# include # include # include # include using namespace std; double *dirichlet_condition ( int node_num, double node_xy[], double time ); double *initial_condition ( int node_num, double node_xy[], double time ); double k_coef ( int node_num, double node_xy[], double time ); double rhs ( int node_num, double node_xy[], double time ); //****************************************************************************80 double *dirichlet_condition ( int node_num, double node_xy[], double time ) //****************************************************************************80 // // Purpose: // // DIRICHLET_CONDITION sets the value of a Dirichlet boundary condition. // // Discussion: // // The input points (X,Y) are assumed to lie on the boundary of the // region. // // This routine is set for the unit square. // // We assume that the equation to be solved is // // dUdT - Laplacian U + K * U = F // // with K = 0, and F = (2*pi*pi-1)*sin(pi*x)*sin(pi*y)*exp(-t). // // The exact solution is: // // U = sin(pi*x) * sin(pi*y) * exp(-t) // // Modified: // // 04 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of points. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the points. // // Input, double TIME, the current time. // // Output, double DIRICHLET_CONDITION[NODE_NUM], the value of // the solution at the the point. // { int node; double pi = 3.141592653589793; double *u; u = new double[node_num]; for ( node = 0; node < node_num; node++ ) { u[node] = sin ( pi * node_xy[0+node*2] ) * sin ( pi * node_xy[1+node*2] ) * exp ( - time ); } return u; } //****************************************************************************80 double *initial_condition ( int node_num, double node_xy[], double time ) //****************************************************************************80 // // Purpose: // // INITIAL_CONDITION sets the initial condition. // // Discussion: // // The input value TIME is assumed to be the initial time. // // We assume that the equation to be solved is // // dUdT - Laplacian U + K * U = F // // with K = 0, and F = (2*pi*pi-1)*sin(pi*x)*sin(pi*y)*exp(-t). // // The exact solution is: // // U = sin(pi*x) * sin(pi*y) * exp(-t) // // Modified: // // 08 January 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of points. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the points. // // Input, double TIME, the current time. // // Output, double INITIAL_CONDITION[NODE_NUM], the value of the // solution at the the initial time. // { int node; double pi = 3.141592653589793; double *u; u = new double[node_num]; for ( node = 0; node < node_num; node++ ) { u[node] = sin ( pi * node_xy[0+node*2] ) * sin ( pi * node_xy[1+node*2] ) * exp ( - time ); } return u; } //****************************************************************************80 double k_coef ( int node_num, double node_xy[], double time ) //****************************************************************************80 // // Purpose: // // K_COEF evaluates the coefficient K(X,Y,T) function. // // Discussion: // // Right now, we are assuming that NODE_NUM is always 1! // // We assume that the equation to be solved is // // dUdT - Laplacian U + K * U = F // // with K = 0, and F = (2*pi*pi-1)*sin(pi*x)*sin(pi*y)*exp(-t). // // The exact solution is: // // U = sin(pi*x) * sin(pi*y) * exp(-t) // // Modified: // // 08 January 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of points. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the points. // // Input, double TIME, the current time. // // Output, double K_COEF, the value of the coefficient. // { double k; k = 0.0; return k; } //****************************************************************************80 double rhs ( int node_num, double node_xy[], double time ) //****************************************************************************80 // // Purpose: // // RHS gives the right-hand side of the differential equation. // // Discussion: // // Right now, we are assuming that NODE_NUM is always 1! // // We assume that the equation to be solved is // // dUdT - Laplacian U + K * U = F // // with // // K = 0, // // and // // F = (2*pi*pi-1)*sin(pi*x)*sin(pi*y)*exp(-t). // // The exact solution is: // // U = sin(pi*x) * sin(pi*y) * exp(-t) // // Modified: // // 08 January 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of points. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the points. // // Input, double TIME, the current time. // // Output, double RHS, the value of the right hand side. // { double f; double pi = 3.141592653589793; f = ( 2.0 * pi * pi - 1.0 ) * sin ( pi * node_xy[0] ) * sin ( pi * node_xy[1] ) * exp ( - time ); return f; }