# include # include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); void basis_mn_tet4 ( double t[3*4], int n, double p[], double phi[] ); char ch_cap ( char ch ); bool ch_eqi ( char ch1, char ch2 ); int ch_to_digit ( char ch ); double *fem3d_transfer ( int sample_node_num, int sample_element_order, int sample_element_num, int sample_value_dim, int sample_value_num, double sample_node_xyz[], int sample_element_node[], int sample_element_neighbor[], double sample_value[], int fem_node_num, int fem_element_order, int fem_element_num, int fem_value_dim, int fem_value_num, double fem_node_xyz[], int fem_element_node[] ); int file_column_count ( string input_filename ); int file_row_count ( string input_filename ); int i4_max ( int i1, int i2 ); int i4_min ( int i1, int i2 ); int i4col_compare ( int m, int n, int a[], int i, int j ); void i4col_sort_a ( int m, int n, int a[] ); void i4col_swap ( int m, int n, int a[], int icol1, int icol2 ); void i4i4i4_sort_a ( int i1, int i2, int i3, int *j1, int *j2, int *j3 ); int *i4mat_data_read ( string input_filename, int m, int n ); void i4mat_header_read ( string input_filename, int *m, int *n ); int i4mat_min ( int m, int n, int a[] ); double *projection ( int fem_node_num, double fem_node_xyz[], int fem_element_order, int fem_element_num, int fem_element_node[], int fem_element_neighbor[], int fem_value_dim, double fem_value[], int sample_node_num, double sample_node_xyz[] ); float r4_abs ( float x ); int r4_nint ( float x ); double r8_abs ( double x ); double r8_min ( double x, double y ); double *r8ge_fss_new ( int n, double a[], int nb, double b[] ); double *r8mat_data_read ( string input_filename, int m, int n ); double r8mat_det_4d ( double a[] ); void r8mat_header_read ( string input_filename, int *m, int *n ); int r8mat_solve ( int n, int rhs_num, double a[] ); void r8mat_write ( string output_filename, int m, int n, double table[] ); double *r8mat_zero_new ( int m, int n ); bool r8vec_is_nonnegative ( int n, double x[] ); int s_len_trim ( string s ); int s_to_i4 ( string s, int *last, bool *error ); bool s_to_i4vec ( string s, int n, int ivec[] ); double s_to_r8 ( string s, int *lchar, bool *error ); bool s_to_r8vec ( string s, int n, double rvec[] ); int s_word_count ( string s ); void sort_heap_external ( int n, int *indx, int *i, int *j, int isgn ); int *tet_mesh_neighbor_tets ( int tetra_order, int tetra_num, int tetra_node[] ); int tet_mesh_search_delaunay ( int node_num, double node_xyz[], int tet_order, int tet_num, int tet_node[], int tet_neighbor[], double p[], int *face, int *step_num ); int tet_mesh_search_naive ( int node_num, double node_xyz[], int tet_order, int tet_num, int tet_node[], double p[], int *step_num ); double *tetrahedron_barycentric ( double tetra[3*4], double p[3] ); double tetrahedron_volume ( double tetra[3*4] ); void timestamp ( ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for FEM3D_PROJECT. // // Discussion: // // FEM3D_PROJECT reads files defining a sampling of a (scalar or vector) // function of 3 arguments, and a list of nodes and tetrahedral elements // to use for a finite element representation of the data. // // It computes a set of finite element coefficients to be associated with // the given finite element mesh, and writes that information to a file // so that an FEM representation is formed by the node, element and value // files. // // Usage: // // fem3d_project sample_prefix fem_prefix // // where 'sample_prefix' is the common prefix for the SAMPLE files: // // * sample_prefix_nodes.txt, the node coordinates where samples were taken, // * sample_prefix_elements.txt, the 4 nodes that make up each element; // * sample_prefix_values.txt, the sample values. // // and 'fem_prefix' is the common prefix for the FEM files: // // * fem_prefix_nodes.txt, the node coordinates. // * fem_prefix_elements.txt, the 4 nodes that make up each element; // * fem_prefix_values.txt, the values defined at each node (output). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 August 2009 // // Author: // // John Burkardt // { int element_min; string fem_element_filename; int *fem_element_node; int fem_element_num; int fem_element_order; int fem_node_dim; string fem_node_filename; int fem_node_num; double *fem_node_xyz; string fem_prefix; double *fem_value; int fem_value_dim; string fem_value_filename; int fem_value_num; int i; int j; string sample_element_filename; int *sample_element_neighbor; int *sample_element_node; int sample_element_num; int sample_element_order; string sample_prefix; int sample_node_dim; string sample_node_filename; int sample_node_num; double *sample_node_xyz; int sample_value_dim; int sample_value_num; double *sample_value; string sample_value_filename; timestamp ( ); cout << "\n"; cout << "FEM3D_PROJECT\n"; cout << " C++ version.\n"; cout << "\n"; cout << " Read files defining a sampling of a function of 3 arguments.\n"; cout << " Read files defining a finite element mesh.\n"; cout << " Project the sample data onto the mesh, and\n"; cout << " write a file of FEM coefficient values.\n"; // // Get the number of command line arguments. // if ( 1 < argc ) { sample_prefix = argv[1]; } else { cout << "\n"; cout << "Enter the sample file prefix:\n"; cin >> sample_prefix; } if ( 2 < argc ) { fem_prefix = argv[2]; } else { cout << "\n"; cout << "Enter the FEM file prefix:\n"; cin >> fem_prefix; } // // Create the filenames. // sample_node_filename = sample_prefix + "_nodes.txt"; sample_element_filename = sample_prefix + "_elements.txt"; sample_value_filename = sample_prefix + "_values.txt"; fem_node_filename = fem_prefix + "_nodes.txt"; fem_element_filename = fem_prefix + "_elements.txt"; fem_value_filename = fem_prefix + "_values.txt"; // // Read the SAMPLE NODE, ELEMENT and VALUE data. // r8mat_header_read ( sample_node_filename, &sample_node_dim, &sample_node_num ); cout << "\n"; cout << " Sample node spatial dimension is " << sample_node_dim << "\n"; cout << " Sample node number is " << sample_node_num << "\n"; if ( sample_node_dim != 3 ) { cout << "\n"; cout << "FEM3D_PROJECT - Fatal error!\n"; cout << " Spatial dimension of the sample nodes is not 3.\n"; exit ( 1 ); } sample_node_xyz = r8mat_data_read ( sample_node_filename, sample_node_dim, sample_node_num ); i4mat_header_read ( sample_element_filename, &sample_element_order, &sample_element_num ); cout << "\n"; cout << " Sample element order is " << sample_element_order << "\n"; cout << " Sample element number is " << sample_element_num << "\n"; if ( sample_element_order != 4 ) { cout << "\n"; cout << "FEM3D_PROJECT - Fatal error!\n"; cout << " The sample element order must be 4.\n"; exit ( 1 ); } sample_element_node = new int[sample_element_order*sample_element_num]; sample_element_node = i4mat_data_read ( sample_element_filename, sample_element_order, sample_element_num ); element_min = i4mat_min ( sample_element_order, sample_element_num, sample_element_node ); if ( element_min == 1 ) { cout << "\n"; cout << " Converting 1-based sample element array to 0 base.\n"; for ( j = 0; j < sample_element_num; j++ ) { for ( i = 0; i < sample_element_order; i++ ) { sample_element_node[i+j*sample_element_order] = sample_element_node[i+j*sample_element_order] - 1; } } } r8mat_header_read ( sample_value_filename, &sample_value_dim, &sample_value_num ); cout << "\n"; cout << " The sample value dimension is " << sample_value_dim << "\n"; cout << " The sample value number is " << sample_value_num << "\n"; if ( sample_value_num != sample_node_num ) { cout << "\n"; cout << "FEM3D_PROJECT - Fatal error!\n"; cout << " Number of sample values and nodes differ.\n"; exit ( 1 ); } sample_value = r8mat_data_read ( sample_value_filename, sample_value_dim, sample_value_num ); // // Create the sample element neighbor array. // sample_element_neighbor = tet_mesh_neighbor_tets ( sample_element_order, sample_element_num, sample_element_node ); cout << "\n"; cout << " The element neighbor array has been computed.\n"; // // Read the FEM NODE and ELEMENT data. // r8mat_header_read ( fem_node_filename, &fem_node_dim, &fem_node_num ); cout << "\n"; cout << " The FEM node dimension is " << fem_node_dim << "\n"; cout << " The FEM node number is " << fem_node_num << "\n"; if ( fem_node_dim != 3 ) { cout << "\n"; cout << "FEM3D_PROJECT - Fatal error!\n"; cout << " Spatial dimension of the nodes is not 3.\n"; exit ( 1 ); } fem_node_xyz = r8mat_data_read ( fem_node_filename, fem_node_dim, fem_node_num ); i4mat_header_read ( fem_element_filename, &fem_element_order, &fem_element_num ); cout << " The FEM element order is " << fem_element_order << "\n"; cout << " The FEM element number is " << fem_element_num << "\n"; if ( fem_element_order != 4 ) { cout << "\n"; cout << "FEM3D_PROJECT - Fatal error!\n"; cout << " The FEM element order is not 4.\n"; exit ( 1 ); } fem_element_node = i4mat_data_read ( fem_element_filename, fem_element_order, fem_element_num ); element_min = i4mat_min ( fem_element_order, fem_element_num, fem_element_node ); if ( element_min == 1 ) { cout << "\n"; cout << " Converting 1-based FEM element array to 0 base.\n"; for ( j = 0; j < fem_element_num; j++ ) { for ( i = 0; i < fem_element_order; i++ ) { fem_element_node[i+j*fem_element_order] = fem_element_node[i+j*fem_element_order] - 1; } } } // // Compute the FEM values. // fem_value_dim = sample_value_dim; fem_value_num = fem_node_num; fem_value = fem3d_transfer ( sample_node_num, sample_element_order, sample_element_num, sample_value_dim, sample_value_num, sample_node_xyz, sample_element_node, sample_element_neighbor, sample_value, fem_node_num, fem_element_order, fem_element_num, fem_value_dim, fem_value_num, fem_node_xyz, fem_element_node ); // // Write the FEM values. // r8mat_write ( fem_value_filename, fem_value_dim, fem_value_num, fem_value ); cout << "\n"; cout << " FEM value data written to \"" << fem_value_filename << "\"\n"; // // Terminate. // cout << "\n"; cout << "FEM3D_PROJECT\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); delete [] fem_element_node; delete [] fem_node_xyz; delete [] fem_value; delete [] sample_element_neighbor; delete [] sample_element_node; delete [] sample_node_xyz; delete [] sample_value; return 0; } //****************************************************************************80 void basis_mn_tet4 ( double t[3*4], int n, double p[], double phi[] ) //****************************************************************************80 // // Purpose: // // BASIS_MN_TET4: all bases at N points for a TET4 element. // // Discussion: // // The routine is given the coordinates of the vertices of a tetrahedron. // // It works directly with these coordinates, and does not refer to a // reference element. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 August 2009 // // Author: // // John Burkardt // // Reference: // // Olgierd Zienkiewicz, // The Finite Element Method, // Sixth Edition, // Butterworth-Heinemann, 2005, // ISBN: 0750663200, // LC: TA640.2.Z54. // // Parameters: // // Input, double T[3*4], the coordinates of the vertices. // // Input, int N, the number of evaluation points. // // Input, double P[3*N], the points where the basis functions // are to be evaluated. // // Output, double PHI[4*N], the value of the basis functions // at the evaluation points. // { int j; double volume; // // | x1 x2 x3 x4 | // Volume = | y1 y2 y3 y4 | // | z1 z2 z3 z4 | // | 1 1 1 1 | // volume = t[0+0*3] * ( t[1+1*3] * ( t[2+2*3] - t[2+3*3] ) - t[1+2*3] * ( t[2+1*3] - t[2+3*3] ) + t[1+3*3] * ( t[2+1*3] - t[2+2*3] ) ) - t[0+1*3] * ( t[1+0*3] * ( t[2+2*3] - t[2+3*3] ) - t[1+2*3] * ( t[2+0*3] - t[2+3*3] ) + t[1+3*3] * ( t[2+0*3] - t[2+2*3] ) ) + t[0+2*3] * ( t[1+0*3] * ( t[2+1*3] - t[2+3*3] ) - t[1+1*3] * ( t[2+0*3] - t[2+3*3] ) + t[1+3*3] * ( t[2+0*3] - t[2+1*3] ) ) - t[0+3*3] * ( t[1+0*3] * ( t[2+1*3] - t[2+2*3] ) - t[1+1*3] * ( t[2+0*3] - t[2+2*3] ) + t[1+2*3] * ( t[2+0*3] - t[2+1*3] ) ); if ( volume == 0.0 ) { cerr << "\n"; cerr << "BASIS_MN_TET4 - Fatal error!\n"; cerr << " Element has zero volume.\n"; exit ( 1 ); } // // | xp x2 x3 x4 | // Phi(1,P) = | yp y2 y3 y4 | / volume // | zp z2 z3 z4 | // | 1 1 1 1 | // for ( j = 0; j < n; j++ ) { phi[0+j*4] = ( p[0+j*3] * ( t[1+1*3] * ( t[2+2*3] - t[2+3*3] ) - t[1+2*3] * ( t[2+1*3] - t[2+3*3] ) + t[1+3*3] * ( t[2+1*3] - t[2+2*3] ) ) - t[0+1*3] * ( p[1+j*3] * ( t[2+2*3] - t[2+3*3] ) - t[1+2*3] * ( p[2+j*3] - t[2+3*3] ) + t[1+3*3] * ( p[2+j*3] - t[2+2*3] ) ) + t[0+2*3] * ( p[1+j*3] * ( t[2+1*3] - t[2+3*3] ) - t[1+1*3] * ( p[2+j*3] - t[2+3*3] ) + t[1+3*3] * ( p[2+j*3] - t[2+1*3] ) ) - t[0+3*3] * ( p[1+j*3] * ( t[2+1*3] - t[2+2*3] ) - t[1+1*3] * ( p[2+j*3] - t[2+2*3] ) + t[1+2*3] * ( p[2+j*3] - t[2+1*3] ) ) ) / volume; // // | x1 xp x3 x4 | // Phi(2,P) = | y1 yp y3 y4 | / volume // | z1 zp z3 z4 | // | 1 1 1 1 | // phi[1+j*4] = ( t[0+0*3] * ( p[1+j*3] * ( t[2+2*3] - t[2+3*3] ) - t[1+2*3] * ( p[2+j*3] - t[2+3*3] ) + t[1+3*3] * ( p[2+j*3] - t[2+2*3] ) ) - p[0+j*3] * ( t[1+0*3] * ( t[2+2*3] - t[2+3*3] ) - t[1+2*3] * ( t[2+0*3] - t[2+3*3] ) + t[1+3*3] * ( t[2+0*3] - t[2+2*3] ) ) + t[0+2*3] * ( t[1+0*3] * ( p[2+j*3] - t[2+3*3] ) - p[1+j*3] * ( t[2+0*3] - t[2+3*3] ) + t[1+3*3] * ( t[2+0*3] - p[2+j*3] ) ) - t[0+3*3] * ( t[1+0*3] * ( p[2+j*3] - t[2+2*3] ) - p[1+j*3] * ( t[2+0*3] - t[2+2*3] ) + t[1+2*3] * ( t[2+0*3] - p[2+j*3] ) ) ) / volume; // // | x1 x2 xp x4 | // Phi(3,P) = | y1 y2 yp y4 | / volume // | z1 z2 zp z4 | // | 1 1 1 1 | // phi[2+j*4] = ( t[0+0*3] * ( t[1+1*3] * ( p[2+j*3] - t[2+3*3] ) - p[1+j*3] * ( t[2+1*3] - t[2+3*3] ) + t[1+3*3] * ( t[2+1*3] - p[2+j*3] ) ) - t[0+1*3] * ( t[1+0*3] * ( p[2+j*3] - t[2+3*3] ) - p[1+j*3] * ( t[2+0*3] - t[2+3*3] ) + t[1+3*3] * ( t[2+0*3] - p[2+j*3] ) ) + p[0+j*3] * ( t[1+0*3] * ( t[2+1*3] - t[2+3*3] ) - t[1+1*3] * ( t[2+0*3] - t[2+3*3] ) + t[1+3*3] * ( t[2+0*3] - t[2+1*3] ) ) - t[0+3*3] * ( t[1+0*3] * ( t[2+1*3] - p[2+j*3] ) - t[1+1*3] * ( t[2+0*3] - p[2+j*3] ) + p[1+j*3] * ( t[2+0*3] - t[2+1*3] ) ) ) / volume; // // | x1 x2 x3 xp | // Phi(4,P) = | y1 y2 y3 yp | / volume // | z1 z2 z3 zp | // | 1 1 1 1 | // phi[3+j*4] = ( t[0+0*3] * ( t[1+1*3] * ( t[2+2*3] - p[2+j*3] ) - t[1+2*3] * ( t[2+1*3] - p[2+j*3] ) + p[1+j*3] * ( t[2+1*3] - t[2+2*3] ) ) - t[0+1*3] * ( t[1+0*3] * ( t[2+2*3] - p[2+j*3] ) - t[1+2*3] * ( t[2+0*3] - p[2+j*3] ) + p[1+j*3] * ( t[2+0*3] - t[2+2*3] ) ) + t[0+2*3] * ( t[1+0*3] * ( t[2+1*3] - p[2+j*3] ) - t[1+1*3] * ( t[2+0*3] - p[2+j*3] ) + p[1+j*3] * ( t[2+0*3] - t[2+1*3] ) ) - p[0+j*3] * ( t[1+0*3] * ( t[2+1*3] - t[2+2*3] ) - t[1+1*3] * ( t[2+0*3] - t[2+2*3] ) + t[1+2*3] * ( t[2+0*3] - t[2+1*3] ) ) ) / volume; } return; } //****************************************************************************80 char ch_cap ( char ch ) //****************************************************************************80 // // Purpose: // // CH_CAP capitalizes a single character. // // Discussion: // // This routine should be equivalent to the library "toupper" function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 July 1998 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the character to capitalize. // // Output, char CH_CAP, the capitalized character. // { if ( 97 <= ch && ch <= 122 ) { ch = ch - 32; } return ch; } //****************************************************************************80 bool ch_eqi ( char ch1, char ch2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH1, CH2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { if ( 97 <= ch1 && ch1 <= 122 ) { ch1 = ch1 - 32; } if ( 97 <= ch2 && ch2 <= 122 ) { ch2 = ch2 - 32; } return ( ch1 == ch2 ); } //****************************************************************************80 int ch_to_digit ( char ch ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // CH DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If the // character was 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= ch && ch <= '9' ) { digit = ch - '0'; } else if ( ch == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 double *fem3d_transfer ( int sample_node_num, int sample_element_order, int sample_element_num, int sample_value_dim, int sample_value_num, double sample_node_xyz[], int sample_element_node[], int sample_element_neighbor[], double sample_value[], int fem_node_num, int fem_element_order, int fem_element_num, int fem_value_dim, int fem_value_num, double fem_node_xyz[], int fem_element_node[] ) //****************************************************************************80 // // Purpose: // // FEM3D_TRANSFER "transfers" from one finite element mesh to another. // // BAD THINGS: // // 1) the linear system A*X=B is defined with A being a full storage matrix. // 2) the quadrature rule used is low order. // 3) the elements are assumed to be linear. // // Discussion: // // We are also given a set of "sample" finite element function defined // by SAMPLE_NODE_XYZ, SAMPLE_ELEMENT, and SAMPLE_VALUE. // // We are given a second finite element mesh, FEM_NODE_XYZ and // FEM_ELEMENT_NODE. // // Our aim is to "project" the sample data values into the finite element // space, that is, to come up with a finite element function FEM_VALUE which // well approximates the sample data. // // Now let W(x,y,z) represent a function interpolating the sample data, and // let Vijk(x,y,z) represent the finite element basis function associated with // node IJK. // // Then we seek the coefficient vector U corresponding to a finite element // function U(x,y,z) of the form: // // U(x,y,z) = sum ( 1 <= IJK <= N ) Uijk * Vijk(x,y,z) // // To determine the coefficent vector entries U, we form a set of // projection equations. For node IJK at grid point (I,J,K), the associated // basis function Vk(x,y,z) is used to pose the equation: // // Integral U(x,y,z) Vijk(x,y,z) dx dy dz // = Integral W(x,y,z) Vijk(x,y,z) dx dy dz // // The left hand side is the usual stiffness matrix times the desired // coefficient vector U. To complete the system, we simply need to // determine the right hand side, that is, the integral of the data function // W against the basis function Vk. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 August 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int SAMPLE_NODE_NUM, the number of nodes. // // Input, int SAMPLE_ELEMENT_ORDER, the element order. // // Input, int SAMPLE_ELEMENT_NUM, the number of elements. // // Input, int SAMPLE_VALUE_DIM, the value dimension. // // Input, int SAMPLE_VALUE_NUM, the number of values. // // Input, double SAMPLE_NODE_XYZ[3*SAMPLE_NODE_NUM], the nodes. // // Input, int SAMPLE_ELEMENT_NODE[SAMPLE_ELEMENT_ORDER*SAMPLE_ELEMENT_NUM], // the nodes that make up each element. // // Input, int SAMPLE_ELEMENT_NEIGHBOR[3*SAMPLE_ELEMENT_NUM], // the neighbor triangles. // // Input, double SAMPLE_VALUE[SAMPLE_VALUE_DIM*SAMPLE_NODE_NUM], // the values. // // Input, int FEM_NODE_NUM, the number of nodes. // // Input, int FEM_ELEMENT_ORDER, the element order. // // Input, int FEM_ELEMENT_NUM, the number of elements. // // Input, int FEM_VALUE_DIM, the value dimension. // // Input, int FEM_VALUE_NUM, the number of values. // // Input, double FEM_NODE_XYZ[3*FEM_NODE_NUM], the nodes. // // Input, int FEM_ELEMENT_NODE[FEM_ELEMENT_ORDER*FEM_ELEMENT_NUM], // the nodes that make up each element. // // Output, double FEM3D_TRANSFER[FEM_VALUE_DIM*FEM_VALUE_NUM], // the values. // { double *a; double *b; int element; double *fem_value; int i; int j; int j2; int k; int ni; int nj; double *phi; int project_node_num = 1; double project_node_xyz[3*1]; double *project_value; int quad; int quad_num = 4; double *ref_quad; double *ref_weight; double *tet_quad; double *tet_xyz; double volume; double *x; // // Assemble the coefficient matrix A and the right-hand side B. // b = r8mat_zero_new ( fem_node_num, fem_value_dim ); a = r8mat_zero_new ( fem_node_num, fem_node_num ); phi = new double[4]; ref_weight = new double[quad_num]; ref_quad = new double[4*quad_num]; tet_quad = new double[3*quad_num]; tet_xyz = new double[3*4]; for ( element = 0; element < fem_element_num; element++ ) { for ( j = 0; j < 4; j++ ) { for ( i = 0; i < 3; i++ ) { j2 = fem_element_node[j+element*4]; tet_xyz[i+j*3] = fem_node_xyz[i+j2*3]; } } volume = tetrahedron_volume ( tet_xyz ); for ( j = 0; j < quad_num; j++ ) { for ( i = 0; i < 3; i++ ) { tet_quad[i+j*3] = 0.0; for ( k = 0; k < 4; k++ ) { tet_quad[i+j*3] = tet_quad[i+j*3] + tet_xyz[i+k*3] * ref_quad[k+j*4]; } } } // // Consider each quadrature point. // Here, we use the midside nodes as quadrature points. // for ( quad = 0; quad < quad_num; quad++ ) { for ( i = 0; i < 3; i++ ) { project_node_xyz[i+0*3] = tet_quad[i+quad*3]; } basis_mn_tet4 ( tet_xyz, 1, project_node_xyz, phi ); for ( i = 0; i < 4; i++ ) { ni = fem_element_node[i+element*fem_element_order]; // // The projection takes place here. The finite element code needs the value // of the sample function at the point (XQ,YQ). The call to PROJECTION // locates (XQ,YQ) in the triangulated mesh of sample data, and returns a // value produced by piecewise linear interpolation. // project_value = projection ( sample_node_num, sample_node_xyz, sample_element_order, sample_element_num, sample_element_node, sample_element_neighbor, sample_value_dim, sample_value, project_node_num, project_node_xyz ); for ( j = 0; j < fem_value_dim; j++ ) { b[ni+j*fem_node_num] = b[ni+j*fem_node_num] + volume * ref_weight[quad] * ( project_value[j+0*fem_value_dim] * phi[i] ); } delete [] project_value; // // Consider each basis function in the element. // for ( j = 0; j < 4; j++ ) { nj = fem_element_node[j+element*fem_element_order]; a[ni+nj*fem_node_num] = a[ni+nj*fem_node_num] + volume * ref_weight[quad] * ( phi[i] * phi[j] ); } } } } // // SOLVE the linear system A * X = B. // x = r8ge_fss_new ( fem_node_num, a, fem_value_dim, b ); // // Copy solution. // fem_value = new double[fem_value_dim*fem_value_num]; for ( j = 0; j < fem_value_num; j++ ) { for ( i = 0; i < fem_value_dim; i++ ) { fem_value[i+j*fem_value_dim] = x[j+i*fem_value_num]; } } delete [] a; delete [] b; delete [] phi; delete [] ref_quad; delete [] ref_weight; delete [] tet_quad; delete [] tet_xyz; delete [] x; return fem_value; } //****************************************************************************80 int file_column_count ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_COLUMN_COUNT counts the columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file are presumed to consist of COLUMN_NUM words, // separated by spaces. There may also be some blank lines, and some // comment lines, which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { int column_num; ifstream input; bool got_one; string text; // // Open the file. // input.open ( filename.c_str ( ) ); if ( !input ) { column_num = -1; cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Fatal error!\n"; cerr << " Could not open the file:\n"; cerr << " \"" << filename << "\"\n"; return column_num; } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { getline ( input, text ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) <= 0 ) { continue; } if ( text[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { input.close ( ); input.open ( filename.c_str ( ) ); for ( ; ; ) { input >> text; if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) == 0 ) { continue; } got_one = true; break; } } input.close ( ); if ( !got_one ) { cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Warning!\n"; cerr << " The file does not seem to contain any data.\n"; return -1; } column_num = s_word_count ( text ); return column_num; } //****************************************************************************80 int file_row_count ( string input_filename ) //****************************************************************************80 // // Purpose: // // FILE_ROW_COUNT counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int bad_num; int comment_num; ifstream input; int i; string line; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; bad_num = 0; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "FILE_ROW_COUNT - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return (-1); } for ( ; ; ) { getline ( input, line ); if ( input.eof ( ) ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } input.close ( ); return row_num; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4col_compare ( int m, int n, int a[], int i, int j ) //****************************************************************************80 // // Purpose: // // I4COL_COMPARE compares columns I and J of an I4COL. // // Example: // // Input: // // M = 3, N = 4, I = 2, J = 4 // // A = ( // 1 2 3 4 // 5 6 7 8 // 9 10 11 12 ) // // Output: // // I4COL_COMPARE = -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int A[M*N], an array of N columns of vectors of length M. // // Input, int I, J, the columns to be compared. // I and J must be between 1 and N. // // Output, int I4COL_COMPARE, the results of the comparison: // -1, column I < column J, // 0, column I = column J, // +1, column J < column I. // { int k; // // Check. // if ( i < 1 ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " Column index I = " << i << " is less than 1.\n"; exit ( 1 ); } if ( n < i ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " N = " << n << " is less than column index I = " << i << ".\n"; exit ( 1 ); } if ( j < 1 ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " Column index J = " << j << " is less than 1.\n"; exit ( 1 ); } if ( n < j ) { cout << "\n"; cout << "I4COL_COMPARE - Fatal error!\n"; cout << " N = " << n << " is less than column index J = " << j << ".\n"; exit ( 1 ); } if ( i == j ) { return 0; } k = 1; while ( k <= m ) { if ( a[k-1+(i-1)*m] < a[k-1+(j-1)*m] ) { return (-1); } else if ( a[k-1+(j-1)*m] < a[k-1+(i-1)*m] ) { return 1; } k = k + 1; } return 0; } //****************************************************************************80 void i4col_sort_a ( int m, int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4COL_SORT_A ascending sorts the columns of an I4COL. // // Discussion: // // In lexicographic order, the statement "X < Y", applied to two // vectors X and Y of length M, means that there is some index I, with // 1 <= I <= M, with the property that // // X(J) = Y(J) for J < I, // and // X(I) < Y(I). // // In other words, X is less than Y if, at the first index where they // differ, the X value is less than the Y value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of A. // // Input, int N, the number of columns of A. // // Input/output, int A[M*N]. // On input, the array of N columns of M vectors; // On output, the columns of A have been sorted in ascending // lexicographic order. // { int i; int indx; int isgn; int j; // // Initialize. // i = 0; indx = 0; isgn = 0; j = 0; // // Call the external heap sorter. // for ( ; ; ) { sort_heap_external ( n, &indx, &i, &j, isgn ); // // Interchange the I and J objects. // if ( 0 < indx ) { i4col_swap ( m, n, a, i, j ); } // // Compare the I and J objects. // else if ( indx < 0 ) { isgn = i4col_compare ( m, n, a, i, j ); } else if ( indx == 0 ) { break; } } return; } //****************************************************************************80 void i4col_swap ( int m, int n, int a[], int icol1, int icol2 ) //****************************************************************************80 // // Purpose: // // I4COL_SWAP swaps two columns of an I4COL. // // Discussion: // // The two dimensional information is stored as a one dimensional // array, by columns. // // The row indices are 1 based, NOT 0 based! However, a preprocessor // variable, called OFFSET, can be reset from 1 to 0 if you wish to // use 0-based indices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 April 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int A[M*N], an array of data. // // Input, int ICOL1, ICOL2, the two columns to swap. // These indices should be between 1 and N. // { # define OFFSET 1 int i; int t; // // Check. // if ( icol1 - OFFSET < 0 || n-1 < icol1 - OFFSET ) { cout << "\n"; cout << "I4COL_SWAP - Fatal error!\n"; cout << " ICOL1 is out of range.\n"; exit ( 1 ); } if ( icol2 - OFFSET < 0 || n-1 < icol2 - OFFSET ) { cout << "\n"; cout << "I4COL_SWAP - Fatal error!\n"; cout << " ICOL2 is out of range.\n"; exit ( 1 ); } if ( icol1 == icol2 ) { return; } for ( i = 0; i < m; i++ ) { t = a[i+(icol1-OFFSET)*m]; a[i+(icol1-OFFSET)*m] = a[i+(icol2-OFFSET)*m]; a[i+(icol2-OFFSET)*m] = t; } return; # undef OFFSET } //****************************************************************************80 void i4i4i4_sort_a ( int i1, int i2, int i3, int *j1, int *j2, int *j3 ) //****************************************************************************80 // // Purpose: // // I4I4I4_SORT_A ascending sorts a triple of I4's. // // Discussion: // // The program allows the reasonable call: // // i4i4i4_sort_a ( i1, i2, i3, &i1, &i2, &i3 ); // // and this will return the reasonable result. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, I3, the values to sort. // // Output, int *J1, *J2, *J3, the sorted values. // { int k1; int k2; int k3; // // Copy arguments, so that the user can make "reasonable" calls like: // // i4i4i4_sort_a ( i1, i2, i3, &i1, &i2, &i3 ); // k1 = i1; k2 = i2; k3 = i3; *j1 = i4_min ( i4_min ( k1, k2 ), i4_min ( k2, k3 ) ); *j2 = i4_min ( i4_max ( k1, k2 ), i4_min ( i4_max ( k2, k3 ), i4_max ( k3, k1 ) ) ); *j3 = i4_max ( i4_max ( k1, k2 ), i4_max ( k2, k3 ) ); return; } //****************************************************************************80 int *i4mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // I4MAT_DATA_READ reads data from an I4MAT file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, int I4MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; int *table; int *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "I4MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new int[m*n]; x = new int[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_i4vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void i4mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // I4MAT_HEADER_READ reads the header from an I4MAT file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "I4MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; return; } return; } //****************************************************************************80 int i4mat_min ( int m, int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4MAT_MIN returns the minimum of an I4MAT. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 August 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, int A[M*N], the M by N matrix. // // Output, int I4MAT_MIN, the minimum entry of A. // { int i; int i4_huge = 2147483647; int j; int value; value = i4_huge; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( a[i+j*m] < value ) { value = a[i+j*m]; } } } return value; } //****************************************************************************80 double *projection ( int fem_node_num, double fem_node_xyz[], int fem_element_order, int fem_element_num, int fem_element_node[], int fem_element_neighbor[], int fem_value_dim, double fem_value[], int sample_node_num, double sample_node_xyz[] ) //****************************************************************************80 // // Purpose: // // PROJECTION evaluates an FEM function on a T3 or T6 triangulation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 August 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int FEM_NODE_NUM, the number of nodes. // // Input, double FEM_NODE_XYZ[3*FEM_NODE_NUM], the coordinates // of the nodes. // // Input, int FEM_ELEMENT_ORDER, the order of the elements. // // Input, int FEM_ELEMENT_NUM, the number of elements. // // Input, int FEM_ELEMENT_NODE(FEM_ELEMENT_ORDER,FEM_ELEMENT_NUM), the // nodes that make up each element. // // Input, int FEM_ELEMENT_NEIGHBOR[4*FEM_ELEMENT_NUM], the // index of the neighboring element on each side, or -1 if no neighbor there. // // Input, int FEM_VALUE_DIM, the "dimension" of the values. // // Input, double FEM_VALUE[FEM_VALUE_DIM*FEM_NODE_NUM], the // finite element coefficient values at each node. // // Input, int SAMPLE_NODE_NUM, the number of sample nodes. // // Input, double SAMPLE_NODE_XYZ[3*SAMPLE_NODE_NUM], the sample nodes. // // Output, double PROJECTION[FEM_VALUE_DIM*SAMPLE_NODE_NUM], // the sampled values. // { double *b; double dot; int face; int i; int j; int k; double p_xyz[3]; double *sample_value; int step_num; int t; int t_node; double *t_xyz; b = new double[fem_element_order]; sample_value = new double[fem_value_dim*sample_node_num]; t_xyz = new double[3*fem_element_order]; // // For each sample point: find the element T that contains it, // and evaluate the finite element function there. // for ( j = 0; j < sample_node_num; j++ ) { p_xyz[0] = sample_node_xyz[0+3*j]; p_xyz[1] = sample_node_xyz[1+3*j]; p_xyz[2] = sample_node_xyz[2+3*j]; // // Find the triangle T that contains the point. // t = tet_mesh_search_delaunay ( fem_node_num, fem_node_xyz, fem_element_order, fem_element_num, fem_element_node, fem_element_neighbor, p_xyz, &face, &step_num ); if ( t == - 1 ) { cerr << "\n"; cerr << "PROJECTION - Fatal error!\n"; cerr << " Search failed.\n"; exit ( 1 ); } // // Evaluate the finite element basis functions at the point in T. // for ( i = 0; i < fem_element_order; i++ ) { t_node = fem_element_node[i+t*fem_element_order]; t_xyz[0+i*3] = fem_node_xyz[0+t_node*3]; t_xyz[1+i*3] = fem_node_xyz[1+t_node*3]; t_xyz[2+i*3] = fem_node_xyz[2+t_node*3]; } basis_mn_tet4 ( t_xyz, 1, p_xyz, b ); // // Multiply by the finite element values to get the sample values. // for ( i = 0; i < fem_value_dim; i++ ) { dot = 0.0; for ( k = 0; k < fem_element_order; k++ ) { t_node = fem_element_node[k+t*fem_element_order]; dot = dot + fem_value[i+t_node*fem_value_dim] * b[k]; } sample_value[i+j*fem_value_dim] = dot; } } delete [] b; delete [] t_xyz; return sample_value; } //****************************************************************************80 float r4_abs ( float x ) //****************************************************************************80 // // Purpose: // // R4_ABS returns the absolute value of an R4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 December 2006 // // Author: // // John Burkardt // // Parameters: // // Input, float X, the quantity whose absolute value is desired. // // Output, float R4_ABS, the absolute value of X. // { float value; if ( 0.0 <= x ) { value = x; } else { value = -x; } return value; } //****************************************************************************80 int r4_nint ( float x ) //****************************************************************************80 // // Purpose: // // R4_NINT returns the nearest integer to an R4. // // Example: // // X R4_NINT // // 1.3 1 // 1.4 1 // 1.5 1 or 2 // 1.6 2 // 0.0 0 // -0.7 -1 // -1.1 -1 // -1.6 -2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, float X, the value. // // Output, int R4_NINT, the nearest integer to X. // { int value; if ( x < 0.0 ) { value = - ( int ) ( r4_abs ( x ) + 0.5 ); } else { value = ( int ) ( r4_abs ( x ) + 0.5 ); } return value; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = x; } else { value = - x; } return value; } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } //****************************************************************************80 double *r8ge_fss_new ( int n, double a[], int nb, double b[] ) //****************************************************************************80 // // Purpose: // // R8GE_FSS_NEW factors and solves multiple R8GE systems. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // This routine does not save the LU factors of the matrix, and hence cannot // be used to efficiently solve multiple linear systems, or even to // factor A at one time, and solve a single linear system at a later time. // // This routine uses partial pivoting, but no pivot vector is required. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input/output, double A[N*N]. // On input, A is the coefficient matrix of the linear system. // On output, A is in unit upper triangular form, and // represents the U factor of an LU factorization of the // original coefficient matrix. // // Input, int NB, the number of right hand sides. // // Input, double B[N*NB], the right hand sides of the linear systems. // // Output, double R8GE_FSS_NEW[N*NB], the solutions of the linear systems. // { int i; int ipiv; int j; int jcol; double piv; double t; double *x; x = new double[n*nb]; for ( j = 0; j < nb; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = b[i+j*n]; } } for ( jcol = 1; jcol <= n; jcol++ ) { // // Find the maximum element in column I. // piv = r8_abs ( a[jcol-1+(jcol-1)*n] ); ipiv = jcol; for ( i = jcol+1; i <= n; i++ ) { if ( piv < r8_abs ( a[i-1+(jcol-1)*n] ) ) { piv = r8_abs ( a[i-1+(jcol-1)*n] ); ipiv = i; } } if ( piv == 0.0 ) { cout << "\n"; cout << "R8GE_FSS_NEW - Fatal error!\n"; cout << " Zero pivot on step " << jcol << "\n"; return NULL; } // // Switch rows JCOL and IPIV, and X. // if ( jcol != ipiv ) { for ( j = 1; j <= n; j++ ) { t = a[jcol-1+(j-1)*n]; a[jcol-1+(j-1)*n] = a[ipiv-1+(j-1)*n]; a[ipiv-1+(j-1)*n] = t; } for ( j = 0; j < nb; j++ ) { t = x[jcol-1+j*n]; x[jcol-1+j*n] = x[ipiv-1+j*n]; x[ipiv-1+j*n] = t; } } // // Scale the pivot row. // t = a[jcol-1+(jcol-1)*n]; a[jcol-1+(jcol-1)*n] = 1.0; for ( j = jcol+1; j <= n; j++ ) { a[jcol-1+(j-1)*n] = a[jcol-1+(j-1)*n] / t; } for ( j = 0; j < nb; j++ ) { x[jcol-1+j*n] = x[jcol-1+j*n] / t; } // // Use the pivot row to eliminate lower entries in that column. // for ( i = jcol+1; i <= n; i++ ) { if ( a[i-1+(jcol-1)*n] != 0.0 ) { t = - a[i-1+(jcol-1)*n]; a[i-1+(jcol-1)*n] = 0.0; for ( j = jcol+1; j <= n; j++ ) { a[i-1+(j-1)*n] = a[i-1+(j-1)*n] + t * a[jcol-1+(j-1)*n]; } for ( j = 0; j < nb; j++ ) { x[i-1+j*n] = x[i-1+j*n] + t * x[jcol-1+j*n]; } } } } // // Back solve. // for ( jcol = n; 2 <= jcol; jcol-- ) { for ( i = 1; i < jcol; i++ ) { for ( j = 0; j < nb; j++ ) { x[i-1+j*n] = x[i-1+j*n] - a[i-1+(jcol-1)*n] * x[jcol-1+j*n]; } } } return x; } //****************************************************************************80 double *r8mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_DATA_READ reads the data from an R8MAT file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double R8MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; double *table; double *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R8MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new double[m*n]; x = new double[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 double r8mat_det_4d ( double a[] ) //****************************************************************************80 // // Purpose: // // R8MAT_DET_4D computes the determinant of a 4 by 4 R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, double A[4*4], the matrix whose determinant is desired. // // Output, double R8MAT_DET_4D, the determinant of the matrix. // { double det; det = a[0+0*4] * ( a[1+1*4] * ( a[2+2*4] * a[3+3*4] - a[2+3*4] * a[3+2*4] ) - a[1+2*4] * ( a[2+1*4] * a[3+3*4] - a[2+3*4] * a[3+1*4] ) + a[1+3*4] * ( a[2+1*4] * a[3+2*4] - a[2+2*4] * a[3+1*4] ) ) - a[0+1*4] * ( a[1+0*4] * ( a[2+2*4] * a[3+3*4] - a[2+3*4] * a[3+2*4] ) - a[1+2*4] * ( a[2+0*4] * a[3+3*4] - a[2+3*4] * a[3+0*4] ) + a[1+3*4] * ( a[2+0*4] * a[3+2*4] - a[2+2*4] * a[3+0*4] ) ) + a[0+2*4] * ( a[1+0*4] * ( a[2+1*4] * a[3+3*4] - a[2+3*4] * a[3+1*4] ) - a[1+1*4] * ( a[2+0*4] * a[3+3*4] - a[2+3*4] * a[3+0*4] ) + a[1+3*4] * ( a[2+0*4] * a[3+1*4] - a[2+1*4] * a[3+0*4] ) ) - a[0+3*4] * ( a[1+0*4] * ( a[2+1*4] * a[3+2*4] - a[2+2*4] * a[3+1*4] ) - a[1+1*4] * ( a[2+0*4] * a[3+2*4] - a[2+2*4] * a[3+0*4] ) + a[1+2*4] * ( a[2+0*4] * a[3+1*4] - a[2+1*4] * a[3+0*4] ) ); return det; } //****************************************************************************80 void r8mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // R8MAT_HEADER_READ reads the header from an R8MAT file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points. // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; return; } return; } //****************************************************************************80 int r8mat_solve ( int n, int rhs_num, double a[] ) //****************************************************************************80 // // Purpose: // // R8MAT_SOLVE uses Gauss-Jordan elimination to solve an N by N linear system. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Entry A(I,J) is stored as A[I+J*N] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int RHS_NUM, the number of right hand sides. RHS_NUM // must be at least 0. // // Input/output, double A[N*(N+RHS_NUM)], contains in rows and columns 1 // to N the coefficient matrix, and in columns N+1 through // N+RHS_NUM, the right hand sides. On output, the coefficient matrix // area has been destroyed, while the right hand sides have // been overwritten with the corresponding solutions. // // Output, int R8MAT_SOLVE, singularity flag. // 0, the matrix was not singular, the solutions were computed; // J, factorization failed on step J, and the solutions could not // be computed. // { double apivot; double factor; int i; int ipivot; int j; int k; double temp; for ( j = 0; j < n; j++ ) { // // Choose a pivot row. // ipivot = j; apivot = a[j+j*n]; for ( i = j; i < n; i++ ) { if ( r8_abs ( apivot ) < r8_abs ( a[i+j*n] ) ) { apivot = a[i+j*n]; ipivot = i; } } if ( apivot == 0.0 ) { return j; } // // Interchange. // for ( i = 0; i < n + rhs_num; i++ ) { temp = a[ipivot+i*n]; a[ipivot+i*n] = a[j+i*n]; a[j+i*n] = temp; } // // A(J,J) becomes 1. // a[j+j*n] = 1.0; for ( k = j; k < n + rhs_num; k++ ) { a[j+k*n] = a[j+k*n] / apivot; } // // A(I,J) becomes 0. // for ( i = 0; i < n; i++ ) { if ( i != j ) { factor = a[i+j*n]; a[i+j*n] = 0.0; for ( k = j; k < n + rhs_num; k++ ) { a[i+k*n] = a[i+k*n] - factor * a[j+k*n]; } } } } return 0; } //****************************************************************************80 void r8mat_write ( string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the table data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; return; } // // Write the data. // For greater precision, try // // output << " " << setw(24) << setprecision(16) << table[i+j*m]; // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(10) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 double *r8mat_zero_new ( int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_ZERO_NEW returns a new zeroed R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Output, double R8MAT_ZERO[M*N], the new zeroed matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 0.0; } } return a; } //****************************************************************************80 bool r8vec_is_nonnegative ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_IS_NONNEGATIVE is true if all entries in an R8VEC are nonnegative. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 August 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double X[N], the vector to be checked. // // Output, bool R8VEC_IS_NONNEGATIVE is true if all elements of X // are nonnegative. // { int i; for ( i = 0; i < n; i++ ) { if ( x[i] < 0.0 ) { return false; } } return true; } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 int s_to_i4 ( string s, int *last, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_I4 reads an I4 from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string to be examined. // // Output, int *LAST, the last character of S used to make IVAL. // // Output, bool *ERROR is TRUE if an error occurred. // // Output, int *S_TO_I4, the integer value read from the string. // If the string is blank, then IVAL will be returned 0. // { char c; int i; int isgn; int istate; int ival; *error = false; istate = 0; isgn = 1; i = 0; ival = 0; for ( ; ; ) { c = s[i]; i = i + 1; // // Haven't read anything. // if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read the sign, expecting digits. // else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read at least one digit, expecting more. // else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } // // If we read all the characters in the string, see if we're OK. // if ( istate == 2 ) { ival = isgn * ival; *last = s_len_trim ( s ); } else { *error = true; *last = 0; } return ival; } //****************************************************************************80 bool s_to_i4vec ( string s, int n, int ivec[] ) //****************************************************************************80 // // Purpose: // // S_TO_I4VEC reads an I4VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, int IVEC[N], the values read from the string. // // Output, bool S_TO_I4VEC, is TRUE if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { ivec[i] = s_to_i4 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 double s_to_r8 ( string s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0**(-9.23) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_R8, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( string s, int n, double rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, double RVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 int s_word_count ( string s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int char_count; int i; int word_count; word_count = 0; blank = true; char_count = s.length ( ); for ( i = 0; i < char_count; i++ ) { if ( isspace ( s[i] ) ) { blank = true; } else if ( blank ) { word_count = word_count + 1; blank = false; } } return word_count; } //****************************************************************************80 void sort_heap_external ( int n, int *indx, int *i, int *j, int isgn ) //****************************************************************************80 // // Purpose: // // SORT_HEAP_EXTERNAL externally sorts a list of items into ascending order. // // Discussion: // // The actual list is not passed to the routine. Hence it may // consist of integers, reals, numbers, names, etc. The user, // after each return from the routine, will be asked to compare or // interchange two items. // // The current version of this code mimics the FORTRAN version, // so the values of I and J, in particular, are FORTRAN indices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2004 // // Author: // // Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the length of the input list. // // Input/output, int *INDX. // The user must set INDX to 0 before the first call. // On return, // if INDX is greater than 0, the user must interchange // items I and J and recall the routine. // If INDX is less than 0, the user is to compare items I // and J and return in ISGN a negative value if I is to // precede J, and a positive value otherwise. // If INDX is 0, the sorting is done. // // Output, int *I, *J. On return with INDX positive, // elements I and J of the user's list should be // interchanged. On return with INDX negative, elements I // and J are to be compared by the user. // // Input, int ISGN. On return with INDX negative, the // user should compare elements I and J of the list. If // item I is to precede item J, set ISGN negative, // otherwise set ISGN positive. // { static int i_save = 0; static int j_save = 0; static int k = 0; static int k1 = 0; static int n1 = 0; // // INDX = 0: This is the first call. // if ( *indx == 0 ) { i_save = 0; j_save = 0; k = n / 2; k1 = k; n1 = n; } // // INDX < 0: The user is returning the results of a comparison. // else if ( *indx < 0 ) { if ( *indx == -2 ) { if ( isgn < 0 ) { i_save = i_save + 1; } j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } if ( 0 < isgn ) { *indx = 2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; } *i = i_save; *j = j_save; return; } k = k - 1; k1 = k; } // // 0 < INDX: the user was asked to make an interchange. // else if ( *indx == 1 ) { k1 = k; } for ( ; ; ) { i_save = 2 * k1; if ( i_save == n1 ) { j_save = k1; k1 = i_save; *indx = -1; *i = i_save; *j = j_save; return; } else if ( i_save <= n1 ) { j_save = i_save + 1; *indx = -2; *i = i_save; *j = j_save; return; } if ( k <= 1 ) { break; } k = k - 1; k1 = k; } if ( n1 == 1 ) { i_save = 0; j_save = 0; *indx = 0; *i = i_save; *j = j_save; } else { i_save = n1; j_save = 1; n1 = n1 - 1; *indx = 1; *i = i_save; *j = j_save; } return; } //****************************************************************************80 int *tet_mesh_neighbor_tets ( int tetra_order, int tetra_num, int tetra_node[] ) //****************************************************************************80 // // Purpose: // // TET_MESH_NEIGHBOR_TETS determines tetrahedron neighbors. // // Discussion: // // A tet mesh of a set of nodes can be completely described by // the coordinates of the nodes, and the list of nodes that make up // each tetrahedron. In the most common case, four nodes are used. // There is also a 10 node case, where nodes are also placed on // the midsides of the tetrahedral edges. // // This routine can handle 4 or 10-node tetrahedral meshes. The // 10-node case is handled simply by ignoring the six midside nodes, // which are presumed to be listed after the vertices. // // The tetrahedron adjacency information records which tetrahedron // is adjacent to a given tetrahedron on a particular face. // // This routine creates a data structure recording this information. // // The primary amount of work occurs in sorting a list of 4 * TETRA_NUM // data items. // // The neighbor tetrahedrons are indexed by the face they share with // the tetrahedron. // // Each face of the tetrahedron is indexed by the node which is NOT // part of the face. That is: // // * Neighbor 1 shares face 1 defined by nodes 2, 3, 4. // * Neighbor 2 shares face 2 defined by nodes 1, 3, 4; // * Neighbor 3 shares face 3 defined by nodes 1, 2, 4; // * Neighbor 4 shares face 4 defined by nodes 1, 2, 3. // // For instance, if the (transposed) TETRA_NODE array was: // // Row 1 2 3 4 // Col // // 1 4 3 5 1 // 2 4 2 5 1 // 3 4 7 3 5 // 4 4 7 8 5 // 5 4 6 2 5 // 6 4 6 8 5 // // then the (transposed) TETRA_NEIGHBOR array should be: // // Row 1 2 3 4 // Col // // 1 -1 2 -1 3 // 2 -1 1 -1 5 // 3 -1 1 4 -1 // 4 -1 6 3 -1 // 5 -1 2 6 -1 // 6 -1 4 5 -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 December 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int TETRA_ORDER, the order of the tetrahedrons. // // Input, int TETRA_NUM, the number of tetrahedrons. // // Input, int TETRA_NODE[TETRA_ORDER*TETRA_NUM], the indices of the nodes. // // Output, int TET_MESH_NEIGHBORS[4*TETRA_NUM], the four tetrahedrons that // are direct neighbors of a given tetrahedron. If there is no neighbor // sharing a given face, the index is set to -1. // { int a; int b; int c; int face; int face1; int face2; int *faces; int i; int j; int k; int l; int tetra; int *tetra_neighbor; int tetra1; int tetra2; faces = new int[5*(4*tetra_num)]; tetra_neighbor = new int[4*tetra_num]; // // Step 1. // From the list of nodes for tetrahedron T, of the form: (I,J,K,L) // construct the four face relations: // // (J,K,L,1,T) // (I,K,L,2,T) // (I,J,L,3,T) // (I,J,K,4,T) // // In order to make matching easier, we reorder each triple of nodes // into ascending order. // for ( tetra = 0; tetra < tetra_num; tetra++ ) { i = tetra_node[0+tetra*tetra_order]; j = tetra_node[1+tetra*tetra_order]; k = tetra_node[2+tetra*tetra_order]; l = tetra_node[3+tetra*tetra_order]; i4i4i4_sort_a ( j, k, l, &a, &b, &c ); faces[0+0*5+tetra*5*4] = a; faces[1+0*5+tetra*5*4] = b; faces[2+0*5+tetra*5*4] = c; faces[3+0*5+tetra*5*4] = 0; faces[4+0*5+tetra*5*4] = tetra; i4i4i4_sort_a ( i, k, l, &a, &b, &c ); faces[0+1*5+tetra*5*4] = a; faces[1+1*5+tetra*5*4] = b; faces[2+1*5+tetra*5*4] = c; faces[3+1*5+tetra*5*4] = 1; faces[4+1*5+tetra*5*4] = tetra; i4i4i4_sort_a ( i, j, l, &a, &b, &c ); faces[0+2*5+tetra*5*4] = a; faces[1+2*5+tetra*5*4] = b; faces[2+2*5+tetra*5*4] = c; faces[3+2*5+tetra*5*4] = 2; faces[4+2*5+tetra*5*4] = tetra; i4i4i4_sort_a ( i, j, k, &a, &b, &c ); faces[0+3*5+tetra*5*4] = a; faces[1+3*5+tetra*5*4] = b; faces[2+3*5+tetra*5*4] = c; faces[3+3*5+tetra*5*4] = 3; faces[4+3*5+tetra*5*4] = tetra; } // // Step 2. Perform an ascending dictionary sort on the neighbor relations. // We only intend to sort on rows 1:3; the routine we call here // sorts on rows 1 through 5 but that won't hurt us. // // What we need is to find cases where two tetrahedrons share a face. // By sorting the columns of the FACES array, we will put shared faces // next to each other. // i4col_sort_a ( 5, 4*tetra_num, faces ); // // Step 3. Neighboring tetrahedrons show up as consecutive columns with // identical first three entries. Whenever you spot this happening, // make the appropriate entries in TETRA_NEIGHBOR. // for ( j = 0; j < tetra_num; j++ ) { for ( i = 0; i < 4; i++ ) { tetra_neighbor[i+j*4] = -1; } } face = 0; for ( ; ; ) { if ( 4 * tetra_num - 1 <= face ) { break; } if ( faces[0+face*5] == faces[0+(face+1)*5] && faces[1+face*5] == faces[1+(face+1)*5] && faces[2+face*5] == faces[2+(face+1)*5] ) { face1 = faces[3+face*5]; tetra1 = faces[4+face*5]; face2 = faces[3+(face+1)*5]; tetra2 = faces[4+(face+1)*5]; tetra_neighbor[face1+tetra1*4] = tetra2; tetra_neighbor[face2+tetra2*4] = tetra1; face = face + 2; } else { face = face + 1; } } delete [] faces; return tetra_neighbor; } //****************************************************************************80 int tet_mesh_search_delaunay ( int node_num, double node_xyz[], int tet_order, int tet_num, int tet_node[], int tet_neighbor[], double p[], int *face, int *step_num ) //****************************************************************************80 // // Purpose: // // TET_MESH_SEARCH_DELAUNAY searches a Delaunay tet mesh for a point. // // Discussion: // // The algorithm "walks" from one tetrahedron to its neighboring tetrahedron, // and so on, until a tetrahedron is found containing point P, or P is found // to be outside the convex hull. // // The algorithm computes the barycentric coordinates of the point with // respect to the current tetrahedron. If all 4 quantities are positive, // the point is contained in the tetrahedron. If the I-th coordinate is // negative, then P lies on the far side of edge I, which is opposite // from vertex I. This gives a hint as to where to search next. // // For a Delaunay tet mesh, the search is guaranteed to terminate. // For other meshes, a continue may occur. // // Note the surprising fact that, even for a Delaunay tet mesh of // a set of nodes, the nearest node to P need not be one of the // vertices of the tetrahedron containing P. // // The code can be called for tet meshes of any order, but only // the first 4 nodes in each tetrahedron are considered. Thus, if // higher order tetrahedrons are used, and the extra nodes are intended // to give the tetrahedron a polygonal shape, these will have no effect, // and the results obtained here might be misleading. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2009 // // Author: // // John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XYZ[3*NODE_NUM], the coordinates of // the nodes. // // Input, int TET_ORDER, the order of the tetrahedrons. // // Input, int TET_NUM, the number of tetrahedrons. // // Input, int TET_NODE[TET_ORDER*TET_NUM], // the nodes that make up each tetrahedron. // // Input, int TET_NEIGHBOR[4*TET_NUM], the // tetrahedron neighbor list. // // Input, double P[3], the coordinates of a point. // // Output, int *FACE, indicates the position of the point P in // face TET_INDEX: // 0, the interior or boundary of the tetrahedron; // -1, outside the convex hull of the tet mesh, past face 1; // -2, outside the convex hull of the tet mesh, past face 2; // -3, outside the convex hull of the tet mesh, past face 3. // -4, outside the convex hull of the tet mesh, past face 4. // // Output, int *STEP_NUM, the number of steps taken. // // Output, int TET_MESH_SEARCH_DELAUNAY, the index of the tetrahedron // where the search ended. If a cycle occurred, then -1 is returned. // { double *alpha; int i; int j; int k; int tet_index; double tet_xyz[3*4]; static int tet_index_save = -1; // // If possible, start with the previous successful value of TET_INDEX. // if ( tet_index_save < 1 || tet_num < tet_index_save ) { tet_index = ( tet_num + 1 ) / 2; } else { tet_index = tet_index_save; } *step_num = -1; *face = 0; for ( ; ; ) { *step_num = *step_num + 1; if ( tet_num < *step_num ) { cerr << "\n"; cerr << "TET_MESH_SEARCH_DELAUNAY - Fatal error!\n"; cerr << " The algorithm seems to be cycling.\n"; tet_index = -1; *face = -1; exit ( 1 ); } for ( j = 0; j < 4; j++ ) { k = tet_node[j+tet_index*4]; for ( i = 0; i < 3; i++ ) { tet_xyz[i+j*3] = node_xyz[i+k*3]; } } alpha = tetrahedron_barycentric ( tet_xyz, p ); // // If the barycentric coordinates are all positive, then the point // is inside the tetrahedron and we're done. // if ( 0.0 <= alpha[0] && 0.0 <= alpha[1] && 0.0 <= alpha[2] && 0.0 <= alpha[3] ) { break; } // // At least one barycentric coordinate is negative. // // If there is a negative barycentric coordinate for which there exists an // opposing tetrahedron neighbor closer to the point, move to that tetrahedron. // if ( alpha[0] < 0.0 && 0 < tet_neighbor[0+tet_index*4] ) { tet_index = tet_neighbor[0+tet_index*4]; continue; } else if ( alpha[1] < 0.0 && 0 < tet_neighbor[1+tet_index*4] ) { tet_index = tet_neighbor[1+tet_index*4]; continue; } else if ( alpha[2] < 0.0 && 0 < tet_neighbor[2+tet_index*4] ) { tet_index = tet_neighbor[2+tet_index*4]; continue; } else if ( alpha[3] < 0.0 && 0 < tet_neighbor[3+tet_index*4] ) { tet_index = tet_neighbor[3+tet_index*4]; continue; } // // All negative barycentric coordinates correspond to vertices opposite // faces on the convex hull. // // Note the face and exit. // if ( alpha[0] < 0.0 ) { *face = -1; break; } else if ( alpha[1] < 0.0 ) { *face = -2; break; } else if ( alpha[2] < 0.0 ) { *face = -3; break; } else if ( alpha[3] < 0.0 ) { *face = -4; break; } } tet_index_save = tet_index; return tet_index; } //****************************************************************************80 int tet_mesh_search_naive ( int node_num, double node_xyz[], int tet_order, int tet_num, int tet_node[], double p[], int *step_num ) //****************************************************************************80 // // Purpose: // // TET_MESH_SEARCH_NAIVE naively searches a tet mesh. // // Discussion: // // The algorithm simply checks each tetrahedron to see if point P is // contained in it. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XYZ[3*NODE_NUM], the coordinates // of the nodes. // // Input, int TET_ORDER, the order of the tetrahedrons. // // Input, int TET_NUM, the number of tetrahedrons in // the mesh. // // Input, int TET_NODE[TET_ORDER*TET_NUM], // the nodes that make up each tetrahedron. // // Input, double P[3], the coordinates of a point. // // Output, int TET_MESH_ORDER4_SEARCH_NAIE, the index of the tetrahedron // where the search ended, or -1 if no tetrahedron was found containing // the point. // // Output, int *STEP_NUM, the number of tetrahedrons examined. { double *alpha; int i; int j; int tet; int tet_index; double tet_xyz[3*4]; tet_index = -1; *step_num = 0; for ( tet = 0; tet < tet_num; tet++ ) { for ( j = 0; j < 4; j++ ) { for ( i = 0; i < 3; i++ ) { tet_xyz[i+j*3] = node_xyz[i+tet_node[j+tet*4]*3]; } } alpha = tetrahedron_barycentric ( tet_xyz, p ); if ( r8vec_is_nonnegative ( 4, alpha ) ) { tet_index = tet; *step_num = tet; return tet_index; } delete [] alpha; } return tet_index; } //****************************************************************************80 double *tetrahedron_barycentric ( double tetra[3*4], double p[3] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_BARYCENTRIC returns the barycentric coordinates of a point. // // Discussion: // // The barycentric coordinates of a point P with respect to // a tetrahedron are a set of four values C(1:4), each associated // with a vertex of the tetrahedron. The values must sum to 1. // If all the values are between 0 and 1, the point is contained // within the tetrahedron. // // The barycentric coordinate of point X related to vertex A can be // interpreted as the ratio of the volume of the tetrahedron with // vertex A replaced by vertex X to the volume of the original // tetrahedron. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the vertices of the tetrahedron. // // Input, double P[3], the point to be checked. // // Output, double C[4], the barycentric coordinates of the point with // respect to the tetrahedron. // { # define N 3 # define RHS_NUM 1 double a[N*(N+RHS_NUM)]; double *c; int info; // // Set up the linear system // // ( X2-X1 X3-X1 X4-X1 ) C1 X - X1 // ( Y2-Y1 Y3-Y1 Y4-Y1 ) C2 = Y - Y1 // ( Z2-Z1 Z3-Z1 Z4-Z1 ) C3 Z - Z1 // // which is satisfied by the barycentric coordinates. // a[0+0*N] = tetra[0+1*3] - tetra[0+0*3]; a[1+0*N] = tetra[1+1*3] - tetra[1+0*3]; a[2+0*N] = tetra[2+1*3] - tetra[2+0*3]; a[0+1*N] = tetra[0+2*3] - tetra[0+0*3]; a[1+1*N] = tetra[1+2*3] - tetra[1+0*3]; a[2+1*N] = tetra[2+2*3] - tetra[2+0*3]; a[0+2*N] = tetra[0+3*3] - tetra[0+0*3]; a[1+2*N] = tetra[1+3*3] - tetra[1+0*3]; a[2+2*N] = tetra[2+3*3] - tetra[2+0*3]; a[0+3*N] = p[0] - tetra[0+0*3]; a[1+3*N] = p[1] - tetra[1+0*3]; a[2+3*N] = p[2] - tetra[2+0*3]; // // Solve the linear system. // info = r8mat_solve ( N, RHS_NUM, a ); if ( info != 0 ) { cout << "\n"; cout << "TETRAHEDRON_BARYCENTRIC - Fatal error!\n"; cout << " The linear system is singular.\n"; cout << " The input data does not form a proper tetrahedron.\n"; exit ( 1 ); } c = new double[4]; c[1] = a[0+3*N]; c[2] = a[1+3*N]; c[3] = a[2+3*N]; c[0] = 1.0 - c[1] - c[2] - c[3]; return c; # undef N # undef RHS_NUM } //****************************************************************************80 double tetrahedron_volume ( double tetra[3*4] ) //****************************************************************************80 // // Purpose: // // TETRAHEDRON_VOLUME computes the volume of a tetrahedron in 3D. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 August 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double TETRA[3*4], the coordinates of the vertices. // // Output, double TETRAHEDRON_VOLUME, the volume of the tetrahedron. // { double a[4*4]; int i; int j; double volume; for ( i = 0; i < 3; i++ ) { for ( j = 0; j < 4; j++ ) { a[i+j*4] = tetra[i+j*3]; } } i = 3; for ( j = 0; j < 4; j++ ) { a[i+j*4] = 1.0; } volume = fabs ( r8mat_det_4d ( a ) ) / 6.0; return volume; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 October 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }