# include # include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); void basis_mn_t3 ( double t[2*3], int n, double p[], double phi[], double dphidx[], double dphidy[] ); void basis_mn_t6 ( double t[2*6], int n, double p[], double phi[], double dphidx[], double dphidy[] ); char ch_cap ( char ch ); bool ch_eqi ( char ch1, char ch2 ); int ch_to_digit ( char ch ); double *fem2d_transfer ( int sample_node_num, int sample_element_order, int sample_element_num, int sample_value_dim, int sample_value_num, double sample_node_xy[], int sample_element_node[], int sample_element_neighbor[], double sample_value[], int fem_node_num, int fem_element_order, int fem_element_num, int fem_value_dim, int fem_value_num, double fem_node_xy[], int fem_element_node[] ); int file_column_count ( string input_filename ); int file_row_count ( string input_filename ); int i4_max ( int i1, int i2 ); int i4_min ( int i1, int i2 ); int i4col_compare ( int m, int n, int a[], int i, int j ); void i4col_sort_a ( int m, int n, int a[] ); void i4col_swap ( int m, int n, int a[], int icol1, int icol2 ); int *i4mat_data_read ( string input_filename, int m, int n ); void i4mat_header_read ( string input_filename, int *m, int *n ); int i4mat_min ( int m, int n, int a[] ); double *projection ( int fem_node_num, double fem_node_xy[], int fem_element_order, int fem_element_num, int fem_element_node[], int fem_element_neighbor[], int fem_value_dim, double fem_value[], int sample_node_num, double sample_node_xy[] ); float r4_abs ( float x ); int r4_nint ( float x ); double r8_abs ( double x ); double r8_min ( double x, double y ); double *r8ge_fss_new ( int n, double a[], int nb, double b[] ); double *r8mat_data_read ( string input_filename, int m, int n ); void r8mat_header_read ( string input_filename, int *m, int *n ); void r8mat_write ( string output_filename, int m, int n, double table[] ); double *r8mat_zero_new ( int m, int n ); int s_len_trim ( string s ); int s_to_i4 ( string s, int *last, bool *error ); bool s_to_i4vec ( string s, int n, int ivec[] ); double s_to_r8 ( string s, int *lchar, bool *error ); bool s_to_r8vec ( string s, int n, double rvec[] ); int s_word_count ( string s ); void sort_heap_external ( int n, int *indx, int *i, int *j, int isgn ); void timestamp ( ); int *triangulation_order3_neighbor_triangles ( int triangle_num, int triangle_node[] ); void triangulation_search_delaunay ( int node_num, double node_xy[], int triangle_order, int triangle_num, int triangle_node[], int triangle_neighbor[], double p[2], int *triangle_index, int *edge ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for FEM2D_PROJECT. // // Discussion: // // FEM2D_PROJECT reads files defining a sampling of a (scalar or vector) // function of 2 arguments, and a list of nodes and triangular elements // to use for a finite element representation of the data. // // It computes a set of finite element coefficients to be associated with // the given finite element mesh, and writes that information to a file // so that an FEM representation is formed by the node, element and value // files. // // Usage: // // fem2d_project sample_prefix fem_prefix // // where 'sample_prefix' is the common prefix for the SAMPLE files: // // * sample_prefix_nodes.txt, the node coordinates where samples were taken, // * sample_prefix_elements.txt, the nodes that make up each element; // * sample_prefix_values.txt, the sample values. // // and 'fem_prefix' is the common prefix for the FEM files: // // * fem_prefix_nodes.txt, the node coordinates. // * fem_prefix_elements.txt, the nodes that make up each element; // * fem_prefix_values.txt, the values defined at each node, // computed by this program. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 August 2009 // // Author: // // John Burkardt // { int element_min; string fem_element_filename; int *fem_element_node; int fem_element_num; int fem_element_order; int fem_node_dim; string fem_node_filename; int fem_node_num; double *fem_node_xy; string fem_prefix; double *fem_value; int fem_value_dim; string fem_value_filename; int fem_value_num; int i; int j; string sample_element_filename; int *sample_element_neighbor; int *sample_element_node; int sample_element_num; int sample_element_order; string sample_prefix; int sample_node_dim; string sample_node_filename; int sample_node_num; double *sample_node_xy; int sample_value_dim; int sample_value_num; double *sample_value; string sample_value_filename; timestamp ( ); cout << "\n"; cout << "FEM2D_PROJECT\n"; cout << " C++ version.\n"; cout << "\n"; cout << " Read files defining a sampling of a function of 2 arguments.\n"; cout << " Read files defining a finite element mesh.\n"; cout << " Project the sample data onto the mesh, and\n"; cout << " write a file of FEM coefficient values.\n"; // // Get the number of command line arguments. // if ( 1 < argc ) { sample_prefix = argv[1]; } else { cout << "\n"; cout << "Enter the sample file prefix:\n"; cin >> sample_prefix; } if ( 2 < argc ) { fem_prefix = argv[2]; } else { cout << "\n"; cout << "Enter the FEM file prefix:\n"; cin >> fem_prefix; } // // Create the filenames. // sample_node_filename = sample_prefix + "_nodes.txt"; sample_element_filename = sample_prefix + "_elements.txt"; sample_value_filename = sample_prefix + "_values.txt"; fem_node_filename = fem_prefix + "_nodes.txt"; fem_element_filename = fem_prefix + "_elements.txt"; fem_value_filename = fem_prefix + "_values.txt"; // // Read the SAMPLE NODE, ELEMENT and VALUE data. // r8mat_header_read ( sample_node_filename, &sample_node_dim, &sample_node_num ); sample_node_xy = r8mat_data_read ( sample_node_filename, sample_node_dim, sample_node_num ); cout << "\n"; cout << " Sample node spatial dimension is " << sample_node_dim << "\n"; cout << " Sample node number is " << sample_node_num << "\n"; if ( sample_node_dim != 2 ) { cout << "\n"; cout << "FEM2D_PROJECT - Fatal error!\n"; cout << " Spatial dimension of the sample nodes is not 2.\n"; exit ( 1 ); } i4mat_header_read ( sample_element_filename, &sample_element_order, &sample_element_num ); if ( sample_element_order != 3 ) { cout << "\n"; cout << "FEM2D_PROJECT - Fatal error!\n"; cout << " The sample elements must be of order 3.\n"; exit ( 1 ); } sample_element_node = new int[sample_element_order*sample_element_num]; sample_element_node = i4mat_data_read ( sample_element_filename, sample_element_order, sample_element_num ); cout << "\n"; cout << " Sample element order is " << sample_element_order << "\n"; cout << " Sample element number is " << sample_element_num << "\n"; element_min = i4mat_min ( sample_element_order, sample_element_num, sample_element_node ); if ( element_min == 1 ) { cout << "\n"; cout << " Converting 1-based sample element array to 0 base.\n"; for ( j = 0; j < sample_element_num; j++ ) { for ( i = 0; i < sample_element_order; i++ ) { sample_element_node[i+j*sample_element_order] = sample_element_node[i+j*sample_element_order] - 1; } } } r8mat_header_read ( sample_value_filename, &sample_value_dim, &sample_value_num ); cout << "\n"; cout << " The sample value dimension is " << sample_value_dim << "\n"; cout << " The sample value number is " << sample_value_num << "\n"; if ( sample_value_num != sample_node_num ) { cout << "\n"; cout << "FEM2D_PROJECT - Fatal error!\n"; cout << " Number of sample values and nodes differ.\n"; exit ( 1 ); } sample_value = r8mat_data_read ( sample_value_filename, sample_value_dim, sample_value_num ); // // Create the sample element neighbor array. // sample_element_neighbor = triangulation_order3_neighbor_triangles ( sample_element_num, sample_element_node ); cout << "\n"; cout << " The element neighbor array has been computed.\n"; // // Read the FEM NODE and ELEMENT data. // r8mat_header_read ( fem_node_filename, &fem_node_dim, &fem_node_num ); cout << "\n"; cout << " The FEM node dimension is " << fem_node_dim << "\n"; cout << " The FEM node number is " << fem_node_num << "\n"; if ( fem_node_dim != 2 ) { cout << "\n"; cout << "FEM2D_PROJECT - Fatal error!\n"; cout << " Spatial dimension of the nodes is not 2.\n"; exit ( 1 ); } fem_node_xy = r8mat_data_read ( fem_node_filename, fem_node_dim, fem_node_num ); i4mat_header_read ( fem_element_filename, &fem_element_order, &fem_element_num ); cout << " The FEM element order is " << fem_element_order << "\n"; cout << " The FEM element number is " << fem_element_num << "\n"; if ( fem_element_order != 3 ) { cout << "\n"; cout << "FEM2D_PROJECT - Fatal error!\n"; cout << " The FEM elements must be of order 3.\n"; exit ( 1 ); } fem_element_node = i4mat_data_read ( fem_element_filename, fem_element_order, fem_element_num ); element_min = i4mat_min ( fem_element_order, fem_element_num, fem_element_node ); if ( element_min == 1 ) { cout << "\n"; cout << " Converting 1-based FEM element array to 0 base.\n"; for ( j = 0; j < fem_element_num; j++ ) { for ( i = 0; i < fem_element_order; i++ ) { fem_element_node[i+j*fem_element_order] = fem_element_node[i+j*fem_element_order] - 1; } } } // // Compute the FEM values. // fem_value_dim = sample_value_dim; fem_value_num = fem_node_num; fem_value = fem2d_transfer ( sample_node_num, sample_element_order, sample_element_num, sample_value_dim, sample_value_num, sample_node_xy, sample_element_node, sample_element_neighbor, sample_value, fem_node_num, fem_element_order, fem_element_num, fem_value_dim, fem_value_num, fem_node_xy, fem_element_node ); // // Write the FEM values. // r8mat_write ( fem_value_filename, fem_value_dim, fem_value_num, fem_value ); cout << "\n"; cout << " FEM value data written to \"" << fem_value_filename << "\"\n"; // // Terminate. // cout << "\n"; cout << "FEM2D_PROJECT\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); delete [] fem_element_node; delete [] fem_node_xy; delete [] fem_value; delete [] sample_element_neighbor; delete [] sample_element_node; delete [] sample_node_xy; delete [] sample_value; return 0; } //****************************************************************************80 void basis_mn_t3 ( double t[2*3], int n, double p[], double phi[], double dphidx[], double dphidy[] ) //****************************************************************************80 // // Purpose: // // BASIS_MN_T3: all bases at N points for a T3 element. // // Discussion: // // The routine is given the coordinates of the vertices of a triangle. // It works directly with these coordinates, and does not refer to a // reference element. // // The sides of the triangle DO NOT have to lie along a coordinate // axis. // // The routine evaluates the basis functions associated with each vertex, // and their derivatives with respect to X and Y. // // Physical Element T3: // // 3 // / \ // / \ // / \ // / \ // 1---------2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 February 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double T[2*3], the coordinates of the vertices // of the triangle. It is common to list these points in counter clockwise // order. // // Input, int N, the number of evaluation points. // // Input, double P[2*N], the points where the basis functions // are to be evaluated. // // Output, double PHI[3*N], the value of the basis functions // at the evaluation points. // // Output, double DPHIDX[3*N], DPHIDY[3*N], the value of the // derivatives at the evaluation points. // // Local parameters: // // Local, double AREA, is (twice) the area of the triangle. // { double area; int i; int j; double temp; area = t[0+0*2] * ( t[1+1*2] - t[1+2*2] ) + t[0+1*2] * ( t[1+2*2] - t[1+0*2] ) + t[0+2*2] * ( t[1+0*2] - t[1+1*2] ); if ( area == 0.0 ) { cout << "\n"; cout << "BASIS_MN_T3 - Fatal error!\n"; cout << " Element has zero area.\n"; exit ( 1 ); } for ( j = 0; j < n; j++ ) { phi[0+j*3] = ( ( t[0+2*2] - t[0+1*2] ) * ( p[1+j*2] - t[1+1*2] ) - ( t[1+2*2] - t[1+1*2] ) * ( p[0+j*2] - t[0+1*2] ) ); dphidx[0+j*3] = - ( t[1+2*2] - t[1+1*2] ); dphidy[0+j*3] = ( t[0+2*2] - t[0+1*2] ); phi[1+j*3] = ( ( t[0+0*2] - t[0+2*2] ) * ( p[1+j*2] - t[1+2*2] ) - ( t[1+0*2] - t[1+2*2] ) * ( p[0+j*2] - t[0+2*2] ) ); dphidx[1+j*3] = - ( t[1+0*2] - t[1+2*2] ); dphidy[1+j*3] = ( t[0+0*2] - t[0+2*2] ); phi[2+j*3] = ( ( t[0+1*2] - t[0+0*2] ) * ( p[1+j*2] - t[1+0*2] ) - ( t[1+1*2] - t[1+0*2] ) * ( p[0+j*2] - t[0+0*2] ) ); dphidx[2+j*3] = - ( t[1+1*2] - t[1+0*2] ); dphidy[2+j*3] = ( t[0+1*2] - t[0+0*2] ); } // // Normalize. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < 3; i++ ) { phi[i+j*3] = phi[i+j*3] / area; dphidx[i+j*3] = dphidx[i+j*3] / area; dphidy[i+j*3] = dphidy[i+j*3] / area; } } return; } //****************************************************************************80 void basis_mn_t6 ( double t[2*6], int n, double p[], double phi[], double dphidx[], double dphidy[] ) //****************************************************************************80 // // Purpose: // // BASIS_MN_T6: all bases at N points for a T6 element. // // Discussion: // // The routine is given the coordinates of the vertices and midside // nodes of a triangle. It works directly with these coordinates, and does // not refer to a reference element. // // This routine requires that the midside nodes be "in line" // with the vertices, that is, that the sides of the triangle be // straight. However, the midside nodes do not actually have to // be halfway along the side of the triangle. // // The physical element T6: // // This picture indicates the assumed ordering of the six nodes // of the triangle. // // | // | // | 3 // | / \ // | / \ // Y 6 5 // | / \ // | / \ // | 1-----4-----2 // | // +--------X--------> // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 February 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double T[2*6], the nodal oordinates of the element. // It is common to list these points in counter clockwise order. // // Input, int N, the number of evaluation points. // // Input, double P[2*N], the coordinates of the point where // the basis functions are to be evaluated. // // Output, double PHI[6*N], the value of the basis functions at P. // // Output, double DPHIDX[6*N], DPHIDY[6*N], the value of the X // and Y derivatives of the basis functions at P. // { double gn; double gx; double hn; double hx; int j; for ( j = 0; j < n; j++ ) { // // Basis function 1: PHI(X,Y) = G(3,2) * H(6,4) / normalization. // gx = ( p[0+j*2] - t[0+1*2] ) * ( t[1+2*2] - t[1+1*2] ) - ( t[0+2*2] - t[0+1*2] ) * ( p[1+j*2] - t[1+1*2] ); gn = ( t[0+0*2] - t[0+1*2] ) * ( t[1+2*2] - t[1+1*2] ) - ( t[0+2*2] - t[0+1*2] ) * ( t[1+0*2] - t[1+1*2] ); hx = ( p[0+j*2] - t[0+3*2] ) * ( t[1+5*2] - t[1+3*2] ) - ( t[0+5*2] - t[0+3*2] ) * ( p[1+j*2] - t[1+3*2] ); hn = ( t[0+0*2] - t[0+3*2] ) * ( t[1+5*2] - t[1+3*2] ) - ( t[0+5*2] - t[0+3*2] ) * ( t[1+0*2] - t[1+3*2] ); phi[0+j*6] = ( gx * hx ) / ( gn * hn ); dphidx[0+j*6] = ( ( t[1+2*2] - t[1+1*2] ) * hx + gx * ( t[1+5*2] - t[1+3*2] ) ) / ( gn * hn ); dphidy[0+j*6] = -( ( t[0+2*2] - t[0+1*2] ) * hx + gx * ( t[0+5*2] - t[0+3*2] ) ) / ( gn * hn ); // // Basis function 2: PHI(X,Y) = G(3,1) * H(4,5) / normalization. // gx = ( p[0+j*2] - t[0+0*2] ) * ( t[1+2*2] - t[1+0*2] ) - ( t[0+2*2] - t[0+0*2] ) * ( p[1+j*2] - t[1+0*2] ); gn = ( t[0+1*2] - t[0+0*2] ) * ( t[1+2*2] - t[1+0*2] ) - ( t[0+2*2] - t[0+0*2] ) * ( t[1+1*2] - t[1+0*2] ); hx = ( p[0+j*2] - t[0+4*2] ) * ( t[1+3*2] - t[1+4*2] ) - ( t[0+3*2] - t[0+4*2] ) * ( p[1+j*2] - t[1+4*2] ); hn = ( t[0+1*2] - t[0+4*2] ) * ( t[1+3*2] - t[1+4*2] ) - ( t[0+3*2] - t[0+4*2] ) * ( t[1+1*2] - t[1+4*2] ); phi[1+j*6] = ( gx * hx ) / ( gn * hn ); dphidx[1+j*6] = ( ( t[1+2*2] - t[1+0*2] ) * hx + gx * ( t[1+3*2] - t[1+4*2] ) ) / ( gn * hn ); dphidy[1+j*6] = -( ( t[0+2*2] - t[0+0*2] ) * hx + gx * ( t[0+3*2] - t[0+4*2] ) ) / ( gn * hn ); // // Basis function 3: PHI(X,Y) = G(1,2) * H(5,6) / normalization. // gx = ( p[0+j*2] - t[0+1*2] ) * ( t[1+0*2] - t[1+1*2] ) - ( t[0+0*2] - t[0+1*2] ) * ( p[1+j*2] - t[1+1*2] ); gn = ( t[0+2*2] - t[0+1*2] ) * ( t[1+0*2] - t[1+1*2] ) - ( t[0+0*2] - t[0+1*2] ) * ( t[1+2*2] - t[1+1*2] ); hx = ( p[0+j*2] - t[0+5*2] ) * ( t[1+4*2] - t[1+5*2] ) - ( t[0+4*2] - t[0+5*2] ) * ( p[1+j*2] - t[1+5*2] ); hn = ( t[0+2*2] - t[0+5*2] ) * ( t[1+4*2] - t[1+5*2] ) - ( t[0+4*2] - t[0+5*2] ) * ( t[1+2*2] - t[1+5*2] ); phi[2+j*6] = ( gx * hx ) / ( gn * hn ); dphidx[2+j*6] = ( ( t[1+0*2] - t[1+1*2] ) * hx + gx * ( t[1+4*2] - t[1+5*2] ) ) / ( gn * hn ); dphidy[2+j*6] = -( ( t[0+0*2] - t[0+1*2] ) * hx + gx * ( t[0+4*2] - t[0+5*2] ) ) / ( gn * hn ); // // Basis function 4: PHI(X,Y) = G(1,3) * H(2,3) / normalization. // gx = ( p[0+j*2] - t[0+2*2] ) * ( t[1+0*2] - t[1+2*2] ) - ( t[0+0*2] - t[0+2*2] ) * ( p[1+j*2] - t[1+2*2] ); gn = ( t[0+3*2] - t[0+2*2] ) * ( t[1+0*2] - t[1+2*2] ) - ( t[0+0*2] - t[0+2*2] ) * ( t[1+3*2] - t[1+2*2] ); hx = ( p[0+j*2] - t[0+2*2] ) * ( t[1+1*2] - t[1+2*2] ) - ( t[0+1*2] - t[0+2*2] ) * ( p[1+j*2] - t[1+2*2] ); hn = ( t[0+3*2] - t[0+2*2] ) * ( t[1+1*2] - t[1+2*2] ) - ( t[0+1*2] - t[0+2*2] ) * ( t[1+3*2] - t[1+2*2] ); phi[3+j*6] = ( gx * hx ) / ( gn * hn ); dphidx[3+j*6] = ( ( t[1+0*2] - t[1+2*2] ) * hx + gx * ( t[1+1*2] - t[1+2*2] ) ) / ( gn * hn ); dphidy[3+j*6] = -( ( t[0+0*2] - t[0+2*2] ) * hx + gx * ( t[0+1*2] - t[0+2*2] ) ) / ( gn * hn ); // // Basis function 5: PHI(X,Y) = G(2,1) * H(3,1) / normalization. // gx = ( p[0+j*2] - t[0+0*2] ) * ( t[1+1*2] - t[1+0*2] ) - ( t[0+1*2] - t[0+0*2] ) * ( p[1+j*2] - t[1+0*2] ); gn = ( t[0+4*2] - t[0+0*2] ) * ( t[1+1*2] - t[1+0*2] ) - ( t[0+1*2] - t[0+0*2] ) * ( t[1+4*2] - t[1+0*2] ); hx = ( p[0+j*2] - t[0+0*2] ) * ( t[1+2*2] - t[1+0*2] ) - ( t[0+2*2] - t[0+0*2] ) * ( p[1+j*2] - t[1+0*2] ); hn = ( t[0+4*2] - t[0+0*2] ) * ( t[1+2*2] - t[1+0*2] ) - ( t[0+2*2] - t[0+0*2] ) * ( t[1+4*2] - t[1+0*2] ); phi[4+j*6] = ( gx * hx ) / ( gn * hn ); dphidx[4+j*6] = ( ( t[1+1*2] - t[1+0*2] ) * hx + gx * ( t[1+2*2] - t[1+0*2] ) ) / ( gn * hn ); dphidy[4+j*6] = -( ( t[0+1*2] - t[0+0*2] ) * hx + gx * ( t[0+2*2] - t[0+0*2] ) ) / ( gn * hn ); // // Basis function 6: PHI(X,Y) = G(1,2) * H(3,2) / normalization. // gx = ( p[0+j*2] - t[0+1*2] ) * ( t[1+0*2] - t[1+1*2] ) - ( t[0+0*2] - t[0+1*2] ) * ( p[1+j*2] - t[1+1*2] ); gn = ( t[0+5*2] - t[0+1*2] ) * ( t[1+0*2] - t[1+1*2] ) - ( t[0+0*2] - t[0+1*2] ) * ( t[1+5*2] - t[1+1*2] ); hx = ( p[0+j*2] - t[0+1*2] ) * ( t[1+2*2] - t[1+1*2] ) - ( t[0+2*2] - t[0+1*2] ) * ( p[1+j*2] - t[1+1*2] ); hn = ( t[0+5*2] - t[0+1*2] ) * ( t[1+2*2] - t[1+1*2] ) - ( t[0+2*2] - t[0+1*2] ) * ( t[1+5*2] - t[1+1*2] ); phi[5+j*6] = ( gx * hx ) / ( gn * hn ); dphidx[5+j*6] = ( ( t[1+0*2] - t[1+1*2] ) * hx + gx * ( t[1+2*2] - t[1+1*2] ) ) / ( gn * hn ); dphidy[5+j*6] = -( ( t[0+0*2] - t[0+1*2] ) * hx + gx * ( t[0+2*2] - t[0+1*2] ) ) / ( gn * hn ); } return; } //****************************************************************************80 char ch_cap ( char ch ) //****************************************************************************80 // // Purpose: // // CH_CAP capitalizes a single character. // // Discussion: // // This routine should be equivalent to the library "toupper" function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 July 1998 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the character to capitalize. // // Output, char CH_CAP, the capitalized character. // { if ( 97 <= ch && ch <= 122 ) { ch = ch - 32; } return ch; } //****************************************************************************80 bool ch_eqi ( char ch1, char ch2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH1, CH2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { if ( 97 <= ch1 && ch1 <= 122 ) { ch1 = ch1 - 32; } if ( 97 <= ch2 && ch2 <= 122 ) { ch2 = ch2 - 32; } return ( ch1 == ch2 ); } //****************************************************************************80 int ch_to_digit ( char ch ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // CH DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If the // character was 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= ch && ch <= '9' ) { digit = ch - '0'; } else if ( ch == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 double *fem2d_transfer ( int sample_node_num, int sample_element_order, int sample_element_num, int sample_value_dim, int sample_value_num, double sample_node_xy[], int sample_element_node[], int sample_element_neighbor[], double sample_value[], int fem_node_num, int fem_element_order, int fem_element_num, int fem_value_dim, int fem_value_num, double fem_node_xy[], int fem_element_node[] ) //****************************************************************************80 // // Purpose: // // FEM2D_TRANSFER "transfers" from one finite element mesh to another. // // BAD THINGS: // // 1) the linear system A*X=B is defined with A being a full storage matrix. // 2) the quadrature rule used is low order. // 3) the triangular elements are assumed to be linear. // // Discussion: // // We are also given a set of "sample" finite element function defined // by SAMPLE_NODE_XY, SAMPLE_ELEMENT, and SAMPLE_VALUE. // // We are given a second finite element mesh, FEM_NODE_XY and // FEM_ELEMENT_NODE. // // Our aim is to "project" the sample data values into the finite element // space, that is, to come up with a finite element function FEM_VALUE which // well approximates the sample data. // // Now let W(x,y) represent a function interpolating the sample data, and // let Vk(x,y) represent the finite element basis function associated with // node K. // // Then we seek the coefficient vector U corresponding to a finite element // function U(x,y) of the form: // // U(x,y) = sum ( 1 <= K <= N ) Uk * Vk(x,y) // // To determine the coefficent vector entries U, we form a set of // projection equations. For node K at grid point (I,J), the associated // basis function Vk(x,y) is used to pose the equation: // // Integral U(x,y) Vk(x,y) dx dy = Integral W(x,y) Vk(x,y) dx dy // // The left hand side is the usual stiffness matrix times the desired // coefficient vector U. To complete the system, we simply need to // determine the right hand side, that is, the integral of the data function // W against the basis function Vk. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 August 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int SAMPLE_NODE_NUM, the number of nodes. // // Input, int SAMPLE_ELEMENT_ORDER, the element order. // // Input, int SAMPLE_ELEMENT_NUM, the number of elements. // // Input, int SAMPLE_VALUE_DIM, the value dimension. // // Input, int SAMPLE_VALUE_NUM, the number of values. // // Input, double SAMPLE_NODE_XY[2*SAMPLE_NODE_NUM], the nodes. // // Input, int SAMPLE_ELEMENT_NODE[SAMPLE_ELEMENT_ORDER*SAMPLE_ELEMENT_NUM], // the nodes that make up each element. // // Input, int SAMPLE_ELEMENT_NEIGHBOR[3*SAMPLE_ELEMENT_NUM], // the neighbor triangles. // // Input, double SAMPLE_VALUE[SAMPLE_VALUE_DIM*SAMPLE_NODE_NUM], // the values. // // Input, int FEM_NODE_NUM, the number of nodes. // // Input, int FEM_ELEMENT_ORDER, the element order. // // Input, int FEM_ELEMENT_NUM, the number of elements. // // Input, int FEM_VALUE_DIM, the value dimension. // // Input, int FEM_VALUE_NUM, the number of values. // // Input, double FEM_NODE_XY[2*FEM_NODE_NUM], the nodes. // // Input, int FEM_ELEMENT_NODE[FEM_ELEMENT_ORDER*FEM_ELEMENT_NUM], // the nodes that make up each element. // // Output, double FEM2D_TRANSFER[FEM_VALUE_DIM*FEM_VALUE_NUM], // the values. // { double *a; double area; double *b; int element; double *fem_value; int i; int i1; int i2; int i3; int j; int nq1; int nq2; int nti1; int nti2; int nti3; int ntj1; int ntj2; int ntj3; int project_node_num = 1; double project_node_xy[2*1]; double *project_value; int q1; int q2; double qi; double qj; int quad; int quad_num = 3; int ti1; int ti2; int ti3; int tj1; int tj2; int tj3; double w; double wq; double *x; double xq; double yq; // // Assemble the coefficient matrix A and the right-hand side B. // b = r8mat_zero_new ( fem_node_num, fem_value_dim ); a = r8mat_zero_new ( fem_node_num, fem_node_num ); for ( element = 0; element < fem_element_num; element++ ) { i1 = fem_element_node[0+element*3]; i2 = fem_element_node[1+element*3]; i3 = fem_element_node[2+element*3]; area = 0.5 * ( fem_node_xy[0+i1*2] * ( fem_node_xy[1+i2*2] - fem_node_xy[1+i3*2] ) + fem_node_xy[0+i2*2] * ( fem_node_xy[1+i3*2] - fem_node_xy[1+i1*2] ) + fem_node_xy[0+i3*2] * ( fem_node_xy[1+i1*2] - fem_node_xy[1+i2*2] ) ); // // Consider each quadrature point. // Here, we use the midside nodes as quadrature points. // for ( quad = 0; quad < quad_num; quad++ ) { q1 = quad; q2 = ( quad + 1 ) % quad_num; nq1 = fem_element_node[q1+element*fem_element_order]; nq2 = fem_element_node[q2+element*fem_element_order]; xq = 0.5 * ( fem_node_xy[0+nq1*2] + fem_node_xy[0+nq2*2] ); yq = 0.5 * ( fem_node_xy[1+nq1*2] + fem_node_xy[1+nq2*2] ); wq = 1.0 / 3.0; // // Consider each test function in the element. // for ( ti1 = 0; ti1 < 3; ti1++ ) { ti2 = ( ti1 + 1 ) % 3; ti3 = ( ti1 + 2 ) % 3; nti1 = fem_element_node[ti1+element*fem_element_order]; nti2 = fem_element_node[ti2+element*fem_element_order]; nti3 = fem_element_node[ti3+element*fem_element_order]; qi = 0.5 * ( ( fem_node_xy[0+nti3*2] - fem_node_xy[0+nti2*2] ) * ( yq - fem_node_xy[1+nti2*2] ) - ( fem_node_xy[1+nti3*2] - fem_node_xy[1+nti2*2] ) * ( xq - fem_node_xy[0+nti2*2] ) ) / area; // // The projection takes place here. The finite element code needs the value // of the sample function at the point (XQ,YQ). The call to PROJECTION // locates (XQ,YQ) in the triangulated mesh of sample data, and returns a // value produced by piecewise linear interpolation. // project_node_xy[0+0*2] = xq; project_node_xy[1+0*2] = yq; project_value = projection ( sample_node_num, sample_node_xy, sample_element_order, sample_element_num, sample_element_node, sample_element_neighbor, sample_value_dim, sample_value, project_node_num, project_node_xy ); for ( j = 0; j < fem_value_dim; j++ ) { b[nti1+j*fem_node_num] = b[nti1+j*fem_node_num] + area * wq * ( project_value[j+0*fem_value_dim] * qi ); } delete [] project_value; // // Consider each basis function in the element. // for ( tj1 = 0; tj1 < 3; tj1++ ) { tj2 = ( tj1 + 1 ) % 3; tj3 = ( tj1 + 2 ) % 3; ntj1 = fem_element_node[tj1+element*fem_element_order]; ntj2 = fem_element_node[tj2+element*fem_element_order]; ntj3 = fem_element_node[tj3+element*fem_element_order]; qj = 0.5 * ( ( fem_node_xy[0+ntj3*2] - fem_node_xy[0+ntj2*2] ) * ( yq - fem_node_xy[1+ntj2*2] ) - ( fem_node_xy[1+ntj3*2] - fem_node_xy[1+ntj2*2] ) * ( xq - fem_node_xy[0+ntj2*2] ) ) / area; a[nti1+ntj1*fem_node_num] = a[nti1+ntj1*fem_node_num] + area * wq * ( qi * qj ); } } } } // // SOLVE the linear system A * X = B. // x = r8ge_fss_new ( fem_node_num, a, fem_value_dim, b ); // // Copy solution. // fem_value = new double[fem_value_dim*fem_value_num]; for ( j = 0; j < fem_value_num; j++ ) { for ( i = 0; i < fem_value_dim; i++ ) { fem_value[i+j*fem_value_dim] = x[j+i*fem_value_num]; } } delete [] a; delete [] b; delete [] x; return fem_value; } //****************************************************************************80 int file_column_count ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_COLUMN_COUNT counts the columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file are presumed to consist of COLUMN_NUM words, // separated by spaces. There may also be some blank lines, and some // comment lines, which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { int column_num; ifstream input; bool got_one; string text; // // Open the file. // input.open ( filename.c_str ( ) ); if ( !input ) { column_num = -1; cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Fatal error!\n"; cerr << " Could not open the file:\n"; cerr << " \"" << filename << "\"\n"; return column_num; } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { getline ( input, text ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) <= 0 ) { continue; } if ( text[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { input.close ( ); input.open ( filename.c_str ( ) ); for ( ; ; ) { input >> text; if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) == 0 ) { continue; } got_one = true; break; } } input.close ( ); if ( !got_one ) { cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Warning!\n"; cerr << " The file does not seem to contain any data.\n"; return -1; } column_num = s_word_count ( text ); return column_num; } //****************************************************************************80 int file_row_count ( string input_filename ) //****************************************************************************80 // // Purpose: // // FILE_ROW_COUNT counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int bad_num; int comment_num; ifstream input; int i; string line; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; bad_num = 0; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "FILE_ROW_COUNT - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return (-1); } for ( ; ; ) { getline ( input, line ); if ( input.eof ( ) ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } input.close ( ); return row_num; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4col_compare ( int m, int n, int a[], int i, int j ) //****************************************************************************80 // // Purpose: // // I4COL_COMPARE compares columns I and J of an I4COL. // // Example: // // Input: // // M = 3, N = 4, I = 2, J = 4 // // A = ( // 1 2 3 4 // 5 6 7 8 // 9 10 11 12 ) // // Output: // // I4COL_COMPARE = -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int A[M*N], an array of N columns of vectors of length M. // // Input, int I, J, the columns to be compared. // I and J must be between 1 and N. // // Output, int I4COL_COMPARE, the results of the comparison: // -1, column I < column J, // 0, column I = column J, // +1, column J < column I. // { int k; // // Check. // if ( i < 1 ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " Column index I = " << i << " is less than 1.\n"; exit ( 1 ); } if ( n < i ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " N = " << n << " is less than column index I = " << i << ".\n"; exit ( 1 ); } if ( j < 1 ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " Column index J = " << j << " is less than 1.\n"; exit ( 1 ); } if ( n < j ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " N = " << n << " is less than column index J = " << j << ".\n"; exit ( 1 ); } if ( i == j ) { return 0; } k = 1; while ( k <= m ) { if ( a[k-1+(i-1)*m] < a[k-1+(j-1)*m] ) { return (-1); } else if ( a[k-1+(j-1)*m] < a[k-1+(i-1)*m] ) { return 1; } k = k + 1; } return 0; } //****************************************************************************80 void i4col_sort_a ( int m, int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4COL_SORT_A ascending sorts the columns of an I4COL. // // Discussion: // // In lexicographic order, the statement "X < Y", applied to two // vectors X and Y of length M, means that there is some index I, with // 1 <= I <= M, with the property that // // X(J) = Y(J) for J < I, // and // X(I) < Y(I). // // In other words, X is less than Y if, at the first index where they // differ, the X value is less than the Y value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of A. // // Input, int N, the number of columns of A. // // Input/output, int A[M*N]. // On input, the array of N columns of M vectors; // On output, the columns of A have been sorted in ascending // lexicographic order. // { int i; int indx; int isgn; int j; // // Initialize. // i = 0; indx = 0; isgn = 0; j = 0; // // Call the external heap sorter. // for ( ; ; ) { sort_heap_external ( n, &indx, &i, &j, isgn ); // // Interchange the I and J objects. // if ( 0 < indx ) { i4col_swap ( m, n, a, i, j ); } // // Compare the I and J objects. // else if ( indx < 0 ) { isgn = i4col_compare ( m, n, a, i, j ); } else if ( indx == 0 ) { break; } } return; } //****************************************************************************80 void i4col_swap ( int m, int n, int a[], int icol1, int icol2 ) //****************************************************************************80 // // Purpose: // // I4COL_SWAP swaps two columns of an I4COL. // // Discussion: // // The two dimensional information is stored as a one dimensional // array, by columns. // // The row indices are 1 based, NOT 0 based// However, a preprocessor // variable, called OFFSET, can be reset from 1 to 0 if you wish to // use 0-based indices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int A[M*N], an array of data. // // Input, int ICOL1, ICOL2, the two columns to swap. // These indices should be between 1 and N. // { # define OFFSET 1 int i; int t; // // Check. // if ( icol1 - OFFSET < 0 || n-1 < icol1 - OFFSET ) { cout << "\n"; cout << "I4COL_SWAP - Fatal error!\n"; cout << " ICOL1 is out of range.\n"; exit ( 1 ); } if ( icol2 - OFFSET < 0 || n-1 < icol2 - OFFSET ) { cout << "\n"; cout << "I4COL_SWAP - Fatal error!\n"; cout << " ICOL2 is out of range.\n"; exit ( 1 ); } if ( icol1 == icol2 ) { return; } for ( i = 0; i < m; i++ ) { t = a[i+(icol1-OFFSET)*m]; a[i+(icol1-OFFSET)*m] = a[i+(icol2-OFFSET)*m]; a[i+(icol2-OFFSET)*m] = t; } return; # undef OFFSET } //****************************************************************************80 int *i4mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // I4MAT_DATA_READ reads data from an I4MAT file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, int I4MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; int *table; int *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "I4MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new int[m*n]; x = new int[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_i4vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void i4mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // I4MAT_HEADER_READ reads the header from an I4MAT file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; return; } return; } //****************************************************************************80 int i4mat_min ( int m, int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4MAT_MIN returns the minimum of an I4MAT. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 August 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, int A[M*N], the M by N matrix. // // Output, int I4MAT_MIN, the minimum entry of A. // { int i; int i4_huge = 2147483647; int j; int value; value = i4_huge; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( a[i+j*m] < value ) { value = a[i+j*m]; } } } return value; } //****************************************************************************80 double *projection ( int fem_node_num, double fem_node_xy[], int fem_element_order, int fem_element_num, int fem_element_node[], int fem_element_neighbor[], int fem_value_dim, double fem_value[], int sample_node_num, double sample_node_xy[] ) //****************************************************************************80 // // Purpose: // // PROJECTION evaluates an FEM function on a T3 or T6 triangulation. // // Discussion: // // Note that the sample values returned are true values of the underlying // finite element function. They are NOT produced by constructing some // other function that interpolates the data at the finite element nodes // (something which MATLAB's griddata function can easily do.) Instead, // each sampling node is located within one of the associated finite // element triangles, and the finite element function is developed and // evaluated there. // // MATLAB's scattered data interpolation is wonderful, but it cannot // be guaranteed to reproduce the finite element function corresponding // to nodal data. This routine can (or at least tries to//). // // So if you are using finite elements, then using THIS routine // (but not MATLAB's griddata function), what you see is what you have// // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int FEM_NODE_NUM, the number of nodes. // // Input, double FEM_NODE_XY[2*FEM_NODE_NUM], the coordinates // of the nodes. // // Input, int FEM_ELEMENT_ORDER, the order of the elements, // either 3 or 6. // // Input, int FEM_ELEMENT_NUM, the number of triangles. // // Input, int FEM_ELEMENT_NODE(FEM_ELEMENT_ORDER,FEM_ELEMENT_NUM), the // nodes that make up each triangle. // // Input, int FEM_ELEMENT_NEIGHBOR[3*FEM_ELEMENT_NUM], the // index of the neighboring triangle on each side, or -1 if no neighbor there. // // Input, int FEM_VALUE_DIM, the "dimension" of the values. // // Input, double FEM_VALUE[FEM_VALUE_DIM*FEM_NODE_NUM], the // finite element coefficient values at each node. // // Input, int SAMPLE_NODE_NUM, the number of sample nodes. // // Input, double SAMPLE_NODE_XY[2*SAMPLE_NODE_NUM], the sample nodes. // // Output, double PROJECTION[FEM_VALUE_DIM*SAMPLE_NODE_NUM], // the sampled values. // { double *b; double *dbdx; double *dbdy; double dot; int edge; int i; int j; int k; double p_xy[2]; double *sample_value; int t; int *t_node; double *t_xy; b = new double[fem_element_order]; dbdx = new double[fem_element_order]; dbdy = new double[fem_element_order]; sample_value = new double[fem_value_dim*sample_node_num]; t_node = new int[fem_element_order]; t_xy = new double[2*fem_element_order]; // // For each sample point: find the triangle T that contains it, // and evaluate the finite element function there. // for ( j = 0; j < sample_node_num; j++ ) { p_xy[0] = sample_node_xy[0+2*j]; p_xy[1] = sample_node_xy[1+2*j]; // // Find the triangle T that contains the point. // triangulation_search_delaunay ( fem_node_num, fem_node_xy, fem_element_order, fem_element_num, fem_element_node, fem_element_neighbor, p_xy, &t, &edge ); if ( t == - 1 ) { cerr << "\n"; cerr << "PROJECTION - Fatal error!\n"; cerr << " Triangulation search failed.\n"; exit ( 1 ); } // // Evaluate the finite element basis functions at the point in T. // for ( i = 0; i < fem_element_order; i++ ) { t_node[i] = fem_element_node[i+t*fem_element_order]; t_xy[0+i*2] = fem_node_xy[0+t_node[i]*2]; t_xy[1+i*2] = fem_node_xy[1+t_node[i]*2]; } if ( fem_element_order == 3 ) { basis_mn_t3 ( t_xy, 1, p_xy, b, dbdx, dbdy ); } else if ( fem_element_order == 6 ) { basis_mn_t6 ( t_xy, 1, p_xy, b, dbdx, dbdy ); } // // Multiply by the finite element values to get the sample values. // for ( i = 0; i < fem_value_dim; i++ ) { dot = 0.0; for ( k = 0; k < fem_element_order; k++ ) { dot = dot + fem_value[i+t_node[k]*fem_value_dim] * b[k]; } sample_value[i+j*fem_value_dim] = dot; } } delete [] b; delete [] dbdx; delete [] dbdy; delete [] t_node; delete [] t_xy; return sample_value; } //****************************************************************************80 float r4_abs ( float x ) //****************************************************************************80 // // Purpose: // // R4_ABS returns the absolute value of an R4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 December 2006 // // Author: // // John Burkardt // // Parameters: // // Input, float X, the quantity whose absolute value is desired. // // Output, float R4_ABS, the absolute value of X. // { float value; if ( 0.0 <= x ) { value = x; } else { value = -x; } return value; } //****************************************************************************80 int r4_nint ( float x ) //****************************************************************************80 // // Purpose: // // R4_NINT returns the nearest integer to an R4. // // Example: // // X R4_NINT // // 1.3 1 // 1.4 1 // 1.5 1 or 2 // 1.6 2 // 0.0 0 // -0.7 -1 // -1.1 -1 // -1.6 -2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, float X, the value. // // Output, int R4_NINT, the nearest integer to X. // { int value; if ( x < 0.0 ) { value = - ( int ) ( r4_abs ( x ) + 0.5 ); } else { value = ( int ) ( r4_abs ( x ) + 0.5 ); } return value; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = x; } else { value = - x; } return value; } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } //****************************************************************************80 double *r8ge_fss_new ( int n, double a[], int nb, double b[] ) //****************************************************************************80 // // Purpose: // // R8GE_FSS_NEW factors and solves multiple R8GE systems. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // This routine does not save the LU factors of the matrix, and hence cannot // be used to efficiently solve multiple linear systems, or even to // factor A at one time, and solve a single linear system at a later time. // // This routine uses partial pivoting, but no pivot vector is required. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input/output, double A[N*N]. // On input, A is the coefficient matrix of the linear system. // On output, A is in unit upper triangular form, and // represents the U factor of an LU factorization of the // original coefficient matrix. // // Input, int NB, the number of right hand sides. // // Input, double B[N*NB], the right hand sides of the linear systems. // // Output, double R8GE_FSS_NEW[N*NB], the solutions of the linear systems. // { int i; int ipiv; int j; int jcol; double piv; double t; double *x; x = new double[n*nb]; for ( j = 0; j < nb; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = b[i+j*n]; } } for ( jcol = 1; jcol <= n; jcol++ ) { // // Find the maximum element in column I. // piv = r8_abs ( a[jcol-1+(jcol-1)*n] ); ipiv = jcol; for ( i = jcol+1; i <= n; i++ ) { if ( piv < r8_abs ( a[i-1+(jcol-1)*n] ) ) { piv = r8_abs ( a[i-1+(jcol-1)*n] ); ipiv = i; } } if ( piv == 0.0 ) { cout << "\n"; cout << "R8GE_FSS_NEW - Fatal error!\n"; cout << " Zero pivot on step " << jcol << "\n"; return NULL; } // // Switch rows JCOL and IPIV, and X. // if ( jcol != ipiv ) { for ( j = 1; j <= n; j++ ) { t = a[jcol-1+(j-1)*n]; a[jcol-1+(j-1)*n] = a[ipiv-1+(j-1)*n]; a[ipiv-1+(j-1)*n] = t; } for ( j = 0; j < nb; j++ ) { t = x[jcol-1+j*n]; x[jcol-1+j*n] = x[ipiv-1+j*n]; x[ipiv-1+j*n] = t; } } // // Scale the pivot row. // t = a[jcol-1+(jcol-1)*n]; a[jcol-1+(jcol-1)*n] = 1.0; for ( j = jcol+1; j <= n; j++ ) { a[jcol-1+(j-1)*n] = a[jcol-1+(j-1)*n] / t; } for ( j = 0; j < nb; j++ ) { x[jcol-1+j*n] = x[jcol-1+j*n] / t; } // // Use the pivot row to eliminate lower entries in that column. // for ( i = jcol+1; i <= n; i++ ) { if ( a[i-1+(jcol-1)*n] != 0.0 ) { t = - a[i-1+(jcol-1)*n]; a[i-1+(jcol-1)*n] = 0.0; for ( j = jcol+1; j <= n; j++ ) { a[i-1+(j-1)*n] = a[i-1+(j-1)*n] + t * a[jcol-1+(j-1)*n]; } for ( j = 0; j < nb; j++ ) { x[i-1+j*n] = x[i-1+j*n] + t * x[jcol-1+j*n]; } } } } // // Back solve. // for ( jcol = n; 2 <= jcol; jcol-- ) { for ( i = 1; i < jcol; i++ ) { for ( j = 0; j < nb; j++ ) { x[i-1+j*n] = x[i-1+j*n] - a[i-1+(jcol-1)*n] * x[jcol-1+j*n]; } } } return x; } //****************************************************************************80 double *r8mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_DATA_READ reads the data from an R8MAT file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double R8MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; double *table; double *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R8MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new double[m*n]; x = new double[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void r8mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // R8MAT_HEADER_READ reads the header from an R8MAT file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points. // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; return; } return; } //****************************************************************************80 void r8mat_write ( string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the table data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; return; } // // Write the data. // For greater precision, try // // output << " " << setw(24) << setprecision(16) << table[i+j*m]; // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(10) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 double *r8mat_zero_new ( int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_ZERO_NEW returns a new zeroed R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Output, double R8MAT_ZERO[M*N], the new zeroed matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 0.0; } } return a; } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 int s_to_i4 ( string s, int *last, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_I4 reads an I4 from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string to be examined. // // Output, int *LAST, the last character of S used to make IVAL. // // Output, bool *ERROR is TRUE if an error occurred. // // Output, int *S_TO_I4, the integer value read from the string. // If the string is blank, then IVAL will be returned 0. // { char c; int i; int isgn; int istate; int ival; *error = false; istate = 0; isgn = 1; i = 0; ival = 0; for ( ; ; ) { c = s[i]; i = i + 1; // // Haven't read anything. // if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read the sign, expecting digits. // else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read at least one digit, expecting more. // else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } // // If we read all the characters in the string, see if we're OK. // if ( istate == 2 ) { ival = isgn * ival; *last = s_len_trim ( s ); } else { *error = true; *last = 0; } return ival; } //****************************************************************************80 bool s_to_i4vec ( string s, int n, int ivec[] ) //****************************************************************************80 // // Purpose: // // S_TO_I4VEC reads an I4VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, int IVEC[N], the values read from the string. // // Output, bool S_TO_I4VEC, is TRUE if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { ivec[i] = s_to_i4 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 double s_to_r8 ( string s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0**(-9.23) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_R8, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( string s, int n, double rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, double RVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 int s_word_count ( string s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int char_count; int i; int word_count; word_count = 0; blank = true; char_count = s.length ( ); for ( i = 0; i < char_count; i++ ) { if ( isspace ( s[i] ) ) { blank = true; } else if ( blank ) { word_count = word_count + 1; blank = false; } } return word_count; } //****************************************************************************80 void sort_heap_external ( int n, int *indx, int *i, int *j, int isgn ) //****************************************************************************80 // // Purpose: // // SORT_HEAP_EXTERNAL externally sorts a list of items into ascending order. // // Discussion: // // The actual list is not passed to the routine. Hence it may // consist of integers, reals, numbers, names, etc. The user, // after each return from the routine, will be asked to compare or // interchange two items. // // The current version of this code mimics the FORTRAN version, // so the values of I and J, in particular, are FORTRAN indices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2004 // // Author: // // Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the length of the input list. // // Input/output, int *INDX. // The user must set INDX to 0 before the first call. // On return, // if INDX is greater than 0, the user must interchange // items I and J and recall the routine. // If INDX is less than 0, the user is to compare items I // and J and return in ISGN a negative value if I is to // precede J, and a positive value otherwise. // If INDX is 0, the sorting is done. // // Output, int *I, *J. On return with INDX positive, // elements I and J of the user's list should be // interchanged. On return with INDX negative, elements I // and J are to be compared by the user. // // Input, int ISGN. On return with INDX negative, the // user should compare elements I and J of the list. If // item I is to precede item J, set ISGN negative, // otherwise set ISGN positive. // { static int i_save = 0; static int j_save = 0; static int k = 0; static int k1 = 0; static int n1 = 0; // // INDX = 0: This is the first call. // if ( *indx == 0 ) { i_save = 0; j_save = 0; k = n / 2; k1 = k; n1 = n; } // // INDX < 0: The user is returning the results of a comparison. // else if ( *indx < 0 ) { if ( *indx == -2 ) { if ( isgn < 0 ) { i_save = i_save + 1; } j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } if ( 0 < isgn ) { *indx = 2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; } *i = i_save; *j = j_save; return; } k = k - 1; k1 = k; } // // 0 < INDX: the user was asked to make an interchange. // else if ( *indx == 1 ) { k1 = k; } for ( ; ; ) { i_save = 2 * k1; if ( i_save == n1 ) { j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } else if ( i_save <= n1 ) { j_save = i_save + 1; *indx = -2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { break; } k = k - 1; k1 = k; } if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; *i = i_save; *j = j_save; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; *i = i_save; *j = j_save; } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 October 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 int *triangulation_order3_neighbor_triangles ( int triangle_num, int triangle_node[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_NEIGHBOR_TRIANGLES determines triangle neighbors. // // Discussion: // // A triangulation of a set of nodes can be completely described by // the coordinates of the nodes, and the list of nodes that make up // each triangle. However, in some cases, it is necessary to know // triangle adjacency information, that is, which triangle, if any, // is adjacent to a given triangle on a particular side. // // This routine creates a data structure recording this information. // // The primary amount of work occurs in sorting a list of 3 * TRIANGLE_NUM // data items. // // This routine was modified to work with columns rather than rows. // // Example: // // The input information from TRIANGLE_NODE: // // Triangle Nodes // -------- --------------- // 1 3 4 1 // 2 3 1 2 // 3 3 2 8 // 4 2 1 5 // 5 8 2 13 // 6 8 13 9 // 7 3 8 9 // 8 13 2 5 // 9 9 13 7 // 10 7 13 5 // 11 6 7 5 // 12 9 7 6 // 13 10 9 6 // 14 6 5 12 // 15 11 6 12 // 16 10 6 11 // // The output information in TRIANGLE_NEIGHBOR: // // Triangle Neighboring Triangles // -------- --------------------- // // 1 -1 -1 2 // 2 1 4 3 // 3 2 5 7 // 4 2 -1 8 // 5 3 8 6 // 6 5 9 7 // 7 3 6 -1 // 8 5 4 10 // 9 6 10 12 // 10 9 8 11 // 11 12 10 14 // 12 9 11 13 // 13 -1 12 16 // 14 11 -1 15 // 15 16 14 -1 // 16 13 15 -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], the nodes that make up each // triangle. // // Output, int TRIANGLE_ORDER3_NEIGHBOR_TRIANGLES[3*TRIANGLE_NUM], // the three triangles // that are direct neighbors of a given triangle. TRIANGLE_NEIGHBOR(1,I) // is the index of the triangle which touches side 1, defined by nodes 2 // and 3, and so on. TRIANGLE_NEIGHBOR(1,I) is negative if there is no // neighbor on that side. In this case, that side of the triangle lies // on the boundary of the triangulation. // { int *col; int i; int icol; int j; int k; int side1; int side2; int tri; int triangle_order = 3; int tri1; int tri2; int *triangle_neighbor; triangle_neighbor = new int[3*triangle_num]; col = new int[4*(3*triangle_num)]; // // Step 1. // From the list of nodes for triangle T, of the form: (I,J,K) // construct the three neighbor relations: // // (I,J,1,T) or (J,I,1,T), // (J,K,2,T) or (K,J,2,T), // (K,I,3,T) or (I,K,3,T) // // where we choose (I,J,1,T) if I < J, or else (J,I,1,T) // for ( tri = 0; tri < triangle_num; tri++ ) { i = triangle_node[0+tri*triangle_order]; j = triangle_node[1+tri*triangle_order]; k = triangle_node[2+tri*triangle_order]; if ( i < j ) { col[0+(3*tri+0)*4] = i; col[1+(3*tri+0)*4] = j; col[2+(3*tri+0)*4] = 0; col[3+(3*tri+0)*4] = tri; } else { col[0+(3*tri+0)*4] = j; col[1+(3*tri+0)*4] = i; col[2+(3*tri+0)*4] = 0; col[3+(3*tri+0)*4] = tri; } if ( j < k ) { col[0+(3*tri+1)*4] = j; col[1+(3*tri+1)*4] = k; col[2+(3*tri+1)*4] = 1; col[3+(3*tri+1)*4] = tri; } else { col[0+(3*tri+1)*4] = k; col[1+(3*tri+1)*4] = j; col[2+(3*tri+1)*4] = 1; col[3+(3*tri+1)*4] = tri; } if ( k < i ) { col[0+(3*tri+2)*4] = k; col[1+(3*tri+2)*4] = i; col[2+(3*tri+2)*4] = 2; col[3+(3*tri+2)*4] = tri; } else { col[0+(3*tri+2)*4] = i; col[1+(3*tri+2)*4] = k; col[2+(3*tri+2)*4] = 2; col[3+(3*tri+2)*4] = tri; } } // // Step 2. Perform an ascending dictionary sort on the neighbor relations. // We only intend to sort on rows 1 and 2; the routine we call here // sorts on rows 1 through 4 but that won't hurt us. // // What we need is to find cases where two triangles share an edge. // Say they share an edge defined by the nodes I and J. Then there are // two columns of COL that start out ( I, J, ?, ? ). By sorting COL, // we make sure that these two columns occur consecutively. That will // make it easy to notice that the triangles are neighbors. // i4col_sort_a ( 4, 3*triangle_num, col ); // // Step 3. Neighboring triangles show up as consecutive columns with // identical first two entries. Whenever you spot this happening, // make the appropriate entries in TRIANGLE_NEIGHBOR. // for ( j = 0; j < triangle_num; j++ ) { for ( i = 0; i < 3; i++ ) { triangle_neighbor[i+j*3] = -1; } } icol = 1; for ( ; ; ) { if ( 3 * triangle_num <= icol ) { break; } if ( col[0+(icol-1)*4] != col[0+icol*4] || col[1+(icol-1)*4] != col[1+icol*4] ) { icol = icol + 1; continue; } side1 = col[2+(icol-1)*4]; tri1 = col[3+(icol-1)*4]; side2 = col[2+ icol *4]; tri2 = col[3+ icol *4]; triangle_neighbor[side1+tri1*3] = tri2; triangle_neighbor[side2+tri2*3] = tri1; icol = icol + 2; } delete [] col; return triangle_neighbor; } //****************************************************************************80 void triangulation_search_delaunay ( int node_num, double node_xy[], int triangle_order, int triangle_num, int triangle_node[], int triangle_neighbor[], double p[2], int *triangle_index, int *edge ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_SEARCH_DELAUNAY searches a Delaunay triangulation for a point. // // Discussion: // // The algorithm "walks" from one triangle to its neighboring triangle, // and so on, until a triangle is found containing point P, or P is found // to be outside the convex hull. // // The algorithm computes the barycentric coordinates of the point with // respect to the current triangle. If all three quantities are positive, // the point is contained in the triangle. If the I-th coordinate is // negative, then (X,Y) lies on the far side of edge I, which is opposite // from vertex I. This gives a hint as to where to search next. // // For a Delaunay triangulation, the search is guaranteed to terminate. // For other triangulations, a cycle may occur. // // Note the surprising fact that, even for a Delaunay triangulation of // a set of nodes, the nearest point to (X,Y) need not be one of the // vertices of the triangle containing (X,Y). // // The code can be called for triangulations of any order, but only // the first three nodes in each triangle are considered. Thus, if // higher order triangles are used, and the extra nodes are intended // to give the triangle a polygonal shape, these will have no effect, // and the results obtained here might be misleading. // // Thanks to Diego Galindo for pointing out a line where "EDGE" was // written, but "*EDGE" was necessary instead, 21 May 2013. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 May 2013 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_ORDER, the order of the triangles. // // Input, int TRIANGLE_NUM, the number of triangles in the triangulation. // // Input, int TRIANGLE_NODE[TRIANGLE_ORDER*TRIANGLE_NUM], // the nodes of each triangle. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the triangle neighbor list. // // Input, double P[2], the coordinates of a point. // // Output, int *TRIANGLE_INDEX, the index of the triangle where the search ended. // If a cycle occurred, then TRIANGLE_INDEX = -1. // // Output, int *EDGE, indicates the position of the point (X,Y) in // triangle TRIANGLE: // 0, the interior or boundary of the triangle; // -1, outside the convex hull of the triangulation, past edge 1; // -2, outside the convex hull of the triangulation, past edge 2; // -3, outside the convex hull of the triangulation, past edge 3. // { int a; double alpha; int b; double beta; int c; int count; double det; double dxp; double dxa; double dxb; double dyp; double dya; double dyb; double gamma; static int triangle_index_save = -1; // // If possible, start with the previous successful value of TRIANGLE_INDEX. // if ( triangle_index_save < 0 || triangle_num <= triangle_index_save ) { *triangle_index = ( ( triangle_num + 1 ) / 2 ) - 1; } else { *triangle_index = triangle_index_save; } count = 0; *edge = 0; for ( ; ; ) { count = count + 1; if ( triangle_num < count ) { cout << "\n"; cout << "TRIANGULATION_SEARCH_DELAUNAY - Fatal error!\n"; cout << " The algorithm seems to be cycling.\n"; cout << " Current triangle is " << *triangle_index << "\n"; *triangle_index = -1; *edge = -1; return; } // // Get the vertices of triangle TRIANGLE. // a = triangle_node[0+(*triangle_index)*triangle_order]; b = triangle_node[1+(*triangle_index)*triangle_order]; c = triangle_node[2+(*triangle_index)*triangle_order]; // // Using vertex C as a base, compute the distances to vertices A and B, // and the point (X,Y). // dxa = node_xy[0+a*2] - node_xy[0+c*2]; dya = node_xy[1+a*2] - node_xy[1+c*2]; dxb = node_xy[0+b*2] - node_xy[0+c*2]; dyb = node_xy[1+b*2] - node_xy[1+c*2]; dxp = p[0] - node_xy[0+c*2]; dyp = p[1] - node_xy[1+c*2]; det = dxa * dyb - dya * dxb; // // Compute the barycentric coordinates of the point (X,Y) with respect // to this triangle. // alpha = ( dxp * dyb - dyp * dxb ) / det; beta = ( dxa * dyp - dya * dxp ) / det; gamma = 1.0 - alpha - beta; // // If the barycentric coordinates are all positive, then the point // is inside the triangle and we're done. // if ( 0.0 <= alpha && 0.0 <= beta && 0.0 <= gamma ) { break; } // // At least one barycentric coordinate is negative. // // If there is a negative barycentric coordinate for which there exists // an opposing triangle neighbor closer to the point, move to that triangle. // // (Two coordinates could be negative, in which case we could go for the // most negative one, or the most negative one normalized by the actual // distance it represents). // if ( alpha < 0.0 && 0 <= triangle_neighbor[1+(*triangle_index)*3] ) { *triangle_index = triangle_neighbor[1+(*triangle_index)*3]; continue; } else if ( beta < 0.0 && 0 <= triangle_neighbor[2+(*triangle_index)*3] ) { *triangle_index = triangle_neighbor[2+(*triangle_index)*3]; continue; } else if ( gamma < 0.0 && 0 <= triangle_neighbor[0+(*triangle_index)*3] ) { *triangle_index = triangle_neighbor[0+(*triangle_index)*3]; continue; } // // All negative barycentric coordinates correspond to vertices opposite // sides on the convex hull. // // Note the edge and exit. // if ( alpha < 0.0 ) { *edge = -2; break; } else if ( beta < 0.0 ) { *edge = -3; break; } else if ( gamma < 0.0 ) { *edge = -1; break; } else { cout << "\n"; cout << "TRIANGULATION_SEARCH_DELAUNAY - Fatal error!\n"; cout << " The algorithm seems to have reached a dead end\n"; cout << " after " << count << " steps.\n"; *triangle_index = -1; *edge = -1; return; } } triangle_index_save = *triangle_index; return; }