25 January 2013 03:47:46 PM FEM2D_POISSON_CG: C++ version: Compiled on Jan 25 2013 at 15:43:17. A version of FEM2D_POISSON using sparse storage and a conjugate gradient solver. Solution of the Poisson equation in an arbitrary region in 2 dimensions. - DEL H(x,y) DEL U(x,y) + K(x,y) * U(x,y) = F(x,y) in the region U(x,y) = G(x,y) on the boundary. The finite element method is used, with triangular elements, which must be a 3 node linear triangle. Node file is "lake_nodes.txt". Element file is "lake_elements.txt". Number of nodes = 621 First 10 nodes Row: 1 2 Col 1 316.43 404.476 2 291.049 400.709 3 265.165 409.779 4 241.468 402.403 5 216.551 396.521 6 163.285 411.371 7 142.818 391.164 8 111.954 346.703 9 100.035 325.727 10 103.987 302.516 Element order = 3 Number of elements = 974 First 10 elements Row: 1 2 3 Col 1 619 618 39 2 620 619 39 3 125 126 7 4 125 132 126 5 143 135 150 6 143 150 154 7 481 69 482 8 454 68 464 9 460 472 473 10 460 450 472 Quadrature order = 3 Number of nonzero coefficients NZ_NUM = 3811 Step Residual 1 138793 2 757.662 3 31.5049 4 11.4326 5 3.05359 6 0.674972 7 0.258405 8 0.0704248 9 0.0215879 10 0.00739491 11 0.00205654 12 0.000726642 13 0.000222717 Number of iterations was 13 Estimated error is 6.29787e-05 Part of the solution vector vector U: 1 1.05491 2 0.981111 3 0.952925 4 0.88094 5 0.816493 6 0.783552 7 0.693623 8 0.530946 9 0.464421 10 0.409317 Wrote an ASCII file "lake_values.txt". of the form U ( X(I), Y(I) ) which can be used for plotting. FEM2D_POISSON_CG: Normal end of execution. 25 January 2013 03:47:46 PM