " << ib << "\n"; cout << " The matrix row size is " << 3 * ib + 1 << "\n"; // // Make an EPS picture of the nodes. // if ( NX <= 10 && NY <= 10 ) { node_label = true; nodes_plot ( node_eps_file_name, NODE_NUM, node_xy, node_label ); cout << "\n"; cout << "FEM2D_HEAT_RECTANGLE:\n"; cout << " Wrote an EPS file\n"; cout << " \"" << node_eps_file_name << "\".\n"; cout << " containing a picture of the nodes.\n"; } // // Write the nodes to an ASCII file that can be read into MATLAB. // nodes_write ( NODE_NUM, node_xy, node_txt_file_name ); cout << "\n"; cout << "FEM2D_HEAT_RECTANGLE:\n"; cout << " Wrote an ASCII node file\n"; cout << " " << node_txt_file_name << "\n"; cout << " of the form\n"; cout << " X(I), Y(I)\n"; cout << " which can be used for plotting.\n"; // // Make a picture of the elements. // if ( NX <= 10 && NY <= 10 ) { node_show = 2; triangle_show = 2; triangulation_order6_plot ( triangulation_eps_file_name, NODE_NUM, node_xy, ELEMENT_NUM, element_node, node_show, triangle_show ); cout << "\n"; cout << "FEM2D_HEAT_RECTANGLE:\n"; cout << " Wrote an EPS file\n"; cout << " \"" << triangulation_eps_file_name << "\".\n"; cout << " containing a picture of the elements.\n"; } // // Write the elements to a file that can be read into MATLAB. // element_write ( NNODES, ELEMENT_NUM, element_node, triangulation_txt_file_name ); cout << "\n"; cout << "FEM2D_HEAT_RECTANGLE:\n"; cout << " Wrote an ASCII element file\n"; cout << " \"" << triangulation_txt_file_name << "\".\n"; cout << " of the form\n"; cout << " Node(1) Node(2) Node(3) Node(4) Node(5) Node(6)\n"; cout << " which can be used for plotting.\n"; // // Set time stepping quantities. // time_init = 0.0; time_final = 0.5; time_step_num = 10; time_step_size = ( time_final - time_init ) / ( double ) ( time_step_num ); // // Allocate space. // a = new double[(3*ib+1)*NODE_NUM]; dudx_exact = new double[NODE_NUM]; dudy_exact = new double[NODE_NUM]; f = new double[NODE_NUM]; pivot = new int[NODE_NUM]; u = new double[NODE_NUM]; u_exact = new double[NODE_NUM]; u_old = new double[NODE_NUM]; // // Set the value of U at the initial time. // time = time_init; exact_u ( NODE_NUM, node_xy, time, u_exact, dudx_exact, dudy_exact ); for ( node = 0; node < NODE_NUM; node++ ) { u[node] = u_exact[node]; } time_unit.open ( time_file_name ); if ( !time_unit ) { cout << "\n"; cout << "FEM2D_HEAT_RECTANGLE- Warning!\n"; cout << " Could not write the time file \"" << time_file_name << "\".\n"; exit ( 1 ); } time_unit << " " << setw(14) << time << "\n"; solution_write ( NODE_NUM, u, u_file_name ); // // Time looping. // cout << "\n"; cout << " Time L2 Error H1 Error\n"; cout << "\n"; for ( time_step = 1; time_step <= time_step_num; time_step++ ) { time_old = time; for ( node = 0; node < NODE_NUM; node++ ) { u_old[node] = u[node]; } delete [] u; time = ( ( double ) ( time_step_num - time_step ) * time_init + ( double ) ( time_step ) * time_final ) / ( double ) ( time_step_num ); // // Assemble the coefficient matrix A and the right-hand side F of the // finite element equations. // assemble ( NODE_NUM, node_xy, NNODES, ELEMENT_NUM, element_node, QUAD_NUM, wq, xq, yq, element_area, ib, time, a, f ); if ( false ) { dgb_print_some ( NODE_NUM, NODE_NUM, ib, ib, a, 10, 1, 12, 25, " Initial block of coefficient matrix A:" ); r8vec_print_some ( NODE_NUM, f, 1, 10, " Part of the right hand side F:" ); } // // Modify the coefficient matrix and right hand side to account for the dU/dt // term, which we are treating using the backward Euler formula. // adjust_backward_euler ( NODE_NUM, node_xy, NNODES, ELEMENT_NUM, element_node, QUAD_NUM, wq, xq, yq, element_area, ib, time, time_step_size, u_old, a, f ); if ( false ) { dgb_print_some ( NODE_NUM, NODE_NUM, ib, ib, a, 10, 1, 12, 25, " A after DT adjustment:" ); r8vec_print_some ( NODE_NUM, f, 1, 10, " F after DT adjustment:" ); } // // Modify the coefficient matrix and right hand side to account for // boundary conditions. // adjust_boundary ( NODE_NUM, node_xy, node_boundary, ib, time, a, f ); if ( false ) { dgb_print_some ( NODE_NUM, NODE_NUM, ib, ib, a, 10, 1, 12, 25, " A after BC adjustment:" ); r8vec_print_some ( NODE_NUM, f, 1, 10, " F after BC adjustment:" ); } // // Solve the linear system using a banded solver. // ierr = dgb_fa ( NODE_NUM, ib, ib, a, pivot ); if ( ierr != 0 ) { cout << "\n"; cout << "FEM2D_HEAT_RECTANGLE - Error!\n"; cout << " DGB_FA returned an error condition.\n"; cout << "\n"; cout << " The linear system was not factored, and the\n"; cout << " algorithm cannot proceed.\n"; exit ( 1 ); } job = 0; u = dgb_sl ( NODE_NUM, ib, ib, a, pivot, f, job ); if ( false ) { r8vec_print_some ( NODE_NUM, u, 1, 10, " Part of the solution vector:" ); } // // Calculate error using 13 point quadrature rule. // errors ( element_area, element_node, node_xy, u, ELEMENT_NUM, NNODES, NODE_NUM, time, &el2, &eh1 ); // // Compare the exact and computed solutions just at the nodes. // if ( false ) { compare ( NODE_NUM, node_xy, time, u ); } // // Increment the file name, and write the new solution. // time_unit << setw(14) << time << "\n"; file_name_inc ( u_file_name ); solution_write ( NODE_NUM, u, u_file_name ); } // // Deallocate memory. // delete [] a; delete [] dudx_exact; delete [] dudy_exact; delete [] f; delete [] node_boundary; delete [] pivot; delete [] u; delete [] u_exact; delete [] u_old; time_unit.close ( ); // // Terminate. // cout << "\n"; cout << "FEM2D_HEAT_RECTANGLE:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; # undef ELEMENT_NUM # undef NNODES # undef NODE_NUM # undef NX # undef NY # undef QUAD_NUM } //****************************************************************************80 void adjust_backward_euler ( int node_num, double node_xy[], int nnodes, int element_num, int element_node[], int quad_num, double wq[], double xq[], double yq[], double element_area[], int ib, double time, double time_step_size, double u_old[], double a[], double f[] ) //****************************************************************************80 // // Purpose: // // ADJUST_BACKWARD_EULER adjusts the system for the backward Euler term. // // Discussion: // // The input linear system // // A * U = F // // is appropriate for the equation // // -Uxx - Uyy = RHS // // We need to modify the matrix A and the right hand side F to // account for the approximation of the time derivative in // // Ut - Uxx - Uyy = RHS // // by the backward Euler approximation: // // Ut approximately equal to ( U - Uold ) / dT // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 May 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of nodes. // // Input, int NNODES, the number of nodes used to form one element. // // Input, int ELEMENT_NUM, the number of elements. // // Input, int ELEMENT_NODE[NNODES*ELEMENT_NUM]; // ELEMENT_NODE(I,J) is the global index of local node I in element J. // // Input, int QUAD_NUM, the number of quadrature points used in assembly. // // Input, double WQ[QUAD_NUM], quadrature weights. // // Input, double XQ[QUAD_NUM*ELEMENT_NUM], // YQ[QUAD_NUM*ELEMENT_NUM], the // coordinates of the quadrature points in each element. // // Input, double ELEMENT_AREA[ELEMENT_NUM], the area of elements. // // Input, int IB, the half-bandwidth of the matrix. // // Input, double TIME, the current time. // // Input, double TIME_STEP_SIZE, the size of the time step. // // Input, double U_OLD[NODE_NUM], the finite element // coefficients for the solution at the previous time. // // Input/output, double A[(3*IB+1)*NODE_NUM], the NODE_NUM // by NODE_NUM coefficient matrix, stored in a compressed format. // // Input/output, double F[NODE_NUM], the right hand side. // { int basis; double bi; double bj; double dbidx; double dbidy; double dbjdx; double dbjdy; int element; int i; int ip; int ipp; int j; int node; int quad; int test; double w; double x; double y; for ( element = 0; element < element_num; element++ ) { for ( quad = 0; quad < quad_num; quad++ ) { x = xq[quad+element*quad_num]; y = yq[quad+element*quad_num]; w = element_area[element] * wq[quad]; for ( test = 0; test < nnodes; test++ ) { node = element_node[test+element*nnodes]; qbf ( x, y, element, test, node_xy, element_node, element_num, nnodes, node_num, &bi, &dbidx, &dbidy ); // // Carry the U_OLD term to the right hand side. // f[node] = f[node] + w * bi * u_old[node] / time_step_size; // // Modify the diagonal entries of A. // for ( basis = 0; basis < nnodes; basis++ ) { j = element_node[basis+element*nnodes]; qbf ( x, y, element, basis, node_xy, element_node, element_num, nnodes, node_num, &bj, &dbjdx, &dbjdy ); a[node-j+2*ib+j*(3*ib+1)] = a[node-j+2*ib+j*(3*ib+1)] + w * bi * bj / time_step_size; } } } } return; } //****************************************************************************80 void adjust_boundary ( int node_num, double node_xy[], int node_boundary[], int ib, double time, double a[], double f[] ) //****************************************************************************80 // // Purpose: // // ADJUST_BOUNDARY modifies the linear system for boundary conditions. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of nodes. // // Input, int NODE_BOUNDARY[NODE_NUM], is // 0, if a node is an interior node; // 1, if a node is a Dirichlet boundary node. // // Input, int IB, the half-bandwidth of the matrix. // // Input, double TIME, the current time. // // Input/output, double A[(3*IB+1)*NODE_NUM], the NODE_NUM by NODE_NUM // coefficient matrix, stored in a compressed format. // On output, A has been adjusted for boundary conditions. // // Input/output, double F[NODE_NUM], the right hand side. // On output, F has been adjusted for boundary conditions. // { double *dudx_exact; double *dudy_exact; int i; int j; int jhi; int jlo; int node; double *u_exact; // // Get the exact solution at every node. // u_exact = new double[node_num]; dudx_exact = new double[node_num]; dudy_exact = new double[node_num]; exact_u ( node_num, node_xy, time, u_exact, dudx_exact, dudy_exact ); for ( node = 0; node < node_num; node++ ) { if ( node_boundary[node] != 0 ) { jlo = i4_max ( node - ib, 0 ); jhi = i4_min ( node + ib, node_num - 1 ); for ( j = jlo; j <= jhi; j++ ) { a[node-j+2*ib+j*(3*ib+1)] = 0.0; } a[node-node+2*ib+node*(3*ib+1)] = 1.0; f[node] = u_exact[node]; } } delete [] u_exact; delete [] dudx_exact; delete [] dudy_exact; return; } //****************************************************************************80 void area_set ( int node_num, double node_xy[], int nnodes, int element_num, int element_node[], double element_area[] ) //****************************************************************************80 // // Purpose: // // AREA_SET sets the area of each element. // // Discussion: // // The areas of the elements are needed in order to adjust // the integral estimates produced by the quadrature formulas. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 April 2004 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the // coordinates of the nodes. // // Input, int NNODES, the number of local nodes per element. // // Input, int ELEMENT_NUM, the number of elements. // // Input, int ELEMENT_NODE[NNODES*ELEMENT_NUM]; // ELEMENT_NODE(I,J) is the global index of local node I in element J. // // Output, double ELEMENT_AREA[ELEMENT_NUM], the area of elements. // { int element; int i1; int i2; int i3; double x1; double x2; double x3; double y1; double y2; double y3; for ( element = 0; element < element_num; element++ ) { i1 = element_node[0+element*nnodes]; x1 = node_xy[0+i1*2]; y1 = node_xy[1+i1*2]; i2 = element_node[1+element*nnodes]; x2 = node_xy[0+i2*2]; y2 = node_xy[1+i2*2]; i3 = element_node[2+element*nnodes]; x3 = node_xy[0+i3*2]; y3 = node_xy[1+i3*2]; element_area[element] = 0.5 * fabs ( y1 * ( x2 - x3 ) + y2 * ( x3 - x1 ) + y3 * ( x1 - x2 ) ); } return; } //****************************************************************************80* void assemble ( int node_num, double node_xy[], int nnodes, int element_num, int element_node[], int quad_num, double wq[], double xq[], double yq[], double element_area[], int ib, double time, double a[], double f[] ) //****************************************************************************80* // // Purpose: // // ASSEMBLE assembles the matrix and right-hand side using piecewise quadratics. // // Discussion: // // The matrix is known to be banded. A special matrix storage format // is used to reduce the space required. Details of this format are // discussed in the routine DGB_FA. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 April 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the X and Y coordinates of nodes. // // Input, int NNODES, the number of nodes used to form one element. // // Input, int ELEMENT_NUM, the number of elements. // // Input, int ELEMENT_NODE[NNODES*ELEMENT_NUM]; ELEMENT_NODE(I,J) is the global // index of local node I in element J. // // Input, int QUAD_NUM, the number of quadrature points used in assembly. // // Input, double WQ[QUAD_NUM], quadrature weights. // // Input, double XQ[QUAD_NUM*ELEMENT_NUM], YQ[QUAD_NUM*ELEMENT_NUM], the X and Y // coordinates of the quadrature points in each element. // // Input, double ELEMENT_AREA[ELEMENT_NUM], the area of each element. // // Input, int IB, the half-bandwidth of the matrix. // // Input, double TIME, the current time. // // Output, double A[(3*IB+1)*NODE_NUM], the NODE_NUM by NODE_NUM // coefficient matrix, stored in a compressed format. // // Output, double F[NODE_NUM], the right hand side. // // Local parameters: // // Local, double BI, DBIDX, DBIDY, the value of some basis function // and its first derivatives at a quadrature point. // // Local, double BJ, DBJDX, DBJDY, the value of another basis // function and its first derivatives at a quadrature point. // { double aij; int basis; double bi; double bj; double dbidx; double dbidy; double dbjdx; double dbjdy; int element; int i; int j; int node; int quad; int test; double w; double x; double y; // // Initialize the arrays to zero. // for ( i = 0; i < node_num; i++ ) { f[i] = 0.0; } for ( j = 0; j < node_num; j++ ) { for ( i = 0; i < 3*ib + 1; i++ ) { a[i+j*(3*ib+1)] = 0.0; } } // // The actual values of A and F are determined by summing up // contributions from all the elements. // for ( element = 0; element < element_num; element++ ) { for ( quad = 0; quad < quad_num; quad++ ) { x = xq[quad+element*quad_num]; y = yq[quad+element*quad_num]; w = element_area[element] * wq[quad]; for ( test = 0; test < nnodes; test++ ) { node = element_node[test+element*nnodes]; qbf ( x, y, element, test, node_xy, element_node, element_num, nnodes, node_num, &bi, &dbidx, &dbidy ); f[node] = f[node] + w * rhs ( x, y, time ) * bi; // // We are about to compute a contribution associated with the // I-th test function and the J-th basis function, and add this // to the entry A(I,J). // // Because of the compressed storage of the matrix, the element // will actually be stored in A(I-J+2*IB+1,J). // // An extra complication: we are storing the array as a vector. // // Therefore, we ACTUALLY store the entry in A[I-J+2*IB+1-1 + J * (3*IB+1)]; // for ( basis = 0; basis < nnodes; basis++ ) { j = element_node[basis+element*nnodes]; qbf ( x, y, element, basis, node_xy, element_node, element_num, nnodes, node_num, &bj, &dbjdx, &dbjdy ); aij = dbidx * dbjdx + dbidy * dbjdy; a[node-j+2*ib+j*(3*ib+1)] = a[node-j+2*ib+j*(3*ib+1)] + w * aij; } } } } return; } //****************************************************************************80 int bandwidth ( int nnodes, int element_num, int element_node[], int node_num ) //****************************************************************************80 // // Purpose: // // BANDWIDTH determines the bandwidth of the coefficient matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 April 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, int NNODES, the number of local nodes per element. // // Input, int ELEMENT_NUM, the number of elements. // // Input, int ELEMENT_NODE[NNODES*ELEMENT_NUM]; ELEMENT_NODE(I,J) is the global // index of local node I in element J. // // Input, int NODE_NUM, the number of nodes. // // Output, int BANDWIDTH, the half bandwidth of the matrix. // { int element; int i; int iln; int in; int j; int jln; int jn; int nhba; nhba = 0; for ( element = 0; element < element_num; element++ ) { for ( iln = 0; iln < nnodes; iln++ ) { i = element_node[iln+element*nnodes]; for ( jln = 0; jln < nnodes; jln++ ) { j = element_node[jln+element*nnodes]; nhba = i4_max ( nhba, j - i ); } } } return nhba; } //****************************************************************************80 void compare ( int node_num, double node_xy[], double time, double u[] ) //****************************************************************************80 // // Purpose: // // COMPARE compares the exact and computed solution at the nodes. // // Discussion: // // This is a rough comparison, done only at the nodes. Such a pointwise // comparison is easy, because the value of the finite element // solution is exactly the value of the finite element coefficient // associated with that node. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 April 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the nodes. // // Input, double TIME, the current time. // // Input, double F[NUNK], the solution vector of the finite // element system. // { double *dudx_exact; double *dudy_exact; int node; double *u_exact; u_exact = new double[node_num]; dudx_exact = new double[node_num]; dudy_exact = new double[node_num]; exact_u ( node_num, node_xy, time, u_exact, dudx_exact, dudy_exact ); cout << "\n"; cout << "COMPARE:\n"; cout << " Compare computed and exact solutions at the nodes.\n"; cout << "\n"; cout << " X Y U U\n"; cout << " exact computed\n"; cout << "\n"; for ( node = 0; node < node_num; node++ ) { cout << setw(12) << node_xy[0+node*2] << " " << setw(12) << node_xy[1+node*2] << " " << setw(12) << u_exact[node] << " " << setw(12) << u[node] << "\n"; } delete [] u_exact; delete [] dudx_exact; delete [] dudy_exact; return; } //****************************************************************************80 int dgb_fa ( int n, int ml, int mu, double a[], int pivot[] ) //****************************************************************************80 // // Purpose: // // DGB_FA performs a LINPACK-style PLU factorization of an DGB matrix. // // Discussion: // // The DGB storage format is used for an M by N banded matrix, with lower bandwidth ML // and upper bandwidth MU. Storage includes room for ML extra superdiagonals, // which may be required to store nonzero entries generated during Gaussian // elimination. // // The original M by N matrix is "collapsed" downward, so that diagonals // become rows of the storage array, while columns are preserved. The // collapsed array is logically 2*ML+MU+1 by N. // // The two dimensional array can be further reduced to a one dimensional // array, stored by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 February 2004 // // Author: // // C++ version by John Burkardt // // Reference: // // Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, // LINPACK User's Guide, // SIAM, 1979 // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N-1. // // Input/output, double A[(2*ML+MU+1)*N], the matrix in band storage. // On output, A has been overwritten by the LU factors. // // Output, int PIVOT[N], the pivot vector. // // Output, int SGB_FA, singularity flag. // 0, no singularity detected. // nonzero, the factorization failed on the INFO-th step. // { int col = 2 * ml + mu + 1; int i; int i0; int j; int j0; int j1; int ju; int jz; int k; int l; int lm; int m; int mm; double t; m = ml + mu + 1; // // Zero out the initial fill-in columns. // j0 = mu + 2; j1 = i4_min ( n, m ) - 1; for ( jz = j0; jz <= j1; jz++ ) { i0 = m + 1 - jz; for ( i = i0; i <= ml; i++ ) { a[i-1+(jz-1)*col] = 0.0; } } jz = j1; ju = 0; for ( k = 1; k <= n-1; k++ ) { // // Zero out the next fill-in column. // jz = jz + 1; if ( jz <= n ) { for ( i = 1; i <= ml; i++ ) { a[i-1+(jz-1)*col] = 0.0; } } // // Find L = pivot index. // lm = i4_min ( ml, n-k ); l = m; for ( j = m+1; j <= m + lm; j++ ) { if ( fabs ( a[l-1+(k-1)*col] ) < fabs ( a[j-1+(k-1)*col] ) ) { l = j; } } pivot[k-1] = l + k - m; // // Zero pivot implies this column already triangularized. // if ( a[l-1+(k-1)*col] == 0.0 ) { cout << "\n"; cout << "DGB_FA - Fatal error!\n"; cout << " Zero pivot on step " << k << "\n"; return k; } // // Interchange if necessary. // t = a[l-1+(k-1)*col]; a[l-1+(k-1)*col] = a[m-1+(k-1)*col]; a[m-1+(k-1)*col] = t; // // Compute multipliers. // for ( i = m+1; i <= m+lm; i++ ) { a[i-1+(k-1)*col] = - a[i-1+(k-1)*col] / a[m-1+(k-1)*col]; } // // Row elimination with column indexing. // ju = i4_max ( ju, mu + pivot[k-1] ); ju = i4_min ( ju, n ); mm = m; for ( j = k+1; j <= ju; j++ ) { l = l - 1; mm = mm - 1; if ( l != mm ) { t = a[l-1+(j-1)*col]; a[l-1+(j-1)*col] = a[mm-1+(j-1)*col]; a[mm-1+(j-1)*col] = t; } for ( i = 1; i <= lm; i++ ) { a[mm+i-1+(j-1)*col] = a[mm+i-1+(j-1)*col] + a[mm-1+(j-1)*col] * a[m+i-1+(k-1)*col]; } } } pivot[n-1] = n; if ( a[m-1+(n-1)*col] == 0.0 ) { cout << "\n"; cout << "DGB_FA - Fatal error!\n"; cout << " Zero pivot on step " << n << "\n"; return n; } return 0; } //****************************************************************************80 void dgb_print_some ( int m, int n, int ml, int mu, double a[], int ilo, int jlo, int ihi, int jhi, char *title ) //****************************************************************************80 // // Purpose: // // DGB_PRINT_SOME prints some of a DGB matrix. // // Discussion: // // The DGB storage format is used for an M by N banded matrix, with lower bandwidth ML // and upper bandwidth MU. Storage includes room for ML extra superdiagonals, // which may be required to store nonzero entries generated during Gaussian // elimination. // // The original M by N matrix is "collapsed" downward, so that diagonals // become rows of the storage array, while columns are preserved. The // collapsed array is logically 2*ML+MU+1 by N. // // The two dimensional array can be further reduced to a one dimensional // array, stored by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than min(M,N)-1.. // // Input, double A[(2*ML+MU+1)*N], the SGB matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, char *TITLE, a title to print. { # define INCX 5 int col = 2 * ml + mu + 1; int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2lo = i4_max ( i2lo, j2lo - mu ); i2hi = i4_min ( ihi, m ); i2hi = i4_min ( i2hi, j2hi + ml ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(6) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { if ( ml < i-j || mu < j-i ) { cout << " "; } else { cout << setw(10) << a[i-j+ml+mu+(j-1)*col] << " "; } } cout << "\n"; } } cout << "\n"; return; # undef INCX } //****************************************************************************80 double *dgb_sl ( int n, int ml, int mu, double a[], int pivot[], double b[], int job ) //****************************************************************************80 // // Purpose: // // DGB_SL solves a system factored by DGB_FA. // // Discussion: // // The DGB storage format is used for an M by N banded matrix, with lower bandwidth ML // and upper bandwidth MU. Storage includes room for ML extra superdiagonals, // which may be required to store nonzero entries generated during Gaussian // elimination. // // The original M by N matrix is "collapsed" downward, so that diagonals // become rows of the storage array, while columns are preserved. The // collapsed array is logically 2*ML+MU+1 by N. // // The two dimensional array can be further reduced to a one dimensional // array, stored by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 February 2004 // // Author: // // C++ version by John Burkardt // // Reference: // // Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, // LINPACK User's Guide, // SIAM, 1979 // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N-1. // // Input, double A[(2*ML+MU+1)*N], the LU factors from DGB_FA. // // Input, int PIVOT[N], the pivot vector from DGB_FA. // // Input, double B[N], the right hand side vector. // // Input, int JOB. // 0, solve A * x = b. // nonzero, solve A' * x = b. // // Output, double DGB_SL[N], the solution. // { int col = 2 * ml + mu + 1; int i; int k; int l; int la; int lb; int lm; int m; double t; double *x; x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = b[i]; } // m = mu + ml + 1; // // Solve A * x = b. // if ( job == 0 ) { // // Solve L * Y = B. // if ( 1 <= ml ) { for ( k = 1; k <= n-1; k++ ) { lm = i4_min ( ml, n-k ); l = pivot[k-1]; if ( l != k ) { t = x[l-1]; x[l-1] = x[k-1]; x[k-1] = t; } for ( i = 1; i <= lm; i++ ) { x[k+i-1] = x[k+i-1] + x[k-1] * a[m+i-1+(k-1)*col]; } } } // // Solve U * X = Y. // for ( k = n; 1 <= k; k-- ) { x[k-1] = x[k-1] / a[m-1+(k-1)*col]; lm = i4_min ( k, m ) - 1; la = m - lm; lb = k - lm; for ( i = 0; i <= lm-1; i++ ) { x[lb+i-1] = x[lb+i-1] - x[k-1] * a[la+i-1+(k-1)*col]; } } } // // Solve A' * X = B. // else { // // Solve U' * Y = B. // for ( k = 1; k <= n; k++ ) { lm = i4_min ( k, m ) - 1; la = m - lm; lb = k - lm; for ( i = 0; i <= lm-1; i++ ) { x[k-1] = x[k-1] - x[lb+i-1] * a[la+i-1+(k-1)*col]; } x[k-1] = x[k-1] / a[m-1+(k-1)*col]; } // // Solve L' * X = Y. // if ( 1 <= ml ) { for ( k = n-1; 1 <= k; k-- ) { lm = i4_min ( ml, n-k ); for ( i = 1; i <= lm; i++ ) { x[k-1] = x[k-1] + x[k+i-1] * a[m+i-1+(k-1)*col]; } l = pivot[k-1]; if ( l != k ) { t = x[l-1]; x[l-1] = x[k-1]; x[k-1] = t; } } } } return x; } //****************************************************************************80* void element_write ( int nnodes, int element_num, int element_node[], char *output_filename ) //****************************************************************************80* // // Purpose: // // ELEMENT_WRITE writes the elements to a file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NNODES, the number of nodes used to form one element. // // Input, int ELEMENT_NUM, the number of elements. // // Input, int ELEMENT_NODE[NNODES*ELEMENT_NUM]; ELEMENT_NODE(I,J) is the global // index of local node I in element J. // // Input, char *OUTPUT_FILENAME, the name of the file // in which the data should be stored. // { int element; int i; ofstream output; output.open ( output_filename ); if ( !output ) { cout << "\n"; cout << "ELEMENT_WRITE - Warning!\n"; cout << " Could not write the node file.\n"; return; } for ( element = 0; element < element_num; element++ ) { for ( i = 0; i < nnodes; i++ ) { output << setw(8) << element_node[i+element*nnodes] << " "; } output << "\n"; } output.close ( ); return; } //****************************************************************************80* void errors ( double element_area[], int element_node[], double node_xy[], double u[], int element_num, int nnodes, int node_num, double time, double *el2, double *eh1 ) //****************************************************************************80* // // Purpose: // // ERRORS calculates the error in the L2 and H1-seminorm. // // Discussion: // // This routine uses a 13 point quadrature rule in each element, // in order to estimate the values of // // EL2 = Sqrt ( Integral ( U(x,y) - Uh(x,y) )**2 dx dy ) // // EH1 = Sqrt ( Integral ( Ux(x,y) - Uhx(x,y) )**2 + // ( Uy(x,y) - Uhy(x,y) )**2 dx dy ) // // Here U is the exact solution, and Ux and Uy its spatial derivatives, // as evaluated by a user-supplied routine. // // Uh, Uhx and Uhy are the computed solution and its spatial derivatives, // as specified by the computed finite element solution. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 April 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, double ELEMENT_AREA[ELEMENT_NUM], the area of each element. // // Input, int ELEMENT_NODE[NNODES*ELEMENT_NUM]; ELEMENT_NODE(I,J) is the global // index of local node I in element J. // // Input, double NODE_XY[2*NODE_NUM], the X and Y coordinates of nodes. // // Input, double U[NUNK], the coefficients of the solution. // // Input, int ELEMENT_NUM, the number of elements. // // Input, int NNODES, the number of nodes used to form one element. // // Input, int NODE_NUM, the number of nodes. // // Input, real ( kind = 8 ) TIME, the current time. // // Output, double precision *EL2, the L2 error. // // Output, double precision *EH1, the H1 seminorm error. // // Local Parameters: // // Local, double AR, the weight for a given quadrature point // in a given element. // // Local, double BI, DBIDX, DBIDY, a basis function and its first // derivatives evaluated at a particular quadrature point. // // Local, double EH1, the H1 seminorm error. // // Local, double EL2, the L2 error. // // Local, int NQE, the number of points in the quadrature rule. // This is actually fixed at 13. // // Local, double UEX, UEXX, UEXY, the exact solution and its first // derivatives evaluated at a particular quadrature point. // // Local, double UH, UHX, UHY, the computed solution and its first // derivatives evaluated at a particular quadrature point. // // Local, double WQE[NQE], stores the quadrature weights. // // Local, double X, Y, the coordinates of a particular // quadrature point. // // Local, double XQE[NQE], YQE[NQE], stores the location // of quadrature points in a given element. // { # define NQE 13 double ar; double bi; double dbidx; double dbidy; double dudx_exact[1]; double dudxh; double dudy_exact[1]; double dudyh; int element; int i; int in1; int ip; int quad; double u_exact[1]; double uh; double wqe[NQE]; double x; double x1; double xqe[NQE]; double xy[2]; double y; double y1; double yqe[NQE]; *el2 = 0.0; *eh1 = 0.0; // // For each element, retrieve the nodes, area, quadrature weights, // and quadrature points. // for ( element = 0; element < element_num; element++ ) { quad_e ( node_xy, element_node, element, element_num, nnodes, node_num, NQE, wqe, xqe, yqe ); // // For each quadrature point, evaluate the computed solution and its X and // Y derivatives. // for ( quad = 0; quad < NQE; quad++ ) { ar = element_area[element] * wqe[quad]; x = xqe[quad]; y = yqe[quad]; uh = 0.0; dudxh = 0.0; dudyh = 0.0; for ( in1 = 0; in1 < nnodes; in1++ ) { i = element_node[in1+element*nnodes]; qbf ( x, y, element, in1, node_xy, element_node, element_num, nnodes, node_num, &bi, &dbidx, &dbidy ); uh = uh + bi * u[i]; dudxh = dudxh + dbidx * u[i]; dudyh = dudyh + dbidy * u[i]; } // // Evaluate the exact solution and its X and Y derivatives. // xy[0] = x; xy[1] = y; exact_u ( 1, xy, time, u_exact, dudx_exact, dudy_exact ); // // Add the weighted value at this quadrature point to the quadrature sum. // *el2 = *el2 + ar * pow ( ( uh - u_exact[0] ), 2 ); *eh1 = *eh1 + ar * ( pow ( ( dudxh - dudx_exact[0] ), 2 ) + pow ( ( dudyh - dudy_exact[0] ), 2 ) ); } } *el2 = sqrt ( *el2 ); *eh1 = sqrt ( *eh1 ); cout << setw(14) << time << setw(14) << *el2 << setw(14) << *eh1 << "\n"; return; # undef NQE } //****************************************************************************80 void exact_u ( int node_num, double node_xy[], double time, double u[], double dudx[], double dudy[] ) //****************************************************************************80 // // Purpose: // // EXACT_U calculates the exact solution and its first derivatives. // // Discussion: // // It is assumed that the user knows the exact solution and its // derivatives. This, of course, is NOT true for a real computation. // But for this code, we are interested in studying the convergence // behavior of the approximations, and so we really need to assume // we know the correct solution. // // As a convenience, this single routine is used for several purposes:\ // // * it supplies the initial value function H(X,Y,T); // * it supplies the boundary value function G(X,Y,T); // * it is used by the COMPARE routine to make a node-wise comparison // of the exact and approximate solutions. // * it is used by the ERRORS routine to estimate the integrals of // the L2 and H1 errors of approximation. // // DUDX and DUDY are only needed for the ERRORS calculation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 April 2004 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes at which // a value is desired. // // Input, double NODE_XY(2,NODE_NUM), the coordinates of // the points where a value is desired. // // Input, double TIME, the current time. // // Output, double U[NODE_NUM], the exact solution. // // Output, double DUDX[NODE_NUM], DUDY[NODE_NUM], // the X and Y derivatives of the exact solution. // { # define PI 3.141592653589793 int node; double x; double y; for ( node = 0; node < node_num; node++ ) { x = node_xy[0+node*2]; y = node_xy[1+node*2]; u[node] = sin ( PI * x ) * sin ( PI * y ) * exp ( - time ); dudx[node] = PI * cos ( PI * x ) * sin ( PI * y ) * exp ( - time ); dudy[node] = PI * sin ( PI * x ) * cos ( PI * y ) * exp ( - time ); } return; # undef PI } //****************************************************************************80 void file_name_inc ( char *file_name ) //****************************************************************************80 // // Purpose: // // FILE_NAME_INC increments a partially numeric file name. // // Discussion: // // It is assumed that the digits in the name, whether scattered or // connected, represent a number that is to be increased by 1 on // each call. If this number is all 9's on input, the output number // is all 0's. Non-numeric letters of the name are unaffected. // // If the input string contains no digits, a blank string is returned. // // If a blank string is input, then an error condition results. // // Example: // // Input Output // ----- ------ // "a7to11.txt" "a7to12.txt" (typical case. Last digit incremented) // "a7to99.txt" "a8to00.txt" (last digit incremented, with carry.) // "a9to99.txt" "a0to00.txt" (wrap around) // "cat.txt" " " (no digits to increment) // " " STOP! (error) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input/output, character *FILE_NAME, (a pointer to) the character string // to be incremented. // { char c; int change; int i; int lens; lens = s_len_trim ( file_name ); if ( lens <= 0 ) { cout << "\n"; cout << "FILE_NAME_INC - Fatal error!\n"; cout << " Input file name is blank.\n"; exit ( 1 ); } change = 0; for ( i = lens-1; 0 <= i; i-- ) { c = *(file_name+i); if ( '0' <= c && c <= '9' ) { change = change + 1; if ( c == '9' ) { c = '0'; *(file_name+i) = c; } else { c = c + 1; *(file_name+i) = c; return; } } } if ( change == 0 ) { strcpy ( file_name, " " ); } return; } //****************************************************************************80 void grid_t6 ( int nx, int ny, int nnodes, int element_num, int element_node[] ) //****************************************************************************80 // // Purpose: // // GRID_T6 produces a grid of pairs of 6 node triangles. // // Example: // // Input: // // NX = 4, NY = 3 // // Output: // // ELEMENT_NODE = // 1, 3, 15, 2, 9, 8; // 17, 15, 3, 16, 9, 10; // 3, 5, 17, 4, 11, 10; // 19, 17, 5, 18, 11, 12; // 5, 7, 19, 6, 13, 12; // 21, 19, 7, 20, 13, 14; // 15, 17, 29, 16, 23, 22; // 31, 29, 17, 30, 23, 24; // 17, 19, 31, 18, 25, 24; // 33, 31, 19, 32, 25, 26; // 19, 21, 33, 20, 27, 26; // 35, 33, 21, 34, 27, 28. // // Diagram: // // 29-30-31-32-33-34-35 // |\ 8 |\10 |\12 | // | \ | \ | \ | // 22 23 24 25 26 27 28 // | \ | \ | \ | // | 7 \| 9 \| 11 \| // 15-16-17-18-19-20-21 // |\ 2 |\ 4 |\ 6 | // | \ | \ | \ | // 8 9 10 11 12 13 14 // | \ | \ | \ | // | 1 \| 3 \| 5 \| // 1--2--3--4--5--6--7 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int NX, NY, controls the number of elements along the // X and Y directions. The number of elements will be // 2 * ( NX - 1 ) * ( NY - 1 ). // // Input, int NNODES, the number of local nodes per element. // // Input, int ELEMENT_NUM, the number of elements. // // Output, int ELEMENT_NODE[NNODES*ELEMENT_NUM]; // ELEMENT_NODE(I,J) is the index of the I-th node of the J-th element. // { int c; int e; int element; int i; int j; int n; int ne; int nw; int s; int se; int sw; int w; element = 0; for ( j = 1; j <= ny - 1; j++ ) { for ( i = 1; i <= nx - 1; i++ ) { sw = ( j - 1 ) * 2 * ( 2 * nx - 1 ) + 2 * i - 2; w = sw + 1; nw = sw + 2; s = sw + 2 * nx - 1; c = s + 1; n = s + 2; se = s + 2 * nx - 1; e = se + 1; ne = se + 2; element_node[0+element*nnodes] = sw; element_node[1+element*nnodes] = se; element_node[2+element*nnodes] = nw; element_node[3+element*nnodes] = s; element_node[4+element*nnodes] = c; element_node[5+element*nnodes] = w; element = element + 1; element_node[0+element*nnodes] = ne; element_node[1+element*nnodes] = nw; element_node[2+element*nnodes] = se; element_node[3+element*nnodes] = n; element_node[4+element*nnodes] = c; element_node[5+element*nnodes] = e; element = element + 1; } } return; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two ints to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { if ( i2 < i1 ) { return i1; } else { return i2; } } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the smaller of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two ints to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { if ( i1 < i2 ) { return i1; } else { return i2; } } //****************************************************************************80 void i4vec_print_some ( int n, int a[], int max_print, char *title ) //****************************************************************************80 // // Purpose: // // I4VEC_PRINT_SOME prints "some" of an I4VEC. // // Discussion: // // The user specifies MAX_PRINT, the maximum number of lines to print. // // If N, the size of the vector, is no more than MAX_PRINT, then // the entire vector is printed, one entry per line. // // Otherwise, if possible, the first MAX_PRINT-2 entries are printed, // followed by a line of periods suggesting an omission, // and the last entry. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries of the vector. // // Input, int A[N], the vector to be printed. // // Input, int MAX_PRINT, the maximum number of lines to print. // // Input, char *TITLE, an optional title. // { int i; if ( max_print <= 0 ) { return; } if ( n <= 0 ) { return; } if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; cout << "\n"; } if ( n <= max_print ) { for ( i = 0; i < n; i++ ) { cout << setw(6) << i + 1 << " " << setw(10) << a[i] << "\n"; } } else if ( 3 <= max_print ) { for ( i = 0; i < max_print-2; i++ ) { cout << setw(6) << i + 1 << " " << setw(10) << a[i] << "\n"; } cout << "...... ..............\n"; i = n - 1; cout << setw(6) << i + 1 << " " << setw(10) << a[i] << "\n"; } else { for ( i = 0; i < max_print-1; i++ ) { cout << setw(6) << i + 1 << " " << setw(10) << a[i] << "\n"; } i = max_print - 1; cout << setw(6) << i + 1 << " " << setw(10) << a[i] << "...more entries...\n"; } return; } //****************************************************************************80 int *node_boundary_set ( int nx, int ny, int node_num ) //****************************************************************************80 // // Purpose: // // NODE_BOUNDARY_SET assigns an unknown value index at each node. // // Discussion: // // Every node is assigned a value which indicates whether it is // an interior node, or a boundary node. // // Example: // // On a simple 5 by 5 grid, where the nodes are numbered starting // at the lower left, and increasing in X first, we would have the // following values of NODE_BOUNDARY: // // 1 1 1 1 1 // 1 0 0 0 1 // 1 0 0 0 1 // 1 0 0 0 1 // 1 1 1 1 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 April 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, int NX, NY, the number of elements in the X and Y directions. // // Input, int NODE_NUM, the number of nodes. // // Output, int NODE_BOUNDARY[NODE_NUM], is // 0, if a node is an interior node; // 1, if a node is a Dirichlet boundary node. // { int i; int j; int node; int *node_boundary; node_boundary = new int[node_num]; node = 0; for ( j = 1; j <= 2 * ny - 1; j++ ) { for ( i = 1; i <= 2 * nx - 1; i++ ) { if ( j == 1 || j == 2 * ny - 1 || i == 1 || i == 2 * nx - 1 ) { node_boundary[node] = 1; } else { node_boundary[node] = 0; } node = node + 1; } } return node_boundary; } //****************************************************************************80 void nodes_plot ( char *file_name, int node_num, double node_xy[], bool node_label ) //****************************************************************************80 // // Purpose: // // NODES_PLOT plots a pointset. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 September 2006 // // Author: // // John Burkardt // // Parameters: // // Input, char *FILE_NAME, the name of the file to create. // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the nodes. // // Input, bool NODE_LABEL, is TRUE if the nodes are to be labeled. // { int circle_size; int delta; ofstream file_unit; int i; int node; double x_max; double x_min; int x_ps; int x_ps_max = 576; int x_ps_max_clip = 594; int x_ps_min = 36; int x_ps_min_clip = 18; double x_scale; double y_max; double y_min; int y_ps; int y_ps_max = 666; int y_ps_max_clip = 684; int y_ps_min = 126; int y_ps_min_clip = 108; double y_scale; // // We need to do some figuring here, so that we can determine // the range of the data, and hence the height and width // of the piece of paper. // x_max = -r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( x_max < node_xy[0+node*2] ) { x_max = node_xy[0+node*2]; } } x_min = r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( node_xy[0+node*2] < x_min ) { x_min = node_xy[0+node*2]; } } x_scale = x_max - x_min; x_max = x_max + 0.05 * x_scale; x_min = x_min - 0.05 * x_scale; x_scale = x_max - x_min; y_max = -r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( y_max < node_xy[1+node*2] ) { y_max = node_xy[1+node*2]; } } y_min = r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( node_xy[1+node*2] < y_min ) { y_min = node_xy[1+node*2]; } } y_scale = y_max - y_min; y_max = y_max + 0.05 * y_scale; y_min = y_min - 0.05 * y_scale; y_scale = y_max - y_min; if ( x_scale < y_scale ) { delta = r8_nint ( ( double ) ( x_ps_max - x_ps_min ) * ( y_scale - x_scale ) / ( 2.0 * y_scale ) ); x_ps_max = x_ps_max - delta; x_ps_min = x_ps_min + delta; x_ps_max_clip = x_ps_max_clip - delta; x_ps_min_clip = x_ps_min_clip + delta; x_scale = y_scale; } else if ( y_scale < x_scale ) { delta = r8_nint ( ( double ) ( y_ps_max - y_ps_min ) * ( x_scale - y_scale ) / ( 2.0 * x_scale ) ); y_ps_max = y_ps_max - delta; y_ps_min = y_ps_min + delta; y_ps_max_clip = y_ps_max_clip - delta; y_ps_min_clip = y_ps_min_clip + delta; y_scale = x_scale; } file_unit.open ( file_name ); if ( !file_unit ) { cout << "\n"; cout << "POINTS_PLOT - Fatal error!\n"; cout << " Could not open the output EPS file.\n"; exit ( 1 ); } file_unit << "%!PS-Adobe-3.0 EPSF-3.0\n"; file_unit << "%%Creator: nodes_plot.C\n"; file_unit << "%%Title: " << file_name << "\n"; file_unit << "%%Pages: 1\n"; file_unit << "%%BoundingBox: " << x_ps_min << " " << y_ps_min << " " << x_ps_max << " " << y_ps_max << "\n"; file_unit << "%%Document-Fonts: Times-Roman\n"; file_unit << "%%LanguageLevel: 1\n"; file_unit << "%%EndComments\n"; file_unit << "%%BeginProlog\n"; file_unit << "/inch {72 mul} def\n"; file_unit << "%%EndProlog\n"; file_unit << "%%Page: 1 1\n"; file_unit << "save\n"; file_unit << "%\n"; file_unit << "% Set the RGB line color to very light gray.\n"; file_unit << "%\n"; file_unit << " 0.9000 0.9000 0.9000 setrgbcolor\n"; file_unit << "%\n"; file_unit << "% Draw a gray border around the page.\n"; file_unit << "%\n"; file_unit << "newpath\n"; file_unit << x_ps_min << " " << y_ps_min << " moveto\n"; file_unit << x_ps_max << " " << y_ps_min << " lineto\n"; file_unit << x_ps_max << " " << y_ps_max << " lineto\n"; file_unit << x_ps_min << " " << y_ps_max << " lineto\n"; file_unit << x_ps_min << " " << y_ps_min << " lineto\n"; file_unit << "stroke\n"; file_unit << "%\n"; file_unit << "% Set RGB line color to black.\n"; file_unit << "%\n"; file_unit << " 0.0000 0.0000 0.0000 setrgbcolor\n"; file_unit << "%\n"; file_unit << "% Set the font and its size:\n"; file_unit << "%\n"; file_unit << "/Times-Roman findfont\n"; file_unit << "0.50 inch scalefont\n"; file_unit << "setfont\n"; file_unit << "%\n"; file_unit << "% Print a title:\n"; file_unit << "%\n"; file_unit << "% 210 702 moveto\n"; file_unit << "%(Pointset) show\n"; file_unit << "%\n"; file_unit << "% Define a clipping polygon\n"; file_unit << "%\n"; file_unit << "newpath\n"; file_unit << x_ps_min_clip << " " << y_ps_min_clip << " moveto\n"; file_unit << x_ps_max_clip << " " << y_ps_min_clip << " lineto\n"; file_unit << x_ps_max_clip << " " << y_ps_max_clip << " lineto\n"; file_unit << x_ps_min_clip << " " << y_ps_max_clip << " lineto\n"; file_unit << x_ps_min_clip << " " << y_ps_min_clip << " lineto\n"; file_unit << "clip newpath\n"; // // Draw the nodes. // if ( node_num <= 200 ) { circle_size = 5; } else if ( node_num <= 500 ) { circle_size = 4; } else if ( node_num <= 1000 ) { circle_size = 3; } else if ( node_num <= 5000 ) { circle_size = 2; } else { circle_size = 1; } file_unit << "%\n"; file_unit << "% Draw filled dots at each node:\n"; file_unit << "%\n"; file_unit << "% Set the color to blue:\n"; file_unit << "%\n"; file_unit << "0.000 0.150 0.750 setrgbcolor\n"; file_unit << "%\n"; for ( node = 0; node < node_num; node++ ) { x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); file_unit << "newpath " << x_ps << " " << y_ps << " " << circle_size << " 0 360 arc closepath fill\n"; } // // Label the nodes. // file_unit << "%\n"; file_unit << "% Label the nodes:\n"; file_unit << "%\n"; file_unit << "% Set the color to darker blue:\n"; file_unit << "%\n"; file_unit << "0.000 0.250 0.850 setrgbcolor\n"; file_unit << "/Times-Roman findfont\n"; file_unit << "0.20 inch scalefont\n"; file_unit << "setfont\n"; file_unit << "%\n"; for ( node = 0; node < node_num; node++ ) { x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); file_unit << "newpath " << x_ps << " " << y_ps + 5 << " moveto (" << node << ") show\n"; } file_unit << "%\n"; file_unit << "restore showpage\n"; file_unit << "%\n"; file_unit << "% End of page\n"; file_unit << "%\n"; file_unit << "%%Trailer\n"; file_unit << "%%EOF\n"; file_unit.close ( ); return; } //****************************************************************************80* void nodes_write ( int node_num, double node_xy[], char *output_filename ) //****************************************************************************80* // // Purpose: // // NODES_WRITE writes the nodes to a file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 March 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the X and Y coordinates of nodes. // // Input, char *OUTPUT_FILENAME, the name of the file // in which the data should be stored. // { int node; ofstream output; double x; double y; output.open ( output_filename ); if ( !output ) { cout << "\n"; cout << "NODES_WRITE - Warning!\n"; cout << " Could not write the node file.\n"; return; } for ( node = 0; node < node_num; node++ ) { x = node_xy[0+node*2]; y = node_xy[1+node*2]; output << setw(8) << x << " " << setw(8) << y << "\n"; } output.close ( ); return; } //****************************************************************************80 void qbf ( double x, double y, int element, int inode, double node_xy[], int element_node[], int element_num, int nnodes, int node_num, double *b, double *dbdx, double *dbdy ) //****************************************************************************80 // // Purpose: // // QBF evaluates the quadratic basis functions. // // Discussion: // // This routine assumes that the "midpoint" nodes are, in fact, // exactly the average of the two extreme nodes. This is NOT true // for a general quadratic triangular element. // // Assuming this property of the midpoint nodes makes it easy to // determine the values of (R,S) in the reference element that // correspond to (X,Y) in the physical element. // // Once we know the (R,S) coordinates, it's easy to evaluate the // basis functions and derivatives. // // The physical element T6: // // In this picture, we don't mean to suggest that the bottom of // the physical triangle is horizontal. However, we do assume that // each of the sides is a straight line, and that the intermediate // points are exactly halfway on each side. // // | // | // | 3 // | / \ // | / \ // Y 6 5 // | / \ // | / \ // | 1-----4-----2 // | // +--------X--------> // // Reference element T6: // // In this picture of the reference element, we really do assume // that one side is vertical, one horizontal, of length 1. // // | // | // 1 3 // | |\ // | | \ // S 6 5 // | | \ // | | \ // 0 1--4--2 // | // +--0--R--1--------> // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the (global) coordinates of the point // at which the basis function is to be evaluated. // // Input, int ELEMENT, the index of the element which contains the point. // // Input, int INODE, the local index, between 0 and 5, that // specifies which basis function is to be evaluated. // // Input, double NODE_XY[2*NODE_NUM], the nodes. // // Input, int ELEMENT_NODE[NNODES*ELEMENT_NUM]; // ELEMENT_NODE(I,J) is the global index of local node I in element J. // // Input, int ELEMENT_NUM, the number of elements. // // Input, int NNODES, the number of nodes used to form one element. // // Input, int NODE_NUM, the number of nodes. // // Output, double *B, *DBDX, *DBDY, the value of the basis function // and its X and Y derivatives at (X,Y). // { double dbdr; double dbds; double det; double drdx; double drdy; double dsdx; double dsdy; int i; double r; double s; double xn[6]; double yn[6]; for ( i = 0; i < 6; i++ ) { xn[i] = node_xy[0+element_node[i+element*nnodes]*2]; yn[i] = node_xy[1+element_node[i+element*nnodes]*2]; } // // Determine the (R,S) coordinates corresponding to (X,Y). // // What is happening here is that we are solving the linear system: // // ( X2-X1 X3-X1 ) * ( R ) = ( X - X1 ) // ( Y2-Y1 Y3-Y1 ) ( S ) ( Y - Y1 ) // // by computing the inverse of the coefficient matrix and multiplying // it by the right hand side to get R and S. // // The values of dRdX, dRdY, dSdX and dSdY are easily from the formulas // for R and S. // det = ( xn[1] - xn[0] ) * ( yn[2] - yn[0] ) - ( xn[2] - xn[0] ) * ( yn[1] - yn[0] ); r = ( ( yn[2] - yn[0] ) * ( x - xn[0] ) + ( xn[0] - xn[2] ) * ( y - yn[0] ) ) / det; drdx = ( yn[2] - yn[0] ) / det; drdy = ( xn[0] - xn[2] ) / det; s = ( ( yn[0] - yn[1] ) * ( x - xn[0] ) + ( xn[1] - xn[0] ) * ( y - yn[0] ) ) / det; dsdx = ( yn[0] - yn[1] ) / det; dsdy = ( xn[1] - xn[0] ) / det; // // The basis functions can now be evaluated in terms of the // reference coordinates R and S. It's also easy to determine // the values of the derivatives with respect to R and S. // if ( inode == 0 ) { *b = 2.0 * ( 1.0 - r - s ) * ( 0.5 - r - s ); dbdr = - 3.0 + 4.0 * r + 4.0 * s; dbds = - 3.0 + 4.0 * r + 4.0 * s; } else if ( inode == 1 ) { *b = 2.0 * r * ( r - 0.5 ); dbdr = - 1.0 + 4.0 * r; dbds = 0.0; } else if ( inode == 2 ) { *b = 2.0 * s * ( s - 0.5 ); dbdr = 0.0; dbds = - 1.0 + 4.0 * s; } else if ( inode == 3 ) { *b = 4.0 * r * ( 1.0 - r - s ); dbdr = 4.0 - 8.0 * r - 4.0 * s; dbds = - 4.0 * r; } else if ( inode == 4 ) { *b = 4.0 * r * s; dbdr = 4.0 * s; dbds = 4.0 * r; } else if ( inode == 5 ) { *b = 4.0 * s * ( 1.0 - r - s ); dbdr = - 4.0 * s; dbds = 4.0 - 4.0 * r - 8.0 * s; } else { cout << "\n"; cout << "QBF - Fatal error!\n"; cout << " Request for local basis function INODE = " << inode << "\n"; exit ( 1 ); } // // We need to convert the derivative information from (R(X,Y),S(X,Y)) // to (X,Y) using the chain rule. // *dbdx = dbdr * drdx + dbds * dsdx; *dbdy = dbdr * drdy + dbds * dsdy; return; } //****************************************************************************80 void quad_a ( double node_xy[], int element_node[], int element_num, int node_num, int nnodes, double wq[], double xq[], double yq[] ) //****************************************************************************80 // // Purpose: // // QUAD_A sets the quadrature rule for assembly. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 April 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, double NODE_XY[2*NODE_NUM], the nodes. // // Input, int ELEMENT_NODE[NNODES*ELEMENT_NUM]; // ELEMENT_NODE(I,J) is the global index of local node I in element J. // // Input, int ELEMENT_NUM, the number of elements. // // Input, int NODE_NUM, the number of nodes. // // Input, int NNODES, the number of nodes used to form one element. // // Output, double WQ[3], quadrature weights. // // Output, double XQ[3*ELEMENT_NUM], YQ[3*ELEMENT_NUM], the // coordinates of the quadrature points in each element. // { int element; int ip1; int ip2; int ip3; double x1; double x2; double x3; double y1; double y2; double y3; wq[0] = 1.0 / 3.0; wq[1] = wq[0]; wq[2] = wq[0]; for ( element = 0; element < element_num; element++ ) { ip1 = element_node[0+element*nnodes]; ip2 = element_node[1+element*nnodes]; ip3 = element_node[2+element*nnodes]; x1 = node_xy[0+ip1*2]; x2 = node_xy[0+ip2*2]; x3 = node_xy[0+ip3*2]; y1 = node_xy[1+ip1*2]; y2 = node_xy[1+ip2*2]; y3 = node_xy[1+ip3*2]; xq[0+element*3] = 0.5 * ( x1 + x2 ); xq[1+element*3] = 0.5 * ( x2 + x3 ); xq[2+element*3] = 0.5 * ( x1 + x3 ); yq[0+element*3] = 0.5 * ( y1 + y2 ); yq[1+element*3] = 0.5 * ( y2 + y3 ); yq[2+element*3] = 0.5 * ( y1 + y3 ); } return; } //****************************************************************************80* void quad_e ( double node_xy[], int element_node[], int element, int element_num, int nnodes, int node_num, int nqe, double wqe[], double xqe[], double yqe[] ) //****************************************************************************80* // // Purpose: // // QUAD_E sets a quadrature rule for the error calculation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 April 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, double NODE_XY[2*NODE_NUM], the X and Y coordinates of nodes. // // Input, int ELEMENT_NODE[NNODES*ELEMENT_NUM]; ELEMENT_NODE(I,J) is the global // index of local node I in element J. // // Input, int ELEMENT, the index of the element for which the quadrature // points are to be computed. // // Input, int ELEMENT_NUM, the number of elements. // // Input, int NNODES, the number of nodes used to form one element. // // Input, int NODE_NUM, the number of nodes. // // Input, int NQE, the number of points in the quadrature rule. // This is actually fixed at 13. // // Output, double WQE[NQE], the quadrature weights. // // Output, double XQE[NQE], YQE[NQE], the X and Y coordinates // of the quadrature points. // { int i; int ii; int iii; int ip1; int ip2; int ip3; double x1; double x2; double x3; double y1; double y2; double y3; double z1; double z2; double z3; double z4; double z5; double z6; double z7; for ( i = 0; i < 3; i++ ) { wqe[i] = 0.175615257433204; ii = i + 3; wqe[ii] = 0.053347235608839; ii = i + 6; iii = ii + 3; wqe[ii] = 0.077113760890257; wqe[iii] = wqe[ii]; } wqe[12] = -0.14957004446767; z1 = 0.479308067841923; z2 = 0.260345966079038; z3 = 0.869739794195568; z4 = 0.065130102902216; z5 = 0.638444188569809; z6 = 0.312865496004875; z7 = 0.048690315425316; ip1 = element_node[0+element*nnodes]; ip2 = element_node[1+element*nnodes]; ip3 = element_node[2+element*nnodes]; x1 = node_xy[0+ip1*2]; x2 = node_xy[0+ip2*2]; x3 = node_xy[0+ip3*2]; y1 = node_xy[1+ip1*2]; y2 = node_xy[1+ip2*2]; y3 = node_xy[1+ip3*2]; xqe[ 0] = z1 * x1 + z2 * x2 + z2 * x3; yqe[ 0] = z1 * y1 + z2 * y2 + z2 * y3; xqe[ 1] = z2 * x1 + z1 * x2 + z2 * x3; yqe[ 1] = z2 * y1 + z1 * y2 + z2 * y3; xqe[ 2] = z2 * x1 + z2 * x2 + z1 * x3; yqe[ 2] = z2 * y1 + z2 * y2 + z1 * y3; xqe[ 3] = z3 * x1 + z4 * x2 + z4 * x3; yqe[ 3] = z3 * y1 + z4 * y2 + z4 * y3; xqe[ 4] = z4 * x1 + z3 * x2 + z4 * x3; yqe[ 4] = z4 * y1 + z3 * y2 + z4 * y3; xqe[ 5] = z4 * x1 + z4 * x2 + z3 * x3; yqe[ 5] = z4 * y1 + z4 * y2 + z3 * y3; xqe[ 6] = z5 * x1 + z6 * x2 + z7 * x3; yqe[ 6] = z5 * y1 + z6 * y2 + z7 * y3; xqe[ 7] = z5 * x1 + z7 * x2 + z6 * x3; yqe[ 7] = z5 * y1 + z7 * y2 + z6 * y3; xqe[ 8] = z6 * x1 + z5 * x2 + z7 * x3; yqe[ 8] = z6 * y1 + z5 * y2 + z7 * y3; xqe[ 9] = z6 * x1 + z7 * x2 + z5 * x3; yqe[ 9] = z6 * y1 + z7 * y2 + z5 * y3; xqe[10] = z7 * x1 + z5 * x2 + z6 * x3; yqe[10] = z7 * y1 + z5 * y2 + z6 * y3; xqe[11] = z7 * x1 + z6 * x2 + z5 * x3; yqe[11] = z7 * y1 + z6 * y2 + z5 * y3; xqe[12] = ( x1 + x2 + x3 ) / 3.0; yqe[12] = ( y1 + y2 + y3 ) / 3.0; return; } //****************************************************************************80 double r8_huge ( void ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 May 2003 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" value. // { return ( double ) HUGE_VAL; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 January 2002 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { if ( y < x ) { return x; } else { return y; } } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { if ( y < x ) { return y; } else { return x; } } //****************************************************************************80 int r8_nint ( double x ) //****************************************************************************80 // // Purpose: // // R8_NINT returns the nearest integer to an R8. // // Example: // // X R8_NINT // // 1.3 1 // 1.4 1 // 1.5 1 or 2 // 1.6 2 // 0.0 0 // -0.7 -1 // -1.1 -1 // -1.6 -2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the value. // // Output, int R8_NINT, the nearest integer to X. // { int s; if ( x < 0.0 ) { s = -1; } else { s = 1; } return ( s * ( int ) ( fabs ( x ) + 0.5 ) ); } //****************************************************************************80 void r8vec_print_some ( int n, double a[], int i_lo, int i_hi, char *title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT_SOME prints "some" of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8 values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 October 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries of the vector. // // Input, double A[N], the vector to be printed. // // Input, integer I_LO, I_HI, the first and last indices to print. // The routine expects 1 <= I_LO <= I_HI <= N. // // Input, char *TITLE, an optional title. // { int i; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } cout << "\n"; for ( i = i4_max ( 1, i_lo ); i <= i4_min ( n, i_hi ); i++ ) { cout << " " << setw(8) << i << " " << " " << setw(14) << a[i-1] << "\n"; } return; } //****************************************************************************80* double rhs ( double x, double y, double time ) //****************************************************************************80* // // Purpose: // // RHS gives the right-hand side of the differential equation. // // Discussion: // // The function specified here depends on the problem being // solved. This is one of the routines that a user will // normally want to change. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 April 2006 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, double X, Y, the coordinates of a point // in the region, at which the right hand side of the // differential equation is to be evaluated. // // Input, double TIME, the current time. // // Output, double RHS, the value of the right // hand side of the differential equation at (X,Y). // { # define PI 3.141592653589793 double ut; double uxx; double uyy; double value; ut = - sin ( PI * x ) * sin ( PI * y ) * exp ( - time ); uxx = - PI * PI * sin ( PI * x ) * sin ( PI * y ) * exp ( - time ); uyy = - PI * PI * sin ( PI * x ) * sin ( PI * y ) * exp ( - time ); value = ut - uxx - uyy; return value; # undef PI } //****************************************************************************80 int s_len_trim ( char *s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 April 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, a pointer to a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; char* t; n = strlen ( s ); t = s + strlen ( s ) - 1; while ( 0 < n ) { if ( *t != ' ' ) { return n; } t--; n--; } return n; } //****************************************************************************80* void solution_write ( int node_num, double u[], char *u_file_name ) //****************************************************************************80* // // Purpose: // // SOLUTION_WRITE writes the solution to a file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double U[NODE_NUM], the coefficients of the solution. // // Input, char *U_FILE_NAME, the name of the file // in which the data should be stored. // { int node; ofstream u_file; u_file.open ( u_file_name ); if ( !u_file ) { cout << "\n"; cout << "SOLUTION_WRITE - Warning!\n"; cout << " Could not write the solution file \"" << u_file_name << "\".\n"; return; } for ( node = 0; node < node_num; node++ ) { u_file << setw(14) << u[node] << "\n"; } u_file.close ( ); return; } //****************************************************************************80 void timestamp ( void ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 void triangulation_order6_plot ( char *file_name, int node_num, double node_xy[], int tri_num, int triangle_node[], int node_show, int triangle_show ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER6_PLOT plots a 6-node triangulation of a pointset. // // Discussion: // // The triangulation is most usually a Delaunay triangulation, // but this is not necessary. // // This routine has been specialized to deal correctly ONLY with // a mesh of 6 node elements, with the property that starting // from local node 1 and traversing the edges of the element will // result in encountering local nodes 1, 4, 2, 5, 3, 6 in that order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 September 2006 // // Author: // // John Burkardt // // Parameters: // // Input, char *FILE_NAME, the name of the file to create. // // Input, int NODE_NUM, the number of nodes. // // Input, double precision NODE_XY[2*NODE_NUM], the nodes. // // Input, int TRI_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[6*TRI_NUM], lists, for each triangle, // the indices of the points that form the vertices and midsides // of the triangle. // // Input, int NODE_SHOW: // 0, do not show nodes; // 1, show nodes; // 2, show nodes and label them. // // Input, int TRIANGLE_SHOW: // 0, do not show triangles; // 1, show triangles; // 2, show triangles and label them. // { double ave_x; double ave_y; int circle_size; int delta; int e; ofstream file_unit; int i; int ip1; int node; int order[6] = { 0, 3, 1, 4, 2, 5 }; int triangle; double x_max; double x_min; int x_ps; int x_ps_max = 576; int x_ps_max_clip = 594; int x_ps_min = 36; int x_ps_min_clip = 18; double x_scale; double y_max; double y_min; int y_ps; int y_ps_max = 666; int y_ps_max_clip = 684; int y_ps_min = 126; int y_ps_min_clip = 108; double y_scale; // // We need to do some figuring here, so that we can determine // the range of the data, and hence the height and width // of the piece of paper. // x_max = -r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( x_max < node_xy[0+node*2] ) { x_max = node_xy[0+node*2]; } } x_min = r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( node_xy[0+node*2] < x_min ) { x_min = node_xy[0+node*2]; } } x_scale = x_max - x_min; x_max = x_max + 0.05 * x_scale; x_min = x_min - 0.05 * x_scale; x_scale = x_max - x_min; y_max = -r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( y_max < node_xy[1+node*2] ) { y_max = node_xy[1+node*2]; } } y_min = r8_huge ( ); for ( node = 0; node < node_num; node++ ) { if ( node_xy[1+node*2] < y_min ) { y_min = node_xy[1+node*2]; } } y_scale = y_max - y_min; y_max = y_max + 0.05 * y_scale; y_min = y_min - 0.05 * y_scale; y_scale = y_max - y_min; if ( x_scale < y_scale ) { delta = r8_nint ( ( double ) ( x_ps_max - x_ps_min ) * ( y_scale - x_scale ) / ( 2.0 * y_scale ) ); x_ps_max = x_ps_max - delta; x_ps_min = x_ps_min + delta; x_ps_max_clip = x_ps_max_clip - delta; x_ps_min_clip = x_ps_min_clip + delta; x_scale = y_scale; } else if ( y_scale < x_scale ) { delta = r8_nint ( ( double ) ( y_ps_max - y_ps_min ) * ( x_scale - y_scale ) / ( 2.0 * x_scale ) ); y_ps_max = y_ps_max - delta; y_ps_min = y_ps_min + delta; y_ps_max_clip = y_ps_max_clip - delta; y_ps_min_clip = y_ps_min_clip + delta; y_scale = x_scale; } file_unit.open ( file_name ); if ( !file_unit ) { cout << "\n"; cout << "TRIANGULATION_ORDER6_PLOT - Fatal error!\n"; cout << " Could not open the output EPS file.\n"; exit ( 1 ); } file_unit << "%!PS-Adobe-3.0 EPSF-3.0\n"; file_unit << "%%Creator: triangulation_order6_plot.C\n"; file_unit << "%%Title: " << file_name << "\n"; file_unit << "%%Pages: 1\n"; file_unit << "%%BoundingBox: " << x_ps_min << " " << y_ps_min << " " << x_ps_max << " " << y_ps_max << "\n"; file_unit << "%%Document-Fonts: Times-Roman\n"; file_unit << "%%LanguageLevel: 1\n"; file_unit << "%%EndComments\n"; file_unit << "%%BeginProlog\n"; file_unit << "/inch {72 mul} def\n"; file_unit << "%%EndProlog\n"; file_unit << "%%Page: 1 1\n"; file_unit << "save\n"; file_unit << "%\n"; file_unit << "% Set the RGB line color to very light gray.\n"; file_unit << "%\n"; file_unit << " 0.9000 0.9000 0.9000 setrgbcolor\n"; file_unit << "%\n"; file_unit << "% Draw a gray border around the page.\n"; file_unit << "%\n"; file_unit << "newpath\n"; file_unit << x_ps_min << " " << y_ps_min << " moveto\n"; file_unit << x_ps_max << " " << y_ps_min << " lineto\n"; file_unit << x_ps_max << " " << y_ps_max << " lineto\n"; file_unit << x_ps_min << " " << y_ps_max << " lineto\n"; file_unit << x_ps_min << " " << y_ps_min << " lineto\n"; file_unit << "stroke\n"; file_unit << "%\n"; file_unit << "% Set RGB line color to black.\n"; file_unit << "%\n"; file_unit << " 0.0000 0.0000 0.0000 setrgbcolor\n"; file_unit << "%\n"; file_unit << "% Set the font and its size:\n"; file_unit << "%\n"; file_unit << "/Times-Roman findfont\n"; file_unit << "0.50 inch scalefont\n"; file_unit << "setfont\n"; file_unit << "%\n"; file_unit << "% Print a title:\n"; file_unit << "%\n"; file_unit << "% 210 702 moveto\n"; file_unit << "%(Pointset) show\n"; file_unit << "%\n"; file_unit << "% Define a clipping polygon\n"; file_unit << "%\n"; file_unit << "newpath\n"; file_unit << x_ps_min_clip << " " << y_ps_min_clip << " moveto\n"; file_unit << x_ps_max_clip << " " << y_ps_min_clip << " lineto\n"; file_unit << x_ps_max_clip << " " << y_ps_max_clip << " lineto\n"; file_unit << x_ps_min_clip << " " << y_ps_max_clip << " lineto\n"; file_unit << x_ps_min_clip << " " << y_ps_min_clip << " lineto\n"; file_unit << "clip newpath\n"; // // Draw the nodes. // if ( node_num <= 200 ) { circle_size = 5; } else if ( node_num <= 500 ) { circle_size = 4; } else if ( node_num <= 1000 ) { circle_size = 3; } else if ( node_num <= 5000 ) { circle_size = 2; } else { circle_size = 1; } if ( 1 <= node_show ) { file_unit << "%\n"; file_unit << "% Draw filled dots at each node:\n"; file_unit << "%\n"; file_unit << "% Set the color to blue:\n"; file_unit << "%\n"; file_unit << "0.000 0.150 0.750 setrgbcolor\n"; file_unit << "%\n"; for ( node = 0; node < node_num; node++ ) { x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); file_unit << "newpath " << x_ps << " " << y_ps << " " << circle_size << " 0 360 arc closepath fill\n"; } } // // Label the nodes. // if ( 2 <= node_show ) { file_unit << "%\n"; file_unit << "% Label the nodes:\n"; file_unit << "%\n"; file_unit << "% Set the color to darker blue:\n"; file_unit << "%\n"; file_unit << "0.000 0.250 0.850 setrgbcolor\n"; file_unit << "/Times-Roman findfont\n"; file_unit << "0.20 inch scalefont\n"; file_unit << "setfont\n"; file_unit << "%\n"; for ( node = 0; node < node_num; node++ ) { x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); file_unit << "newpath " << x_ps << " " << y_ps + 5 << " moveto (" << node << ") show\n"; } } // // Draw the triangles. // if ( 1 <= triangle_show ) { file_unit << "%\n"; file_unit << "% Set the RGB color to red.\n"; file_unit << "%\n"; file_unit << "0.900 0.200 0.100 setrgbcolor\n"; file_unit << "%\n"; file_unit << "% Draw the triangles.\n"; file_unit << "%\n"; for ( triangle = 0; triangle < tri_num; triangle++ ) { node = triangle_node[order[0]+triangle*6]; x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); file_unit << "newpath " << x_ps << " " << y_ps << " moveto\n"; for ( i = 1; i <= 6; i++ ) { ip1 = ( i % 6 ); node = triangle_node[order[ip1]+triangle*6]; x_ps = ( int ) ( ( ( x_max - node_xy[0+node*2] ) * ( double ) ( x_ps_min ) + ( + node_xy[0+node*2] - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - node_xy[1+node*2] ) * ( double ) ( y_ps_min ) + ( node_xy[1+node*2] - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); file_unit << x_ps << " " << y_ps << " lineto\n"; } file_unit << "stroke\n"; } } // // Label the triangles. // if ( 2 <= triangle_show ) { file_unit << "%\n"; file_unit << "% Label the triangles.\n"; file_unit << "%\n"; file_unit << "% Set the RGB color to darker red.\n"; file_unit << "%\n"; file_unit << "0.950 0.250 0.150 setrgbcolor\n"; file_unit << "/Times-Roman findfont\n"; file_unit << "0.20 inch scalefont\n"; file_unit << "setfont\n"; file_unit << "%\n"; for ( triangle = 0; triangle < tri_num; triangle++ ) { ave_x = 0.0; ave_y = 0.0; for ( i = 0; i < 6; i++ ) { node = triangle_node[i+triangle*6]; ave_x = ave_x + node_xy[0+node*2]; ave_y = ave_y + node_xy[1+node*2]; } ave_x = ave_x / 6.0; ave_y = ave_y / 6.0; x_ps = ( int ) ( ( ( x_max - ave_x ) * ( double ) ( x_ps_min ) + ( + ave_x - x_min ) * ( double ) ( x_ps_max ) ) / ( x_max - x_min ) ); y_ps = ( int ) ( ( ( y_max - ave_y ) * ( double ) ( y_ps_min ) + ( ave_y - y_min ) * ( double ) ( y_ps_max ) ) / ( y_max - y_min ) ); file_unit << setw(4) << x_ps << " " << setw(4) << y_ps << " " << "moveto (" << triangle << ") show\n"; } } file_unit << "%\n"; file_unit << "restore showpage\n"; file_unit << "%\n"; file_unit << "% End of page\n"; file_unit << "%\n"; file_unit << "%%Trailer\n"; file_unit << "%%EOF\n"; file_unit.close ( ); return; } //****************************************************************************80 void xy_set ( int nx, int ny, int node_num, double xl, double xr, double yb, double yt, double node_xy[] ) //****************************************************************************80 // // Purpose: // // XY_SET sets the XY coordinates of the nodes. // // Discussion: // // The nodes are laid out in an evenly spaced grid, in the unit square. // // The first node is at the origin. More nodes are created to the // right until the value of X = 1 is reached, at which point // the next layer is generated starting back at X = 0, and an // increased value of Y. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 April 2004 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, int NX, NY, the number of elements in the X and // Y direction. // // Input, int NODE_NUM, the number of nodes. // // Input, double XL, XR, YB, YT, the X coordinates of // the left and right sides of the rectangle, and the Y coordinates // of the bottom and top of the rectangle. // // Output, double NODE_XY[2*NODE_NUM], the nodes. // { int i; int j; for ( j = 0; j < 2*ny - 1; j++ ) { for ( i = 0; i < 2*nx - 1; i++ ) { node_xy[0+(i+j*(2*nx-1))*2] = ( double ( 2 * nx - i - 2 ) * xl + double ( i ) * xr ) / double ( 2 * nx - 2 ); node_xy[1+(i+j*(2*nx-1))*2] = ( double ( 2 * ny - j - 2 ) * yb + double ( j ) * yt ) / double ( 2 * ny - 2 ); } } return; }