# include # include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); void assemble_poisson_dsp ( int node_num, double node_xy[], int element_num, int element_node[], int quad_num, int nz_num, int ia[], int ja[], double a[], double f[] ); void ax ( double *a, int *ia, int *ja, double *x, double *w, int n, int nz_num ); void basis_one_t3 ( double t[2*3], int i, double p[2], double *qi, double *dqidx, double *dqidy ); char ch_cap ( char c ); bool ch_eqi ( char c1, char c2 ); int ch_to_digit ( char c ); void dirichlet_apply_dsp ( int node_num, double node_xy[], int node_condition[], int nz_num, int ia[], int ja[], double a[], double f[] ); void dirichlet_condition ( int node_num, double node_xy[], double node_rhs[] ); int dsp_ij_to_k ( int nz_num, int row[], int col[], int i, int j ); void dsp_print_some ( int m, int n, int nz_num, int row[], int col[], double a[], int ilo, int jlo, int ihi, int jhi, string title ); int file_column_count ( string input_filename ); int file_row_count ( string input_filename ); void h_coef ( int node_num, double node_xy[], double node_h[] ); int i4_max ( int i1, int i2 ); int i4_min ( int i1, int i2 ); int i4_modp ( int i, int j ); int i4_wrap ( int ival, int ilo, int ihi ); int i4col_compare ( int m, int n, int a[], int i, int j ); void i4col_sort_a ( int m, int n, int a[] ); void i4col_swap ( int m, int n, int a[], int icol1, int icol2 ); int *i4mat_data_read ( string input_filename, int m, int n ); void i4mat_header_read ( string input_filename, int *m, int *n ); void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ); int i4vec2_compare ( int n, int a1[], int a2[], int i, int j ); void i4vec2_sort_a ( int n, int a1[], int a2[] ); void k_coef ( int node_num, double node_xy[], double node_k[] ); void mgmres ( double a[], int ia[], int ja[], double x[], double rhs[], int n, int nz_num, int itr_max, int mr, double tol_abs, double tol_rel ); void mult_givens ( double c, double s, int k, double g[] ); void quad_rule ( int quad_num, double quad_w[], double quad_xy[] ); double r8_abs ( double x ); double r8_huge ( void ); int r8_nint ( double x ); void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ); double *r8mat_data_read ( string input_filename, int m, int n ); void r8mat_header_read ( string input_filename, int *m, int *n ); void r8mat_write ( string output_filename, int m, int n, double table[] ); double r8vec_amax ( int n, double a[] ); double r8vec_dot_product ( int n, double a1[], double a2[] ); void r8vec_print_some ( int n, double a[], int i_lo, int i_hi, string title ); double *r8vec_uniform_01 ( int n, int *seed ); void rhs ( int node_num, double node_xy[], double node_rhs[] ); void reference_to_physical_t3 ( double t[2*3], int n, double ref[], double phy[] ); int s_len_trim ( string s ); int s_to_i4 ( string s, int *last, bool *error ); bool s_to_i4vec ( string s, int n, int ivec[] ); double s_to_r8 ( string s, int *lchar, bool *error ); bool s_to_r8vec ( string s, int n, double rvec[] ); int s_word_count ( string s ); void solution_evaluate ( double xy[2], double t[2*3], double node_u[3], double *u, double *dudx, double *dudy ); void sort_heap_external ( int n, int *indx, int *i, int *j, int isgn ); void timestamp ( void ); double triangle_area_2d ( double t[2*3] ); int triangulation_order3_adj_count ( int node_num, int triangle_num, int triangle_node[], int triangle_neighbor[], int adj_col[] ); void triangulation_order3_adj_set2 ( int node_num, int triangle_num, int triangle_node[], int triangle_neighbor[], int adj_num, int adj_col[], int ia[], int ja[] ); bool *triangulation_order3_boundary_node ( int node_num, int element_num, int element_node[] ); void triangulation_order3_neighbor_triangles ( int triangle_num, int triangle_node[], int triangle_neighbor[] ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for FEM2D_POISSON_SPARSE. // // Discussion: // // This program uses a sparse matrix storage format and an iterative solver, // which allow it to solve larger problems faster. // // This program solves the Poisson equation // // -DEL H(X,Y) DEL U(X,Y) + K(X,Y) * U(X,Y) = F(X,Y) // // in a triangulated region in the plane. // // Along the boundary of the region, Dirichlet conditions // are imposed: // // U(X,Y) = G(X,Y) // // The code uses continuous piecewise linear basis functions on // triangles. // // Problem specification: // // The user defines the geometry by supplying two data files // which list the node coordinates, and list the nodes that make up // each element. // // The user specifies the right hand side of the Dirichlet boundary // conditions by supplying a function // // void dirichlet_condition ( int node_num, double node_xy[2*node_num], // double node_bc[node_num] ) // // The user specifies the coefficient function H(X,Y) of the Poisson // equation by supplying a routine of the form // // void h_coef ( int node_num, double node_xy[2*node_num], // double node_h[node_num] ) // // The user specifies the coefficient function K(X,Y) of the Poisson // equation by supplying a routine of the form // // void k_coef ( int node_num, double node_xy[2*node_num], // double node_k[node_num] ) // // The user specifies the right hand side of the Poisson equation // by supplying a routine of the form // // void rhs ( int node_num, double node_xy[2*node_num], // double node_f[node_num] ) // // Usage: // // fem2d_poisson_sparse prefix // // where 'prefix' is the common filename prefix so that: // // * prefix_nodes.txt contains the coordinates of the nodes; // * prefix_elements.txt contains the indices of nodes forming each element. // // Files created include: // // * prefix_values.txt, the value of the solution at every node. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 January 2013 // // Author: // // John Burkardt // // Local parameters: // // Local, double A[NZ_NUM], the coefficient matrix. // // Local, int ELEMENT_NODE[3*ELEMENT_NUM]; // ELEMENT_NODE(I,J) is the global index of local node I in element J. // // Local, int ELEMENT_NUM, the number of elements. // // Local, integer ELEMENT_ORDER, the element order. // // Local, double F[NODE_NUM], the right hand side. // // Local, int IA[NZ_NUM], the row indices of the nonzero entries // of the coefficient matrix. // // Local, int JA[NZ_NUM], the column indices of the nonzero entries // of the coefficient matrix. // // Local, bool NODE_BOUNDARY[NODE_NUM], is TRUE if the node is // found to lie on the boundary of the region. // // Local, int NODE_CONDITION[NODE_NUM], // indicates the condition used to determine the variable at a node. // 0, there is no condition (and no variable) at this node. // 1, a finite element equation is used; // 2, a Dirichlet condition is used. // 3, a Neumann condition is used. // // Local, int NODE_NUM, the number of nodes. // // Local, double NODE_U[NODE_NUM], the finite element coefficients. // // Local, double NODE_XY[2*NODE_NUM], the coordinates of nodes. // // Local, int NZ_NUM, the number of nonzero entries // in the coefficient matrix. // // Local, integer QUAD_NUM, the number of quadrature points used for // assembly. This is currently set to 3, the lowest reasonable value. // Legal values are 1, 3, 4, 6, 7, 9, 13, and for some problems, a value // of QUAD_NUM greater than 3 may be appropriate. // { double *a; int *adj_col; bool debug = false; int dim_num; string element_filename; int *element_neighbor; int *element_node; int element_num; int element_order; int element_show; double *f; int *ia; int ierr; int itr_max; int *ja; int job; int mr; int node; bool *node_boundary; int *node_condition; string node_filename; bool node_label; int node_num; int node_show; double *node_u; double *node_xy; int nz_num; string prefix; int quad_num = 3; int seed = 123456789; string solution_filename; double temp; double tol_abs; double tol_rel; timestamp ( ); cout << "\n"; cout << "FEM2D_POISSON_SPARSE:\n"; cout << " C++ version:\n"; cout << "\n"; cout << " Compiled on " << __DATE__ << " at " << __TIME__ << ".\n"; cout << "\n"; cout << " A finite element method solver for the Poisson problem\n"; cout << " in an arbitrary triangulated region in 2 dimensions,\n"; cout << " using sparse storage and an iterative solver.\n"; cout << "\n"; cout << " - DEL H(x,y) DEL U(x,y) + K(x,y) * U(x,y) = F(x,y) in the region\n"; cout << "\n"; cout << " U(x,y) = G(x,y) on the boundary.\n"; cout << "\n"; cout << " The finite element method is used,\n"; cout << " with triangular elements,\n"; cout << " which must be a 3 node linear triangle.\n"; // // Get the filename prefix. // if ( 1 <= argc ) { prefix = argv[1]; } else { cout << "\n"; cout << " Please enter the filename prefix:\n"; cin >> prefix; } // // Create the file names. // node_filename = prefix + "_nodes.txt"; element_filename = prefix + "_elements.txt"; solution_filename = prefix + "_values.txt"; cout << "\n"; cout << " Node file is \"" << node_filename << "\".\n"; cout << " Element file is \"" << element_filename << "\".\n"; // // Read the node coordinate file. // r8mat_header_read ( node_filename, &dim_num, &node_num ); cout << " Number of nodes = " << node_num << "\n"; node_condition = new int[node_num]; node_xy = r8mat_data_read ( node_filename, dim_num, node_num ); r8mat_transpose_print_some ( dim_num, node_num, node_xy, 1, 1, 2, 10, " First 10 nodes" ); // // Read the triangle description file. // i4mat_header_read ( element_filename, &element_order, &element_num ); cout << "\n"; cout << " Element order = " << element_order << "\n"; cout << " Number of elements = " << element_num << "\n"; if ( element_order != 3 ) { cout << "\n"; cout << "FEM2D_POISSON_SPARSE - Fatal error!\n"; cout << " The input triangulation has order " << element_order << "\n"; cout << " However, a triangulation of order 3 is required.\n"; exit ( 1 ); } element_node = i4mat_data_read ( element_filename, element_order, element_num ); i4mat_transpose_print_some ( 3, element_num, element_node, 1, 1, 3, 10, " First 10 elements" ); cout << "\n"; cout << " Quadrature order = " << quad_num << "\n"; // // Determine which nodes are boundary nodes and which have a // finite element unknown. Then set the boundary values. // node_boundary = triangulation_order3_boundary_node ( node_num, element_num, element_node ); // // Determine the node conditions. // For now, we'll just assume all boundary nodes are Dirichlet. // for ( node = 0; node < node_num; node++ ) { if ( node_boundary[node] ) { node_condition[node] = 2; } else { node_condition[node] = 1; } } // // Determine the element neighbor array, just so we can estimate // the nonzeros. // element_neighbor = new int[3*element_num]; triangulation_order3_neighbor_triangles ( element_num, element_node, element_neighbor ); // // Count the number of nonzeros. // adj_col = new int[node_num+1]; nz_num = triangulation_order3_adj_count ( node_num, element_num, element_node, element_neighbor, adj_col ); cout << "\n"; cout << " Number of nonzero coefficients NZ_NUM = " << nz_num << "\n"; // // Set up the sparse row and column index vectors. // ia = new int[nz_num]; ja = new int[nz_num]; triangulation_order3_adj_set2 ( node_num, element_num, element_node, element_neighbor, nz_num, adj_col, ia, ja ); delete [] adj_col; delete [] element_neighbor; // // Allocate space for the coefficient matrix A and right hand side F. // a = new double[nz_num]; f = new double[node_num]; // // Assemble the finite element coefficient matrix A and the right-hand side F. // assemble_poisson_dsp ( node_num, node_xy, element_num, element_node, quad_num, nz_num, ia, ja, a, f ); // // Print a portion of the matrix. // if ( debug ) { dsp_print_some ( node_num, node_num, nz_num, ia, ja, a, 1, 1, 10, 10, " Part of Finite Element matrix A:" ); r8vec_print_some ( node_num, f, 1, 10, " Part of right hand side vector F:" ); } // // Adjust the linear system to account for Dirichlet boundary conditions. // dirichlet_apply_dsp ( node_num, node_xy, node_condition, nz_num, ia, ja, a, f ); if ( debug ) { dsp_print_some ( node_num, node_num, nz_num, ia, ja, a, 1, 1, 10, 10, " Part of finite Element matrix A after boundary adjustments:" ); r8vec_print_some ( node_num, f, 1, 10, " Part of right hand side vector F:" ); } // // Solve the linear system using an iterative solver. // node_u = r8vec_uniform_01 ( node_num, &seed ); itr_max = 20; mr = 20; tol_abs = 0.000001; tol_rel = 0.000001; mgmres ( a, ia, ja, node_u, f, node_num, nz_num, itr_max, mr, tol_abs, tol_rel ); r8vec_print_some ( node_num, node_u, 1, 10, " Part of the solution vector vector U:" ); // // Write an ASCII file that can be read into MATLAB. // r8mat_write ( solution_filename, 1, node_num, node_u ); cout << "\n"; cout << "FEM2D_POISSON_SPARSE:\n"; cout << " Wrote an ASCII file\n"; cout << " \"" << solution_filename << "\".\n"; cout << " of the form\n"; cout << " U ( X(I), Y(I) )\n"; cout << " which can be used for plotting.\n"; if ( debug ) { r8vec_print_some ( node_num, node_u, 1, 10, " Part of the solution vector:" ); } // // Free memory. // delete [] a; delete [] element_node; delete [] f; delete [] ia; delete [] ja; delete [] node_boundary; delete [] node_condition; delete [] node_u; delete [] node_xy; // // Terminate. // cout << "\n"; cout << "FEM2D_POISSON_SPARSE:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void assemble_poisson_dsp ( int node_num, double node_xy[], int element_num, int element_node[], int quad_num, int nz_num, int ia[], int ja[], double a[], double f[] ) //****************************************************************************80 // // Purpose: // // ASSEMBLE_POISSON_DSP assembles the system for the Poisson equation. // // Discussion: // // The matrix is sparse, and stored in the DSP or "sparse triple" format. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 July 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the // coordinates of nodes. // // Input, int ELEMENT_NUM, the number of triangles. // // Input, int ELEMENT_NODE[3*ELEMENT_NUM]; // ELEMENT_NODE(I,J) is the global index of local node I in triangle J. // // Input, int QUAD_NUM, the number of quadrature points used in assembly. // // Input, int NZ_NUM, the number of nonzero entries. // // Input, int IA[NZ_NUM], JA[NZ_NUM], the row and column // indices of the nonzero entries. // // Output, double A[NZ_NUM], the nonzero entries of the matrix. // // Output, double F(NODE_NUM), the right hand side. // // Local parameters: // // Local, double BI, DBIDX, DBIDY, the value of some basis function // and its first derivatives at a quadrature point. // // Local, double BJ, DBJDX, DBJDY, the value of another basis // function and its first derivatives at a quadrature point. // { double area; int basis; double bi; double bj; double dbidx; double dbidy; double dbjdx; double dbjdy; int element; int i; int j; int k; double k_value; int node; int nz; double p[2]; double *phys_h; double *phys_k; double *phys_rhs; double *phys_xy; int quad; double *quad_w; double *quad_xy; double t3[2*3]; int test; double *w; phys_h = new double[quad_num]; phys_k = new double[quad_num]; phys_rhs = new double[quad_num]; phys_xy = new double[2*quad_num]; quad_w = new double[quad_num]; quad_xy = new double[2*quad_num]; w = new double[quad_num]; // // Initialize the arrays to zero. // for ( node = 0; node < node_num; node++ ) { f[node] = 0.0; } for ( nz = 0; nz < nz_num; nz++ ) { a[nz] = 0.0; } // // Get the quadrature weights and nodes. // quad_rule ( quad_num, quad_w, quad_xy ); // // Add up all quantities associated with the ELEMENT-th element. // for ( element = 0; element < element_num; element++ ) { // // Make a copy of the element. // for ( j = 0; j < 3; j++ ) { for ( i = 0; i < 2; i++ ) { t3[i+j*2] = node_xy[i+(element_node[j+element*3]-1)*2]; } } // // Map the quadrature points QUAD_XY to points XY in the physical element. // reference_to_physical_t3 ( t3, quad_num, quad_xy, phys_xy ); area = r8_abs ( triangle_area_2d ( t3 ) ); for ( quad = 0; quad < quad_num; quad++ ) { w[quad] = quad_w[quad] * area; } rhs ( quad_num, phys_xy, phys_rhs ); h_coef ( quad_num, phys_xy, phys_h ); k_coef ( quad_num, phys_xy, phys_k ); // // Consider the QUAD-th quadrature point. // for ( quad = 0; quad < quad_num; quad++ ) { p[0] = phys_xy[0+quad*2]; p[1] = phys_xy[1+quad*2]; // // Consider the TEST-th test function. // // We generate an integral for every node associated with an unknown. // But if a node is associated with a boundary condition, we do nothing. // for ( test = 1; test <= 3; test++ ) { i = element_node[test-1+element*3]; basis_one_t3 ( t3, test, p, &bi, &dbidx, &dbidy ); f[i-1] = f[i-1] + w[quad] * phys_rhs[quad] * bi; // // Consider the BASIS-th basis function, which is used to form the // value of the solution function. // for ( basis = 1; basis <= 3; basis++ ) { j = element_node[basis-1+element*3]; basis_one_t3 ( t3, basis, p, &bj, &dbjdx, &dbjdy ); k = dsp_ij_to_k ( nz_num, ia, ja, i, j ); a[k-1] = a[k-1] + w[quad] * ( phys_h[quad] * ( dbidx * dbjdx + dbidy * dbjdy ) + phys_k[quad] * bj * bi ); } } } } delete [] phys_h; delete [] phys_k; delete [] phys_rhs; delete [] phys_xy; delete [] quad_w; delete [] quad_xy; delete [] w; return; } //****************************************************************************80 void ax ( double *a, int *ia, int *ja, double *x, double *w, int n, int nz_num ) //****************************************************************************80 // // Purpose: // // AX computes A * X for a sparse matrix. // // Discussion: // // The matrix A is assumed to be sparse. To save on storage, only // the nonzero entries of A are stored. For instance, the K-th nonzero // entry in the matrix is stored by: // // A(K) = value of entry, // IA(K) = row of entry, // JA(K) = column of entry. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 August 2006 // // Author: // // Original C version by Lili Ju. // C++ version by John Burkardt. // // Reference: // // Richard Barrett, Michael Berry, Tony Chan, James Demmel, // June Donato, Jack Dongarra, Victor Eijkhout, Roidan Pozo, // Charles Romine, Henk van der Vorst, // Templates for the Solution of Linear Systems: // Building Blocks for Iterative Methods, // SIAM, 1994, // ISBN: 0898714710, // LC: QA297.8.T45. // // Tim Kelley, // Iterative Methods for Linear and Nonlinear Equations, // SIAM, 2004, // ISBN: 0898713528, // LC: QA297.8.K45. // // Yousef Saad, // Iterative Methods for Sparse Linear Systems, // Second Edition, // SIAM, 2003, // ISBN: 0898715342, // LC: QA188.S17. // // Parameters: // // Input, double A[NZ_NUM], the matrix values. // // Input, int IA[NZ_NUM], JA[NZ_NUM], the row and column indices // of the matrix values. // // Input, double X[N], the vector to be multiplied by A. // // Output, double W[N], the value of A*X. // // Input, int N, the order of the system. // // Input, int NZ_NUM, the number of nonzeros. // { int i; int j; int k; for ( i = 0; i < n; i++ ) { w[i] = 0.0; } for ( k = 0; k < nz_num; k++ ) { i = ia[k] - 1; j = ja[k] - 1; w[i] = w[i] + a[k] * x[j]; } return; } //****************************************************************************80 void basis_one_t3 ( double t[2*3], int i, double p[2], double *qi, double *dqidx, double *dqidy ) //****************************************************************************80 // // Purpose: // // BASIS_ONE_T3 evaluates basis functions for a linear triangular element. // // Discussion: // // The routine is given the coordinates of the nodes of a triangle. // // 3 // / . // / . // / . // 1-------2 // // It evaluates the linear basis function Q(I)(X,Y) associated with // node I, which has the property that it is a linear function // which is 1 at node I and zero at the other two nodes. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 January 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double T[2*3], the coordinates of the nodes. // // Input, int I, the index of the desired basis function. // I should be between 1 and 3. // // Input, double P[2], the coordinates of the point where // the basis function is to be evaluated. // // Output, double *QI, *DQIDX, *DQIDY, the value of the I-th basis function // and its X and Y derivatives. // { double area; int ip1; int ip2; double temp; area = t[0+0*2] * ( t[1+1*2] - t[1+2*2] ) + t[0+1*2] * ( t[1+2*2] - t[1+0*2] ) + t[0+2*2] * ( t[1+0*2] - t[1+1*2] ); if ( area == 0.0 ) { cout << "\n"; cout << "BASIS_ONE_T3 - Fatal error!\n"; cout << " Element has zero area.\n"; cout << " Area = " << area << "\n"; cout << "\n"; cout << " Node 1: ( " << t[0+0*2] << ", " << t[1+0*2] << " )\n"; cout << " Node 2: ( " << t[0+1*2] << ", " << t[1+1*2] << " )\n"; cout << " Node 3: ( " << t[0+2*2] << ", " << t[1+2*2] << " )\n"; exit ( 1 ); } if ( i < 1 || 3 < i ) { cout << "\n"; cout << "BASIS_ONE_T3 - Fatal error!\n"; cout << " Basis index I is not between 1 and 3.\n"; cout << " I = " << i << "\n"; exit ( 1 ); } ip1 = i4_wrap ( i + 1, 1, 3 ); ip2 = i4_wrap ( i + 2, 1, 3 ); *qi = ( ( t[0+(ip2-1)*2] - t[0+(ip1-1)*2] ) * ( p[1] - t[1+(ip1-1)*2] ) - ( t[1+(ip2-1)*2] - t[1+(ip1-1)*2] ) * ( p[0] - t[0+(ip1-1)*2] ) ) / area; *dqidx = - ( t[1+(ip2-1)*2] - t[1+(ip1-1)*2] ) / area; *dqidy = ( t[0+(ip2-1)*2] - t[0+(ip1-1)*2] ) / area; return; } //****************************************************************************80 char ch_cap ( char c ) //****************************************************************************80 // // Purpose: // // CH_CAP capitalizes a single character. // // Discussion: // // This routine should be equivalent to the library "toupper" function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 July 1998 // // Author: // // John Burkardt // // Parameters: // // Input, char C, the character to capitalize. // // Output, char CH_CAP, the capitalized character. // { if ( 97 <= c && c <= 122 ) { c = c - 32; } return c; } //****************************************************************************80 bool ch_eqi ( char c1, char c2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char C1, char C2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { if ( 97 <= c1 && c1 <= 122 ) { c1 = c1 - 32; } if ( 97 <= c2 && c2 <= 122 ) { c2 = c2 - 32; } return ( c1 == c2 ); } //****************************************************************************80 int ch_to_digit ( char c ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // C DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char C, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If C was // 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= c && c <= '9' ) { digit = c - '0'; } else if ( c == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 void dirichlet_apply_dsp ( int node_num, double node_xy[], int node_condition[], int nz_num, int ia[], int ja[], double a[], double f[] ) //****************************************************************************80 // // Purpose: // // DIRICHLET_APPLY_DSP accounts for Dirichlet boundary conditions. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 July 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of nodes. // // Input, int NODE_CONDITION[NODE_NUM], reports the condition // used to set the unknown associated with the node. // 0, unknown. // 1, finite element equation. // 2, Dirichlet condition; // 3, Neumann condition. // // Input, int NZ_NUM, the number of nonzero entries. // // Input, int IA[NZ_NUM], JA[NZ_NUM], the row and column // indices of the nonzero entries. // // Input/output, double A[NZ_NUM], the nonzero entries of the matrix. // On output, adjusted to account for Dirichlet boundary conditions. // // Input/output, double F[NODE_NUM], the right hand side. // On output, adjusted to account for Dirichlet boundary conditions. // { int column; int DIRICHLET = 2; int node; double *node_bc; int nz; node_bc = new double[node_num]; dirichlet_condition ( node_num, node_xy, node_bc ); // // Consider every matrix entry, NZ. // // If the row I corresponds to a boundary node, then // zero out all off diagonal matrix entries, set the diagonal to 1, // and the right hand side to the Dirichlet boundary condition value. // for ( nz = 0; nz < nz_num; nz++ ) { node = ia[nz]; if ( node_condition[node-1] == DIRICHLET ) { column = ja[nz]; if ( column == node ) { a[nz] = 1.0; f[node-1] = node_bc[node-1]; } else { a[nz] = 0.0; } } } delete [] node_bc; return; } //****************************************************************************80 int dsp_ij_to_k ( int nz_num, int row[], int col[], int i, int j ) //****************************************************************************80 // // Purpose: // // DSP_IJ_TO_K seeks the compressed index of the (I,J) entry of A. // // Discussion: // // If A(I,J) is nonzero, then its value is stored in location K. // // This routine searches the DSP storage structure for the index K // corresponding to (I,J), returning -1 if no such entry was found. // // This routine assumes that the data structure has been sorted, // so that the entries of ROW are ascending sorted, and that the // entries of COL are ascending sorted, within the group of entries // that have a common value of ROW. // // The DSP storage format stores the row, column and value of each nonzero // entry of a sparse matrix. // // The DSP format is used by CSPARSE ("sparse triplet"), DLAP/SLAP // ("nonsymmetric SLAP triad"), by MATLAB, and by SPARSEKIT ("COO" format). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 July 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int NZ_NUM, the number of nonzero elements in // the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and // column indices of the nonzero elements. // // Input, int I, J, the row and column indices of the // matrix entry. // // Output, int DSP_IJ_TO_K, the DSP index of the (I,J) entry. // { int hi; int k; int lo; int md; lo = 1; hi = nz_num; for ( ; ; ) { if ( hi < lo ) { k = -1; break; } md = ( lo + hi ) / 2; if ( row[md-1] < i || ( row[md-1] == i && col[md-1] < j ) ) { lo = md + 1; } else if ( i < row[md-1] || ( row[md-1] == i && j < col[md-1] ) ) { hi = md - 1; } else { k = md; break; } } return k; } //****************************************************************************80 void dsp_print_some ( int m, int n, int nz_num, int row[], int col[], double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // DSP_PRINT_SOME prints some of a DSP matrix. // // Discussion: // // This version of DSP_PRINT_SOME has been specifically modified to allow, // and correctly handle, the case in which a single matrix location // A(I,J) is referenced more than once by the sparse matrix structure. // In such cases, the routine prints out the sum of all the values. // // The DSP storage format stores the row, column and value of each nonzero // entry of a sparse matrix. // // It is possible that a pair of indices (I,J) may occur more than // once. Presumably, in this case, the intent is that the actual value // of A(I,J) is the sum of all such entries. This is not a good thing // to do, but I seem to have come across this in MATLAB. // // The DSP format is used by CSPARSE ("sparse triplet"), DLAP/SLAP // (nonsymmetric case), by MATLAB, and by SPARSEKIT ("COO" format). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 September 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Input, int ILO, JLO, IHI, JHI, the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title to print. // { # define INCX 5 double aij[INCX]; int i; int i2hi; int i2lo; int inc; int j; int j2; int j2hi; int j2lo; int k; bool nonzero; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); inc = j2hi + 1 - j2lo; cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // nonzero = false; for ( j2 = 0; j2 < INCX; j2++ ) { aij[j2] = 0.0; } for ( k = 1; k <= nz_num; k++ ) { if ( i == row[k-1] && j2lo <= col[k-1] && col[k-1] <= j2hi ) { j2 = col[k-1] - j2lo; if ( a[k-1] == 0.0 ) { continue; } nonzero = true; aij[j2] = aij[j2] + a[k-1]; } } if ( nonzero ) { cout << setw(6) << i; for ( j2 = 0; j2 < inc; j2++ ) { cout << setw(12) << aij[j2] << " "; } cout << "\n"; } } } return; # undef INCX } //****************************************************************************80 int file_column_count ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_COLUMN_COUNT counts the columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file are presumed to consist of COLUMN_NUM words, // separated by spaces. There may also be some blank lines, and some // comment lines, which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { int column_num; ifstream input; bool got_one; string text; // // Open the file. // input.open ( filename.c_str ( ) ); if ( !input ) { column_num = -1; cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Fatal error!\n"; cerr << " Could not open the file:\n"; cerr << " \"" << filename << "\"\n"; exit ( 1 ); } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { getline ( input, text ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) <= 0 ) { continue; } if ( text[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { input.close ( ); input.open ( filename.c_str ( ) ); for ( ; ; ) { input >> text; if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) == 0 ) { continue; } got_one = true; break; } } input.close ( ); if ( !got_one ) { cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Warning!\n"; cerr << " The file does not seem to contain any data.\n"; return -1; } column_num = s_word_count ( text ); return column_num; } //****************************************************************************80 int file_row_count ( string input_filename ) //****************************************************************************80 // // Purpose: // // FILE_ROW_COUNT counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int bad_num; int comment_num; ifstream input; int i; string line; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; bad_num = 0; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "FILE_ROW_COUNT - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; exit ( 1 ); } for ( ; ; ) { getline ( input, line ); if ( input.eof ( ) ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } input.close ( ); return row_num; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_modp ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_MODP returns the nonnegative remainder of integer division. // // Discussion: // // If // NREM = I4_MODP ( I, J ) // NMULT = ( I - NREM ) / J // then // I = J * NMULT + NREM // where NREM is always nonnegative. // // The MOD function computes a result with the same sign as the // quantity being divided. Thus, suppose you had an angle A, // and you wanted to ensure that it was between 0 and 360. // Then mod(A,360) would do, if A was positive, but if A // was negative, your result would be between -360 and 0. // // On the other hand, I4_MODP(A,360) is between 0 and 360, always. // // Example: // // I J MOD I4_MODP I4_MODP Factorization // // 107 50 7 7 107 = 2 * 50 + 7 // 107 -50 7 7 107 = -2 * -50 + 7 // -107 50 -7 43 -107 = -3 * 50 + 43 // -107 -50 -7 43 -107 = 3 * -50 + 43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number to be divided. // // Input, int J, the number that divides I. // // Output, int I4_MODP, the nonnegative remainder when I is // divided by J. // { int value; if ( j == 0 ) { cout << "\n"; cout << "I4_MODP - Fatal error!\n"; cout << " I4_MODP ( I, J ) called with J = " << j << "\n"; exit ( 1 ); } value = i % j; if ( value < 0 ) { value = value + abs ( j ); } return value; } //****************************************************************************80 int i4_wrap ( int ival, int ilo, int ihi ) //****************************************************************************80 // // Purpose: // // I4_WRAP forces an integer to lie between given limits by wrapping. // // Example: // // ILO = 4, IHI = 8 // // I I4_WRAP // // -2 8 // -1 4 // 0 5 // 1 6 // 2 7 // 3 8 // 4 4 // 5 5 // 6 6 // 7 7 // 8 8 // 9 4 // 10 5 // 11 6 // 12 7 // 13 8 // 14 4 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int IVAL, an integer value. // // Input, int ILO, IHI, the desired bounds for the integer value. // // Output, int I4_WRAP, a "wrapped" version of IVAL. // { int jhi; int jlo; int value; int wide; jlo = i4_min ( ilo, ihi ); jhi = i4_max ( ilo, ihi ); wide = jhi + 1 - jlo; if ( wide == 1 ) { value = jlo; } else { value = jlo + i4_modp ( ival - jlo, wide ); } return value; } //****************************************************************************80 int i4col_compare ( int m, int n, int a[], int i, int j ) //****************************************************************************80 // // Purpose: // // I4COL_COMPARE compares columns I and J of an I4COL. // // Example: // // Input: // // M = 3, N = 4, I = 2, J = 4 // // A = ( // 1 2 3 4 // 5 6 7 8 // 9 10 11 12 ) // // Output: // // I4COL_COMPARE = -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int A[M*N], an array of N columns of vectors of length M. // // Input, int I, J, the columns to be compared. // I and J must be between 1 and N. // // Output, int I4COL_COMPARE, the results of the comparison: // -1, column I < column J, // 0, column I = column J, // +1, column J < column I. // { int k; // // Check. // if ( i < 1 ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " Column index I = " << i << " is less than 1.\n"; exit ( 1 ); } if ( n < i ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " N = " << n << " is less than column index I = " << i << ".\n"; exit ( 1 ); } if ( j < 1 ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " Column index J = " << j << " is less than 1.\n"; exit ( 1 ); } if ( n < j ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " N = " << n << " is less than column index J = " << j << ".\n"; exit ( 1 ); } if ( i == j ) { return 0; } k = 1; while ( k <= m ) { if ( a[k-1+(i-1)*m] < a[k-1+(j-1)*m] ) { return (-1); } else if ( a[k-1+(j-1)*m] < a[k-1+(i-1)*m] ) { return 1; } k = k + 1; } return 0; } //****************************************************************************80 void i4col_sort_a ( int m, int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4COL_SORT_A ascending sorts the columns of an I4COL. // // Discussion: // // In lexicographic order, the statement "X < Y", applied to two // vectors X and Y of length M, means that there is some index I, with // 1 <= I <= M, with the property that // // X(J) = Y(J) for J < I, // and // X(I) < Y(I). // // In other words, X is less than Y if, at the first index where they // differ, the X value is less than the Y value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of A. // // Input, int N, the number of columns of A. // // Input/output, int A[M*N]. // On input, the array of N columns of M vectors; // On output, the columns of A have been sorted in ascending // lexicographic order. // { int i; int indx; int isgn; int j; // // Initialize. // i = 0; indx = 0; isgn = 0; j = 0; // // Call the external heap sorter. // for ( ; ; ) { sort_heap_external ( n, &indx, &i, &j, isgn ); // // Interchange the I and J objects. // if ( 0 < indx ) { i4col_swap ( m, n, a, i, j ); } // // Compare the I and J objects. // else if ( indx < 0 ) { isgn = i4col_compare ( m, n, a, i, j ); } else if ( indx == 0 ) { break; } } return; } //****************************************************************************80 void i4col_swap ( int m, int n, int a[], int icol1, int icol2 ) //****************************************************************************80 // // Purpose: // // I4COL_SWAP swaps two columns of an I4COL. // // Discussion: // // The two dimensional information is stored as a one dimensional // array, by columns. // // The row indices are 1 based, NOT 0 based! However, a preprocessor // variable, called OFFSET, can be reset from 1 to 0 if you wish to // use 0-based indices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int A[M*N], an array of data. // // Input, int ICOL1, ICOL2, the two columns to swap. // These indices should be between 1 and N. // { # define OFFSET 1 int i; int t; // // Check. // if ( icol1 - OFFSET < 0 || n-1 < icol1 - OFFSET ) { cout << "\n"; cout << "I4COL_SWAP - Fatal error!\n"; cout << " ICOL1 is out of range.\n"; exit ( 1 ); } if ( icol2 - OFFSET < 0 || n-1 < icol2 - OFFSET ) { cout << "\n"; cout << "I4COL_SWAP - Fatal error!\n"; cout << " ICOL2 is out of range.\n"; exit ( 1 ); } if ( icol1 == icol2 ) { return; } for ( i = 0; i < m; i++ ) { t = a[i+(icol1-OFFSET)*m]; a[i+(icol1-OFFSET)*m] = a[i+(icol2-OFFSET)*m]; a[i+(icol2-OFFSET)*m] = t; } return; # undef OFFSET } //****************************************************************************80 int *i4mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // I4MAT_DATA_READ reads data from an I4MAT file. // // Discussion: // // An I4MAT is an array of I4's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, int I4MAT_DATA_READ[M*N], the data. // { bool error; ifstream input; int i; int j; string line; int *table; int *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "I4MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; exit ( 1 ); } table = new int[m*n]; x = new int[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_i4vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void i4mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // I4MAT_HEADER_READ reads the header from an I4MAT file. // // Discussion: // // An I4MAT is an array of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; exit ( 1 ); } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; exit ( 1 ); } return; } //****************************************************************************80 void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT_SOME prints some of an I4MAt, transposed. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title for the matrix. { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of INCX. // for ( i2lo = ilo; i2lo <= ihi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); cout << "\n"; // // For each row I in the current range... // // Write the header. // cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; // // Determine the range of the rows in this strip. // j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { // // Print out (up to INCX) entries in column J, that lie in the current strip. // cout << setw(5) << j << " "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 int i4vec2_compare ( int n, int a1[], int a2[], int i, int j ) //****************************************************************************80 // // Purpose: // // I4VEC2_COMPARE compares pairs of integers stored in two vectors. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of data items. // // Input, int A1[N], A2[N], contain the two components of each item. // // Input, int I, J, the items to be compared. These values will be // 1-based indices for the arrays A1 and A2. // // Output, int I4VEC2_COMPARE, the results of the comparison: // -1, item I < item J, // 0, item I = item J, // +1, item J < item I. // { int isgn; isgn = 0; if ( a1[i-1] < a1[j-1] ) { isgn = -1; } else if ( a1[i-1] == a1[j-1] ) { if ( a2[i-1] < a2[j-1] ) { isgn = -1; } else if ( a2[i-1] < a2[j-1] ) { isgn = 0; } else if ( a2[j-1] < a2[i-1] ) { isgn = +1; } } else if ( a1[j-1] < a1[i-1] ) { isgn = +1; } return isgn; } //****************************************************************************80 void i4vec2_sort_a ( int n, int a1[], int a2[] ) //****************************************************************************80 // // Purpose: // // I4VEC2_SORT_A ascending sorts a vector of pairs of integers. // // Discussion: // // Each item to be sorted is a pair of integers (I,J), with the I // and J values stored in separate vectors A1 and A2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of items of data. // // Input/output, int A1[N], A2[N], the data to be sorted.. // { int i; int indx; int isgn; int j; int temp; // // Initialize. // i = 0; indx = 0; isgn = 0; j = 0; // // Call the external heap sorter. // for ( ; ; ) { sort_heap_external ( n, &indx, &i, &j, isgn ); // // Interchange the I and J objects. // if ( 0 < indx ) { temp = a1[i-1]; a1[i-1] = a1[j-1]; a1[j-1] = temp; temp = a2[i-1]; a2[i-1] = a2[j-1]; a2[j-1] = temp; } // // Compare the I and J objects. // else if ( indx < 0 ) { isgn = i4vec2_compare ( n, a1, a2, i, j ); } else if ( indx == 0 ) { break; } } return; } //****************************************************************************80 void mgmres ( double a[], int ia[], int ja[], double x[], double rhs[], int n, int nz_num, int itr_max, int mr, double tol_abs, double tol_rel ) //****************************************************************************80 // // Purpose: // // MGMRES applies the restarted GMRES iteration to a linear system. // // Discussion: // // The linear system A*X=B is solved iteratively. // // The matrix A is assumed to be sparse. To save on storage, only // the nonzero entries of A are stored. For instance, the K-th nonzero // entry in the matrix is stored by: // // A(K) = value of entry, // IA(K) = row of entry, // JA(K) = column of entry. // // The "matrices" H and V are treated as one-dimensional vectors // which store the matrix data in row major form. // // This requires that references to H[I][J] be replaced by references // to H[I+J*(MR+1)] and references to V[I][J] by V[I+J*N]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 July 2007 // // Author: // // Original C version by Lili Ju. // C++ version by John Burkardt. // // Reference: // // Richard Barrett, Michael Berry, Tony Chan, James Demmel, // June Donato, Jack Dongarra, Victor Eijkhout, Roidan Pozo, // Charles Romine, Henk van der Vorst, // Templates for the Solution of Linear Systems: // Building Blocks for Iterative Methods, // SIAM, 1994, // ISBN: 0898714710, // LC: QA297.8.T45. // // Tim Kelley, // Iterative Methods for Linear and Nonlinear Equations, // SIAM, 2004, // ISBN: 0898713528, // LC: QA297.8.K45. // // Yousef Saad, // Iterative Methods for Sparse Linear Systems, // Second Edition, // SIAM, 2003, // ISBN: 0898715342, // LC: QA188.S17. // // Parameters: // // Input, double A[NZ_NUM], the matrix values. // // Input, int IA[NZ_NUM], JA[NZ_NUM], the row and column indices // of the matrix values. // // Input/output, double X[N]; on input, an approximation to // the solution. On output, an improved approximation. // // Input, double RHS[N], the right hand side of the linear system. // // Input, int N, the order of the linear system. // // Input, int NZ_NUM, the number of nonzero matrix values. // // Input, int ITR_MAX, the maximum number of (outer) iterations to take. // // Input, int MR, the maximum number of (inner) iterations to take. // MR must be less than N. // // Input, double TOL_ABS, an absolue tolerance applied to the // current residual. // // Input, double TOL_REL, a relative tolerance comparing the // current residual to the initial residual. // { double av; double *c; double delta = 1.0e-03; double *g; double *h; double htmp; int i; int itr; int itr_used; int j; int k; int k_copy; double mu; double *r; double rho; double rho_tol; double *s; double *v; bool verbose = true; double *y; c = new double[mr]; g = new double[mr+1]; h = new double[(mr+1)*mr]; r = new double[n]; s = new double[mr]; v = new double[n*(mr+1)]; y = new double[mr+1]; itr_used = 0; if ( n < mr ) { cout << "\n"; cout << "MGMRES - Fatal error!\n"; cout << " N < MR.\n"; cout << " N = " << n << "\n"; cout << " MR = " << mr << "\n"; exit ( 1 ); } for ( itr = 1; itr <= itr_max; itr++ ) { ax ( a, ia, ja, x, r, n, nz_num ); for ( i = 0; i < n; i++ ) { r[i] = rhs[i] - r[i]; } rho = sqrt ( r8vec_dot_product ( n, r, r ) ); if ( verbose ) { cout << " ITR = " << itr << " Residual = " << rho << "\n"; } if ( itr == 1 ) { rho_tol = rho * tol_rel; } for ( i = 0; i < n; i++) { v[i+0*n] = r[i] / rho; } g[0] = rho; for ( i = 1; i <= mr; i++ ) { g[i] = 0.0; } for ( i = 0; i < mr+1; i++ ) { for ( j = 0; j < mr; j++ ) { h[i+j*(mr+1)] = 0.0; } } for ( k = 1; k <= mr; k++ ) { k_copy = k; ax ( a, ia, ja, v+(k-1)*n, v+k*n, n, nz_num ); av = sqrt ( r8vec_dot_product ( n, v+k*n, v+k*n ) ); for ( j = 1; j <= k; j++ ) { h[(j-1)+(k-1)*(mr+1)] = r8vec_dot_product ( n, v+k*n, v+(j-1)*n ); for ( i = 0; i < n; i++ ) { v[i+k*n] = v[i+k*n] - h[(j-1)+(k-1)*(mr+1)] * v[i+(j-1)*n]; } } h[k+(k-1)*(mr+1)] = sqrt ( r8vec_dot_product ( n, v+k*n, v+k*n ) ); if ( ( av + delta * h[k+(k-1)*(mr+1)] ) == av ) { for ( j = 1; j <= k; j++ ) { htmp = r8vec_dot_product ( n, v+k*n, v+(j-1)*n ); h[(j-1)+(k-1)*(mr+1)] = h[(j-1)+(k-1)*(mr+1)] + htmp; for ( i = 0; i < n; i++ ) { v[i+k*n] = v[i+k*n] - htmp * v[i+(j-1)*n]; } } h[k+(k-1)*(mr+1)] = sqrt ( r8vec_dot_product ( n, v+k*n, v+k*n ) ); } if ( h[k+(k-1)*(mr+1)] != 0.0 ) { for ( i = 0; i < n; i++ ) { v[i+k*n] = v[i+k*n] / h[k+(k-1)*(mr+1)]; } } if ( 1 < k ) { for ( i = 1; i <= k+1; i++ ) { y[i-1] = h[(i-1)+(k-1)*(mr+1)]; } for ( j = 1; j <= k - 1; j++ ) { mult_givens ( c[j-1], s[j-1], j-1, y ); } for ( i = 1; i <= k+1; i++ ) { h[i-1+(k-1)*(mr+1)] = y[i-1]; } } mu = sqrt ( pow ( h[(k-1)+(k-1)*(mr+1)], 2 ) + pow ( h[ k +(k-1)*(mr+1)], 2 ) ); c[k-1] = h[(k-1)+(k-1)*(mr+1)] / mu; s[k-1] = -h[ k +(k-1)*(mr+1)] / mu; h[(k-1)+(k-1)*(mr+1)] = c[k-1] * h[(k-1)+(k-1)*(mr+1)] - s[k-1] * h[ k +(k-1)*(mr+1)]; h[k+(k-1)*(mr+1)] = 0; mult_givens ( c[k-1], s[k-1], k-1, g ); rho = fabs ( g[k] ); itr_used = itr_used + 1; if ( verbose ) { cout << " K = " << k << " Residual = " << rho << "\n"; } if ( rho <= rho_tol && rho <= tol_abs ) { break; } } k = k_copy - 1; y[k] = g[k] / h[k+k*(mr+1)]; for ( i = k; 1 <= i; i-- ) { y[i-1] = g[i-1]; for ( j = i+1; j <= k+1; j++ ) { y[i-1] = y[i-1] - h[(i-1)+(j-1)*(mr+1)] * y[j-1]; } y[i-1] = y[i-1] / h[(i-1)+(i-1)*(mr+1)]; } for ( i = 1; i <= n; i++ ) { for ( j = 1; j <= k + 1; j++ ) { x[i-1] = x[i-1] + v[(i-1)+(j-1)*n] * y[j-1]; } } if ( rho <= rho_tol && rho <= tol_abs ) { break; } } if ( verbose ) { cout << "\n"; cout << "MGMRES\n"; cout << " Number of iterations = " << itr_used << "\n"; cout << " Final residual = " << rho << "\n"; } delete [] c; delete [] g; delete [] h; delete [] r; delete [] s; delete [] v; delete [] y; return; } //****************************************************************************80 void mult_givens ( double c, double s, int k, double g[] ) //****************************************************************************80 // // Purpose: // // MULT_GIVENS applies a Givens rotation to two successive entries of a vector. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 August 2006 // // Author: // // Original C version by Lili Ju. // C++ version by John Burkardt. // // Reference: // // Richard Barrett, Michael Berry, Tony Chan, James Demmel, // June Donato, Jack Dongarra, Victor Eijkhout, Roidan Pozo, // Charles Romine, Henk van der Vorst, // Templates for the Solution of Linear Systems: // Building Blocks for Iterative Methods, // SIAM, 1994, // ISBN: 0898714710, // LC: QA297.8.T45. // // Tim Kelley, // Iterative Methods for Linear and Nonlinear Equations, // SIAM, 2004, // ISBN: 0898713528, // LC: QA297.8.K45. // // Yousef Saad, // Iterative Methods for Sparse Linear Systems, // Second Edition, // SIAM, 2003, // ISBN: 0898715342, // LC: QA188.S17. // // Parameters: // // Input, double C, S, the cosine and sine of a Givens // rotation. // // Input, int K, indicates the location of the first vector entry. // // Input/output, double G[K+2], the vector to be modified. On output, // the Givens rotation has been applied to entries G(K) and G(K+1). // { double g1; double g2; g1 = c * g[k] - s * g[k+1]; g2 = s * g[k] + c * g[k+1]; g[k] = g1; g[k+1] = g2; return; } //****************************************************************************80 void quad_rule ( int quad_num, double quad_w[], double quad_xy[] ) //****************************************************************************80 // // Purpose: // // QUAD_RULE sets the quadrature rule for assembly. // // Discussion: // // The quadrature rule is given for a reference element. // // 0 <= X, // 0 <= Y, and // X + Y <= 1. // // ^ // 1 | * // | |. // Y | | . // | | . // 0 | *---* // +-------> // 0 X 1 // // The rules have the following precision: // // QUAD_NUM Precision // // 1 1 // 3 2 // 4 3 // 6 4 // 7 5 // 9 6 // 13 7 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 January 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int QUAD_NUM, the number of quadrature nodes. // // Output, double QUAD_W[QUAD_NUM], the quadrature weights. // // Output, double QUAD_XY[2*QUAD_NUM], // the coordinates of the quadrature nodes. // { double a; double b; double c; double d; double e; double f; double g; double h; double t; double u; double v; double w; if ( quad_num == 1 ) { quad_xy[0+0*2] = 1.0 / 3.0; quad_xy[1+0*2] = 1.0 / 3.0; quad_w[0] = 1.0; } else if ( quad_num == 3 ) { quad_xy[0+0*2] = 0.5; quad_xy[1+0*2] = 0.0; quad_xy[0+1*2] = 0.5; quad_xy[1+1*2] = 0.5; quad_xy[0+2*2] = 0.0; quad_xy[1+2*2] = 0.5; quad_w[0] = 1.0 / 3.0; quad_w[1] = 1.0 / 3.0; quad_w[2] = 1.0 / 3.0; } else if ( quad_num == 4 ) { a = 6.0 / 30.0; b = 10.0 / 30.0; c = 18.0 / 30.0; d = 25.0 / 48.0; e = -27.0 / 48.0; quad_xy[0+0*2] = b; quad_xy[1+0*2] = b; quad_xy[0+1*2] = c; quad_xy[1+1*2] = a; quad_xy[0+2*2] = a; quad_xy[1+2*2] = c; quad_xy[0+3*2] = a; quad_xy[1+3*2] = a; quad_w[0] = e; quad_w[1] = d; quad_w[2] = d; quad_w[3] = d; } else if ( quad_num == 6 ) { a = 0.816847572980459; b = 0.091576213509771; c = 0.108103018168070; d = 0.445948490915965; v = 0.109951743655322; w = 0.223381589678011; quad_xy[0+0*2] = a; quad_xy[1+0*2] = b; quad_xy[0+1*2] = b; quad_xy[1+1*2] = a; quad_xy[0+2*2] = b; quad_xy[1+2*2] = b; quad_xy[0+3*2] = c; quad_xy[1+3*2] = d; quad_xy[0+4*2] = d; quad_xy[1+4*2] = c; quad_xy[0+5*2] = d; quad_xy[1+5*2] = d; quad_w[0] = v; quad_w[1] = v; quad_w[2] = v; quad_w[3] = w; quad_w[4] = w; quad_w[5] = w; } else if ( quad_num == 7 ) { a = 1.0 / 3.0; b = ( 9.0 + 2.0 * sqrt ( 15.0 ) ) / 21.0; c = ( 6.0 - sqrt ( 15.0 ) ) / 21.0; d = ( 9.0 - 2.0 * sqrt ( 15.0 ) ) / 21.0; e = ( 6.0 + sqrt ( 15.0 ) ) / 21.0; u = 0.225; v = ( 155.0 - sqrt ( 15.0 ) ) / 1200.0; w = ( 155.0 + sqrt ( 15.0 ) ) / 1200.0; quad_xy[0+0*2] = a; quad_xy[1+0*2] = a; quad_xy[0+1*2] = b; quad_xy[1+1*2] = c; quad_xy[0+2*2] = c; quad_xy[1+2*2] = b; quad_xy[0+3*2] = c; quad_xy[1+3*2] = c; quad_xy[0+4*2] = d; quad_xy[1+4*2] = e; quad_xy[0+5*2] = e; quad_xy[1+5*2] = d; quad_xy[0+6*2] = e; quad_xy[1+6*2] = e; quad_w[0] = u; quad_w[1] = v; quad_w[2] = v; quad_w[3] = v; quad_w[4] = w; quad_w[5] = w; quad_w[6] = w; } else if ( quad_num == 9 ) { a = 0.124949503233232; b = 0.437525248383384; c = 0.797112651860071; d = 0.165409927389841; e = 0.037477420750088; u = 0.205950504760887; v = 0.063691414286223; quad_xy[0+0*2] = a; quad_xy[1+0*2] = b; quad_xy[0+1*2] = b; quad_xy[1+1*2] = a; quad_xy[0+2*2] = b; quad_xy[1+2*2] = b; quad_xy[0+3*2] = c; quad_xy[1+3*2] = d; quad_xy[0+4*2] = c; quad_xy[1+4*2] = e; quad_xy[0+5*2] = d; quad_xy[1+5*2] = c; quad_xy[0+6*2] = d; quad_xy[1+6*2] = e; quad_xy[0+7*2] = e; quad_xy[1+7*2] = c; quad_xy[0+8*2] = e; quad_xy[1+8*2] = d; quad_w[0] = u; quad_w[1] = u; quad_w[2] = u; quad_w[3] = v; quad_w[4] = v; quad_w[5] = v; quad_w[6] = v; quad_w[7] = v; quad_w[8] = v; } else if ( quad_num == 13 ) { h = 1.0 / 3.0; a = 0.479308067841923; b = 0.260345966079038; c = 0.869739794195568; d = 0.065130102902216; e = 0.638444188569809; f = 0.312865496004875; g = 0.048690315425316; w = -0.149570044467670; t = 0.175615257433204; u = 0.053347235608839; v = 0.077113760890257; quad_xy[0+ 0*2] = h; quad_xy[1+ 0*2] = h; quad_xy[0+ 1*2] = a; quad_xy[1+ 1*2] = b; quad_xy[0+ 2*2] = b; quad_xy[1+ 2*2] = a; quad_xy[0+ 3*2] = b; quad_xy[1+ 3*2] = b; quad_xy[0+ 4*2] = c; quad_xy[1+ 4*2] = d; quad_xy[0+ 5*2] = d; quad_xy[1+ 5*2] = c; quad_xy[0+ 6*2] = d; quad_xy[1+ 6*2] = d; quad_xy[0+ 7*2] = e; quad_xy[1+ 7*2] = f; quad_xy[0+ 8*2] = e; quad_xy[1+ 8*2] = g; quad_xy[0+ 9*2] = f; quad_xy[1+ 9*2] = e; quad_xy[0+10*2] = f; quad_xy[1+10*2] = g; quad_xy[0+11*2] = g; quad_xy[1+11*2] = e; quad_xy[0+12*2] = g; quad_xy[1+12*2] = f; quad_w[ 0] = w; quad_w[ 1] = t; quad_w[ 2] = t; quad_w[ 3] = t; quad_w[ 4] = u; quad_w[ 5] = u; quad_w[ 6] = u; quad_w[ 7] = v; quad_w[ 8] = v; quad_w[ 9] = v; quad_w[10] = v; quad_w[11] = v; quad_w[12] = v; } else { cout << "\n"; cout << "QUAD_RULE - Fatal error!\n"; cout << " No rule is available of order QUAD_NUM = " << quad_num << "\n"; exit ( 1 ); } return; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 April 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { if ( 0.0 <= x ) { return x; } else { return ( -x ); } } //****************************************************************************80 double r8_huge ( void ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // HUGE_VAL is the largest representable legal double precision number, // and is usually defined in math.h, or sometimes in stdlib.h. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8. // { return HUGE_VAL; } //****************************************************************************80 int r8_nint ( double x ) //****************************************************************************80 // // Purpose: // // R8_NINT returns the nearest integer to an R8. // // Example: // // X R8_NINT // // 1.3 1 // 1.4 1 // 1.5 1 or 2 // 1.6 2 // 0.0 0 // -0.7 -1 // -1.1 -1 // -1.6 -2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the value. // // Output, int R8_NINT, the nearest integer to X. // { int s; int value; if ( x < 0.0 ) { s = -1; } else { s = 1; } value = s * ( int ) ( fabs ( x ) + 0.5 ); return value; } //****************************************************************************80 double *r8mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_DATA_READ reads the data from an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double R8MAT_DATA_READ[M*N], the data. // { bool error; ifstream input; int i; int j; string line; double *table; double *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R8MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; exit ( 1 ); } table = new double[m*n]; x = new double[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void r8mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // R8MAT_HEADER_READ reads the header from an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points. // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; exit ( 1 ); } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; exit ( 1 ); } return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j << " "; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8mat_write ( string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file \"" << output_filename << "\".\n"; exit ( 1 ); } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(24) << setprecision(16) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 double r8vec_amax ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_AMAX returns the maximum absolute value in an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, double A[N], the array. // // Output, double AMAX, the value of the entry // of largest magnitude. // { double amax; int i; amax = 0.0; for ( i = 0; i < n; i++ ) { if ( amax < fabs ( a[i] ) ) { amax = fabs ( a[i] ); } } return amax; } //****************************************************************************80 double r8vec_dot_product ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of a pair of R8VEC's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 void r8vec_print_some ( int n, double a[], int i_lo, int i_hi, string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT_SOME prints "some" of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8 values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 October 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries of the vector. // // Input, double A[N], the vector to be printed. // // Input, integer I_LO, I_HI, the first and last indices to print. // The routine expects 1 <= I_LO <= I_HI <= N. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = i4_max ( 1, i_lo ); i <= i4_min ( n, i_hi ); i++ ) { cout << " " << setw(8) << i << " " << " " << setw(14) << a[i-1] << "\n"; } return; } //****************************************************************************80 double *r8vec_uniform_01 ( int n, int *seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01 returns a unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = 16807 * seed mod ( 2^31 - 1 ) // unif = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01[N], the vector of pseudorandom values. // { int i; int k; double *r; if ( *seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + 2147483647; } r[i] = ( double ) ( *seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 void reference_to_physical_t3 ( double t[2*3], int n, double ref[], double phy[] ) //****************************************************************************80 // // Purpose: // // REFERENCE_TO_PHYSICAL_T3 maps reference points to physical points. // // Discussion: // // Given the vertices of an order 3 physical triangle and a point // (XSI,ETA) in the reference triangle, the routine computes the value // of the corresponding image point (X,Y) in physical space. // // Note that this routine may also be appropriate for an order 6 // triangle, if the mapping between reference and physical space // is linear. This implies, in particular, that the sides of the // image triangle are straight and that the "midside" nodes in the // physical triangle are literally halfway along the sides of // the physical triangle. // // Reference Element T3: // // | // 1 3 // | |. // | | . // S | . // | | . // | | . // 0 1-----2 // | // +--0--R--1--> // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double T[2*3], the coordinates of the vertices. // The vertices are assumed to be the images of (0,0), (1,0) and // (0,1) respectively. // // Input, int N, the number of objects to transform. // // Input, double REF[2*N], points in the reference triangle. // // Output, double PHY[2*N], corresponding points in the // physical triangle. // { int i; int j; for ( i = 0; i < 2; i++ ) { for ( j = 0; j < n; j++ ) { phy[i+j*2] = t[i+0*2] * ( 1.0 - ref[0+j*2] - ref[1+j*2] ) + t[i+1*2] * + ref[0+j*2] + t[i+2*2] * + ref[1+j*2]; } } return; } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 int s_to_i4 ( string s, int *last, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_I4 reads an I4 from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string to be examined. // // Output, int *LAST, the last character of S used to make IVAL. // // Output, bool *ERROR is TRUE if an error occurred. // // Output, int *S_TO_I4, the integer value read from the string. // If the string is blank, then IVAL will be returned 0. // { char c; int i; int isgn; int istate; int ival; *error = false; istate = 0; isgn = 1; i = 0; ival = 0; for ( ; ; ) { c = s[i]; i = i + 1; // // Haven't read anything. // if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read the sign, expecting digits. // else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read at least one digit, expecting more. // else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } // // If we read all the characters in the string, see if we're OK. // if ( istate == 2 ) { ival = isgn * ival; *last = s_len_trim ( s ); } else { *error = true; *last = 0; } return ival; } //****************************************************************************80 bool s_to_l ( string s ) //****************************************************************************80 // // Purpose: // // S_TO_L reads an L from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 December 2010 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Output, bool S_TO_L, the value of the L. // { int i; bool l; int length; length = s.length ( ); if ( length < 1 ) { cerr << "\n"; cerr << "S_TO_L - Fatal error!\n"; cerr << " Input string is empty.\n"; exit ( 1 ); } for ( i = 0; i < length; i++ ) { if ( s[i] == '0' || s[i] == 'f' || s[i] == 'F' ) { l = false; return l; } else if ( s[i] == '1' || s[i] == 't' || s[i] == 'T' ) { l = true; return l; } } cerr << "\n"; cerr << "S_TO_L - Fatal error!\n"; cerr << " Input did not contain boolean data.\n"; exit ( 1 ); } //****************************************************************************80 bool s_to_i4vec ( string s, int n, int ivec[] ) //****************************************************************************80 // // Purpose: // // S_TO_I4VEC reads an I4VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, int IVEC[N], the values read from the string. // // Output, bool S_TO_I4VEC, is TRUE if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { ivec[i] = s_to_i4 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 double s_to_r8 ( string s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0**(-9.23) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_R8, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( string s, int n, double rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, double RVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 int s_word_count ( string s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int char_count; int i; int word_count; word_count = 0; blank = true; char_count = s.length ( ); for ( i = 0; i < char_count; i++ ) { if ( isspace ( s[i] ) ) { blank = true; } else if ( blank ) { word_count = word_count + 1; blank = false; } } return word_count; } //****************************************************************************80 void solution_evaluate ( double xy[2], double t[2*3], double node_u[3], double *u, double *dudx, double *dudy ) //****************************************************************************80 // // Purpose: // // SOLUTION_EVALUATE evaluates the solution at a point in a triangle. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 January 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double XY[2], the point where the solution is // to be evaluated. // // Input, double T[2*3], the coordinates of the vertices // of the triangle which contains XY. // // Input, double NODE_U[3], the value of the solution // at the nodes of the triangle. // // Output, double U, DUDX, DUDY, the solution and its X and // Y derivatives at XY. // { double b; double dbdx; double dbdy; int i; *u = 0.0; *dudx = 0.0; *dudy = 0.0; for ( i = 1; i <= 3; i++ ) { basis_one_t3 ( t, i, xy, &b, &dbdx, &dbdy ); *u = *u + node_u[i-1] * b; *dudx = *dudx + node_u[i-1] * dbdx; *dudy = *dudy + node_u[i-1] * dbdy; } return; } //****************************************************************************80 void sort_heap_external ( int n, int *indx, int *i, int *j, int isgn ) //****************************************************************************80 // // Purpose: // // SORT_HEAP_EXTERNAL externally sorts a list of items into ascending order. // // Discussion: // // The actual list is not passed to the routine. Hence it may // consist of integers, reals, numbers, names, etc. The user, // after each return from the routine, will be asked to compare or // interchange two items. // // The current version of this code mimics the FORTRAN version, // so the values of I and J, in particular, are FORTRAN indices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2004 // // Author: // // Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt. // // Reference: // // Albert Nijenhuis and Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the length of the input list. // // Input/output, int *INDX. // The user must set INDX to 0 before the first call. // On return, // if INDX is greater than 0, the user must interchange // items I and J and recall the routine. // If INDX is less than 0, the user is to compare items I // and J and return in ISGN a negative value if I is to // precede J, and a positive value otherwise. // If INDX is 0, the sorting is done. // // Output, int *I, *J. On return with INDX positive, // elements I and J of the user's list should be // interchanged. On return with INDX negative, elements I // and J are to be compared by the user. // // Input, int ISGN. On return with INDX negative, the // user should compare elements I and J of the list. If // item I is to precede item J, set ISGN negative, // otherwise set ISGN positive. // { static int i_save = 0; static int j_save = 0; static int k = 0; static int k1 = 0; static int n1 = 0; // // INDX = 0: This is the first call. // if ( *indx == 0 ) { i_save = 0; j_save = 0; k = n / 2; k1 = k; n1 = n; } // // INDX < 0: The user is returning the results of a comparison. // else if ( *indx < 0 ) { if ( *indx == -2 ) { if ( isgn < 0 ) { i_save = i_save + 1; } j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } if ( 0 < isgn ) { *indx = 2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; } *i = i_save; *j = j_save; return; } k = k - 1; k1 = k; } // // 0 < INDX: the user was asked to make an interchange. // else if ( *indx == 1 ) { k1 = k; } for ( ; ; ) { i_save = 2 * k1; if ( i_save == n1 ) { j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } else if ( i_save <= n1 ) { j_save = i_save + 1; *indx = -2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { break; } k = k - 1; k1 = k; } if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; *i = i_save; *j = j_save; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; *i = i_save; *j = j_save; } return; } //****************************************************************************80 void timestamp ( void ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 October 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double triangle_area_2d ( double t[2*3] ) //****************************************************************************80 // // Purpose: // // TRIANGLE_AREA_2D computes the area of a triangle in 2D. // // Discussion: // // If the triangle's vertices are given in counterclockwise order, // the area will be positive. If the triangle's vertices are given // in clockwise order, the area will be negative! // // An earlier version of this routine always returned the absolute // value of the computed area. I am convinced now that that is // a less useful result! For instance, by returning the signed // area of a triangle, it is possible to easily compute the area // of a nonconvex polygon as the sum of the (possibly negative) // areas of triangles formed by node 1 and successive pairs of vertices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double T[2*3], the vertices of the triangle. // // Output, double TRIANGLE_AREA_2D, the area of the triangle. // { double area; area = 0.5 * ( t[0+0*2] * ( t[1+1*2] - t[1+2*2] ) + t[0+1*2] * ( t[1+2*2] - t[1+0*2] ) + t[0+2*2] * ( t[1+0*2] - t[1+1*2] ) ); return area; } //****************************************************************************80 int triangulation_order3_adj_count ( int node_num, int triangle_num, int triangle_node[], int triangle_neighbor[], int adj_col[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_ADJ_COUNT counts adjacencies in a triangulation. // // Discussion: // // This routine is called to count the adjacencies, so that the // appropriate amount of memory can be set aside for storage when // the adjacency structure is created. // // The triangulation is assumed to involve 3-node triangles. // // Two nodes are "adjacent" if they are both nodes in some triangle. // Also, a node is considered to be adjacent to itself. // // Diagram: // // 3 // s |\ // i | \ // d | \ // e | \ side 2 // | \ // 3 | \ // | \ // 1-------2 // // side 1 // // The local node numbering // // // 21-22-23-24-25 // |\ |\ |\ |\ | // | \| \| \| \| // 16-17-18-19-20 // |\ |\ |\ |\ | // | \| \| \| \| // 11-12-13-14-15 // |\ |\ |\ |\ | // | \| \| \| \| // 6--7--8--9-10 // |\ |\ |\ |\ | // | \| \| \| \| // 1--2--3--4--5 // // A sample grid. // // // Below, we have a chart that summarizes the adjacency relationships // in the sample grid. On the left, we list the node, and its neighbors, // with an asterisk to indicate the adjacency of the node to itself // (in some cases, you want to count this self adjacency and in some // you don't). On the right, we list the number of adjancencies to // lower-indexed nodes, to the node itself, to higher-indexed nodes, // the total number of adjacencies for this node, and the location // of the first and last entries required to list this set of adjacencies // in a single list of all the adjacencies. // // N Adjacencies Below Self Above Total First Last // // -- -- -- -- -- -- -- -- -- -- -- -- --- 0 // 1: * 2 6 0 1 2 3 1 3 // 2: 1 * 3 6 7 1 1 3 5 4 8 // 3: 2 * 4 7 8 1 1 3 5 9 13 // 4: 3 * 5 8 9 1 1 3 5 14 18 // 5: 4 * 9 10 1 1 2 4 19 22 // 6: 1 2 * 7 11 2 1 2 5 23 27 // 7: 2 3 6 * 8 11 12 3 1 3 7 28 34 // 8: 3 4 7 * 9 12 13 3 1 3 7 35 41 // 9: 4 5 8 * 10 13 14 3 1 3 7 42 48 // 10: 5 9 * 14 15 2 1 2 5 49 53 // 11: 6 7 * 12 16 2 1 2 5 54 58 // 12: 7 8 11 * 13 16 17 3 1 3 7 59 65 // 13: 8 9 12 * 14 17 18 3 1 3 7 66 72 // 14: 9 10 13 * 15 18 19 3 1 3 7 73 79 // 15: 10 14 * 19 20 2 1 2 5 80 84 // 16: 11 12 * 17 21 2 1 2 5 85 89 // 17: 12 13 16 * 18 21 22 3 1 3 7 90 96 // 18: 13 14 17 * 19 22 23 3 1 3 7 97 103 // 19: 14 15 18 * 20 23 24 3 1 3 7 104 110 // 20: 15 19 * 24 25 2 1 2 5 111 115 // 21: 16 17 * 22 2 1 1 4 116 119 // 22: 17 18 21 * 23 3 1 1 5 120 124 // 23: 18 19 22 * 24 3 1 1 5 125 129 // 24: 19 20 23 * 25 3 1 1 5 130 134 // 25: 20 24 * 2 1 0 3 135 137 // -- -- -- -- -- -- -- -- -- -- -- -- 138 --- // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 August 2006 // // Author: // // John Burkardt // // Parameters // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], lists the nodes that // make up each triangle, in counterclockwise order. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], for each side of // a triangle, lists the neighboring triangle, or -1 if there is // no neighbor. // // Output, TRIANGULATION_ORDER3_ADJ_COUNT, the number of adjacencies. // // Output, int ADJ_COL[NODE_NUM+1]. Information about column J is stored // in entries ADJ_COL(J) through ADJ_COL(J+1)-1 of ADJ. // { int adj_num; int i; int n1; int n2; int n3; int node; int triangle; int element_order = 3; int triangle2; adj_num = 0; // // Set every node to be adjacent to itself. // for ( node = 0; node < node_num; node++ ) { adj_col[node] = 1; } // // Examine each triangle. // for ( triangle = 0; triangle < triangle_num; triangle++ ) { n1 = triangle_node[0+triangle*element_order]; n2 = triangle_node[1+triangle*element_order]; n3 = triangle_node[2+triangle*element_order]; // // Add edge (1,2) if this is the first occurrence, // that is, if the edge (1,2) is on a boundary (TRIANGLE2 <= 0) // or if this triangle is the first of the pair in which the edge // occurs (TRIANGLE < TRIANGLE2). // triangle2 = triangle_neighbor[0+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj_col[n1-1] = adj_col[n1-1] + 1; adj_col[n2-1] = adj_col[n2-1] + 1; } // // Add edge (2,3). // triangle2 = triangle_neighbor[1+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj_col[n2-1] = adj_col[n2-1] + 1; adj_col[n3-1] = adj_col[n3-1] + 1; } // // Add edge (3,1). // triangle2 = triangle_neighbor[2+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { adj_col[n1-1] = adj_col[n1-1] + 1; adj_col[n3-1] = adj_col[n3-1] + 1; } } // // We used ADJ_COL to count the number of entries in each column. // Convert it to pointers into the ADJ array. // for ( node = node_num; 1 <= node; node-- ) { adj_col[node] = adj_col[node-1]; } adj_col[0] = 1; for ( i = 1; i <= node_num; i++ ) { adj_col[i]= adj_col[i-1] + adj_col[i]; } adj_num = adj_col[node_num] - 1; return adj_num; } //****************************************************************************80 void triangulation_order3_adj_set2 ( int node_num, int triangle_num, int triangle_node[], int triangle_neighbor[], int adj_num, int adj_col[], int ia[], int ja[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_ADJ_SET2 sets adjacencies in a triangulation. // // Discussion: // // This routine is called to set up the arrays IA and JA that // record which nodes are adjacent in a triangulation. // // The triangulation is assumed to involve 3-node triangles. // // Two nodes are "adjacent" if they are both nodes in some triangle. // Also, a node is considered to be adjacent to itself. // // This routine can be used to create the compressed column storage // for a linear triangle finite element discretization of // Poisson's equation in two dimensions. // // Diagram: // // 3 // s |\ // i | \ // d | \ // e | \ side 2 // | \ // 3 | \ // | \ // 1-------2 // // side 1 // // The local node numbering // // // 21-22-23-24-25 // |\ |\ |\ |\ | // | \| \| \| \| // 16-17-18-19-20 // |\ |\ |\ |\ | // | \| \| \| \| // 11-12-13-14-15 // |\ |\ |\ |\ | // | \| \| \| \| // 6--7--8--9-10 // |\ |\ |\ |\ | // | \| \| \| \| // 1--2--3--4--5 // // A sample grid // // // Below, we have a chart that summarizes the adjacency relationships // in the sample grid. On the left, we list the node, and its neighbors, // with an asterisk to indicate the adjacency of the node to itself // (in some cases, you want to count this self adjacency and in some // you don't). On the right, we list the number of adjancencies to // lower-indexed nodes, to the node itself, to higher-indexed nodes, // the total number of adjacencies for this node, and the location // of the first and last entries required to list this set of adjacencies // in a single list of all the adjacencies. // // N Adjacencies Below Self Above Total First Last // // -- -- -- -- -- -- -- -- -- -- -- -- --- 0 // 1: * 2 6 0 1 2 3 1 3 // 2: 1 * 3 6 7 1 1 3 5 4 8 // 3: 2 * 4 7 8 1 1 3 5 9 13 // 4: 3 * 5 8 9 1 1 3 5 14 18 // 5: 4 * 9 10 1 1 2 4 19 22 // 6: 1 2 * 7 11 2 1 2 5 23 27 // 7: 2 3 6 * 8 11 12 3 1 3 7 28 34 // 8: 3 4 7 * 9 12 13 3 1 3 7 35 41 // 9: 4 5 8 * 10 13 14 3 1 3 7 42 48 // 10: 5 9 * 14 15 2 1 2 5 49 53 // 11: 6 7 * 12 16 2 1 2 5 54 58 // 12: 7 8 11 * 13 16 17 3 1 3 7 59 65 // 13: 8 9 12 * 14 17 18 3 1 3 7 66 72 // 14: 9 10 13 * 15 18 19 3 1 3 7 73 79 // 15: 10 14 * 19 20 2 1 2 5 80 84 // 16: 11 12 * 17 21 2 1 2 5 85 89 // 17: 12 13 16 * 18 21 22 3 1 3 7 90 96 // 18: 13 14 17 * 19 22 23 3 1 3 7 97 103 // 19: 14 15 18 * 20 23 24 3 1 3 7 104 110 // 20: 15 19 * 24 25 2 1 2 5 111 115 // 21: 16 17 * 22 2 1 1 4 116 119 // 22: 17 18 21 * 23 3 1 1 5 120 124 // 23: 18 19 22 * 24 3 1 1 5 125 129 // 24: 19 20 23 * 25 3 1 1 5 130 134 // 25: 20 24 * 2 1 0 3 135 137 // -- -- -- -- -- -- -- -- -- -- -- -- 138 --- // // For this example, the initial portion of the IA and JA arrays will be: // // (1,1), (1,2), (1,6), // (2,1), (2,2), (2,3), (2,6), (2,7), // (3,2), (3,3), (3,4), (3,7), (3,8), // ... // (25,20), (25,24), (25,25) // // for a total of 137 pairs of values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 July 2007 // // Author: // // John Burkardt // // Parameters // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], lists the nodes that // make up each triangle in counterclockwise order. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], for each side of // a triangle, lists the neighboring triangle, or -1 if there is // no neighbor. // // Input, int ADJ_NUM, the number of adjacencies. // // Input, int ADJ_COL[NODE_NUM+1]. Information about column J is stored // in entries ADJ_COL(J) through ADJ_COL(J+1)-1 of ADJ. // // Output, int IA[ADJ_NUM], JA[ADJ_NUM], the adjacency information. // { int adj; int *adj_copy; int k; int k1; int k2; int n1; int n2; int n3; int node; int triangle; int triangle2; int element_order = 3; for ( adj = 0; adj < adj_num; adj++ ) { ia[adj] = -1; } for ( adj = 0; adj < adj_num; adj++ ) { ja[adj] = -1; } adj_copy = new int[node_num]; for ( node = 0; node < node_num; node++ ) { adj_copy[node] = adj_col[node]; } // // Set every node to be adjacent to itself. // for ( node = 1; node <= node_num; node++ ) { ia[adj_copy[node-1]-1] = node; ja[adj_copy[node-1]-1] = node; adj_copy[node-1] = adj_copy[node-1] + 1; } // // Examine each triangle. // for ( triangle = 0; triangle < triangle_num; triangle++ ) { n1 = triangle_node[0+triangle*element_order]; n2 = triangle_node[1+triangle*element_order]; n3 = triangle_node[2+triangle*element_order]; // // Add edge (1,2) if this is the first occurrence, // that is, if the edge (1,2) is on a boundary (TRIANGLE2 <= 0) // or if this triangle is the first of the pair in which the edge // occurs (TRIANGLE < TRIANGLE2). // triangle2 = triangle_neighbor[0+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { ia[adj_copy[n1-1]-1] = n1; ja[adj_copy[n1-1]-1] = n2; adj_copy[n1-1] = adj_copy[n1-1] + 1; ia[adj_copy[n2-1]-1] = n2; ja[adj_copy[n2-1]-1] = n1; adj_copy[n2-1] = adj_copy[n2-1] + 1; } // // Add edge (2,3). // triangle2 = triangle_neighbor[1+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { ia[adj_copy[n2-1]-1] = n2; ja[adj_copy[n2-1]-1] = n3; adj_copy[n2-1] = adj_copy[n2-1] + 1; ia[adj_copy[n3-1]-1] = n3; ja[adj_copy[n3-1]-1] = n2; adj_copy[n3-1] = adj_copy[n3-1] + 1; } // // Add edge (3,1). // triangle2 = triangle_neighbor[2+triangle*3]; if ( triangle2 < 0 || triangle < triangle2 ) { ia[adj_copy[n1-1]-1] = n1; ja[adj_copy[n1-1]-1] = n3; adj_copy[n1-1] = adj_copy[n1-1] + 1; ia[adj_copy[n3-1]-1] = n3; ja[adj_copy[n3-1]-1] = n1; adj_copy[n3-1] = adj_copy[n3-1] + 1; } } // // Lexically sort the IA, JA values. // i4vec2_sort_a ( adj_num, ia, ja ); delete [] adj_copy; return; } //****************************************************************************80 bool *triangulation_order3_boundary_node ( int node_num, int element_num, int element_node[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_BOUNDARY_NODE indicates nodes on the boundary. // // Discussion: // // This routine is given a triangulation, an abstract list of triples // of nodes. It is assumed that the nodes in each triangle are listed // in a counterclockwise order, although the routine should work // if the nodes are consistently listed in a clockwise order as well. // // It is assumed that each edge of the triangulation is either // * an INTERIOR edge, which is listed twice, once with positive // orientation and once with negative orientation, or; // * a BOUNDARY edge, which will occur only once. // // This routine should work even if the region has holes - as long // as the boundary of the hole comprises more than 3 edges! // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 January 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int ELEMENT_NUM, the number of triangles. // // Input, int ELEMENT_NODE[3*ELEMENT_NUM], the nodes that make up the // triangles. These should be listed in counterclockwise order. // // Output, bool TRIANGULATION_ORDER3_BOUNDARY_NODE[NODE_NUM], // is TRUE if the node is on a boundary edge. // { int e1; int e2; int *edge; bool equal; int i; int j; int m; int n; bool *node_boundary; m = 2; n = 3 * element_num; // // Set up the edge array. // edge = new int[m*n]; for ( j = 0; j < element_num; j++ ) { edge[0+(j )*m] = element_node[0+j*3]; edge[1+(j )*m] = element_node[1+j*3]; edge[0+(j+ element_num)*m] = element_node[1+j*3]; edge[1+(j+ element_num)*m] = element_node[2+j*3]; edge[0+(j+2*element_num)*m] = element_node[2+j*3]; edge[1+(j+2*element_num)*m] = element_node[0+j*3]; } // // In each column, force the smaller entry to appear first. // for ( j = 0; j < n; j++ ) { e1 = i4_min ( edge[0+j*m], edge[1+j*m] ); e2 = i4_max ( edge[0+j*m], edge[1+j*m] ); edge[0+j*m] = e1; edge[1+j*m] = e2; } // // Ascending sort the column array. // i4col_sort_a ( m, n, edge ); // // Records which appear twice are internal edges and can be ignored. // node_boundary = new bool[node_num]; for ( i = 0; i < node_num; i++ ) { node_boundary[i] = false; } j = 0; while ( j < 3 * element_num ) { j = j + 1; if ( j == 3 * element_num ) { for ( i = 0; i < m; i++ ) { node_boundary[edge[i+(j-1)*m]-1] = true; } break; } equal = true; for ( i = 0; i < m; i++ ) { if ( edge[i+(j-1)*m] != edge[i+j*m] ) { equal = false; } } if ( equal ) { j = j + 1; } else { for ( i = 0; i < m; i++ ) { node_boundary[edge[i+(j-1)*m]-1] = true; } } } delete [] edge; return node_boundary; } //****************************************************************************80 void triangulation_order3_neighbor_triangles ( int triangle_num, int triangle_node[], int triangle_neighbor[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_NEIGHBOR_TRIANGLES determines triangle neighbors. // // Discussion: // // A triangulation of a set of nodes can be completely described by // the coordinates of the nodes, and the list of nodes that make up // each triangle. However, in some cases, it is necessary to know // triangle adjacency information, that is, which triangle, if any, // is adjacent to a given triangle on a particular side. // // This routine creates a data structure recording this information. // // The primary amount of work occurs in sorting a list of 3 * TRIANGLE_NUM // data items. // // This routine was modified to work with columns rather than rows. // // Example: // // The input information from TRIANGLE_NODE: // // Triangle Nodes // -------- --------------- // 1 3 4 1 // 2 3 1 2 // 3 3 2 8 // 4 2 1 5 // 5 8 2 13 // 6 8 13 9 // 7 3 8 9 // 8 13 2 5 // 9 9 13 7 // 10 7 13 5 // 11 6 7 5 // 12 9 7 6 // 13 10 9 6 // 14 6 5 12 // 15 11 6 12 // 16 10 6 11 // // The output information in TRIANGLE_NEIGHBOR: // // Triangle Neighboring Triangles // -------- --------------------- // // 1 -1 -1 2 // 2 1 4 3 // 3 2 5 7 // 4 2 -1 8 // 5 3 8 6 // 6 5 9 7 // 7 3 6 -1 // 8 5 4 10 // 9 6 10 12 // 10 9 8 11 // 11 12 10 14 // 12 9 11 13 // 13 -1 12 16 // 14 11 -1 15 // 15 16 14 -1 // 16 13 15 -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 February 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], the nodes that make up each // triangle. // // Output, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the three triangles // that are direct neighbors of a given triangle. TRIANGLE_NEIGHBOR(1,I) // is the index of the triangle which touches side 1, defined by nodes 2 // and 3, and so on. TRIANGLE_NEIGHBOR(1,I) is negative if there is no // neighbor on that side. In this case, that side of the triangle lies // on the boundary of the triangulation. // { int *col; int i; int icol; int j; int k; int side1; int side2; int tri; int element_order = 3; int tri1; int tri2; col = new int[4*(3*triangle_num)]; // // Step 1. // From the list of nodes for triangle T, of the form: (I,J,K) // construct the three neighbor relations: // // (I,J,1,T) or (J,I,1,T), // (J,K,2,T) or (K,J,2,T), // (K,I,3,T) or (I,K,3,T) // // where we choose (I,J,1,T) if I < J, or else (J,I,1,T) // for ( tri = 0; tri < triangle_num; tri++ ) { i = triangle_node[0+tri*element_order]; j = triangle_node[1+tri*element_order]; k = triangle_node[2+tri*element_order]; if ( i < j ) { col[0+(3*tri+0)*4] = i; col[1+(3*tri+0)*4] = j; col[2+(3*tri+0)*4] = 1; col[3+(3*tri+0)*4] = tri + 1; } else { col[0+(3*tri+0)*4] = j; col[1+(3*tri+0)*4] = i; col[2+(3*tri+0)*4] = 1; col[3+(3*tri+0)*4] = tri + 1; } if ( j < k ) { col[0+(3*tri+1)*4] = j; col[1+(3*tri+1)*4] = k; col[2+(3*tri+1)*4] = 2; col[3+(3*tri+1)*4] = tri + 1; } else { col[0+(3*tri+1)*4] = k; col[1+(3*tri+1)*4] = j; col[2+(3*tri+1)*4] = 2; col[3+(3*tri+1)*4] = tri + 1; } if ( k < i ) { col[0+(3*tri+2)*4] = k; col[1+(3*tri+2)*4] = i; col[2+(3*tri+2)*4] = 3; col[3+(3*tri+2)*4] = tri + 1; } else { col[0+(3*tri+2)*4] = i; col[1+(3*tri+2)*4] = k; col[2+(3*tri+2)*4] = 3; col[3+(3*tri+2)*4] = tri + 1; } } // // Step 2. Perform an ascending dictionary sort on the neighbor relations. // We only intend to sort on rows 1 and 2; the routine we call here // sorts on rows 1 through 4 but that won't hurt us. // // What we need is to find cases where two triangles share an edge. // Say they share an edge defined by the nodes I and J. Then there are // two columns of COL that start out ( I, J, ?, ? ). By sorting COL, // we make sure that these two columns occur consecutively. That will // make it easy to notice that the triangles are neighbors. // i4col_sort_a ( 4, 3*triangle_num, col ); // // Step 3. Neighboring triangles show up as consecutive columns with // identical first two entries. Whenever you spot this happening, // make the appropriate entries in TRIANGLE_NEIGHBOR. // for ( j = 0; j < triangle_num; j++ ) { for ( i = 0; i < 3; i++ ) { triangle_neighbor[i+j*3] = -1; } } icol = 1; for ( ; ; ) { if ( 3 * triangle_num <= icol ) { break; } if ( col[0+(icol-1)*4] != col[0+icol*4] || col[1+(icol-1)*4] != col[1+icol*4] ) { icol = icol + 1; continue; } side1 = col[2+(icol-1)*4]; tri1 = col[3+(icol-1)*4]; side2 = col[2+ icol *4]; tri2 = col[3+ icol *4]; triangle_neighbor[side1-1+(tri1-1)*3] = tri2; triangle_neighbor[side2-1+(tri2-1)*3] = tri1; icol = icol + 2; } delete [] col; return; }