# include # include # include # include # include # include using namespace std; # include "lpp.hpp" //****************************************************************************80 int comp_enum ( int n, int k ) //****************************************************************************80 // // Purpose: // // COMP_ENUM returns the number of compositions of the integer N into K parts. // // Discussion: // // A composition of the integer N into K parts is an ordered sequence // of K nonnegative integers which sum to N. The compositions (1,2,1) // and (1,1,2) are considered to be distinct. // // The 28 compositions of 6 into three parts are: // // 6 0 0, 5 1 0, 5 0 1, 4 2 0, 4 1 1, 4 0 2, // 3 3 0, 3 2 1, 3 1 2, 3 0 3, 2 4 0, 2 3 1, // 2 2 2, 2 1 3, 2 0 4, 1 5 0, 1 4 1, 1 3 2, // 1 2 3, 1 1 4, 1 0 5, 0 6 0, 0 5 1, 0 4 2, // 0 3 3, 0 2 4, 0 1 5, 0 0 6. // // The formula for the number of compositions of N into K parts is // // Number = ( N + K - 1 )! / ( N! * ( K - 1 )! ) // // Describe the composition using N '1's and K-1 dividing lines '|'. // The number of distinct permutations of these symbols is the number // of compositions. This is equal to the number of permutations of // N+K-1 things, with N identical of one kind and K-1 identical of another. // // Thus, for the above example, we have: // // Number = ( 6 + 3 - 1 )! / ( 6! * (3-1)! ) = 28 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 December 2013 // // Author: // // John Burkardt // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms for Computers and Calculators, // Second Edition, // Academic Press, 1978, // ISBN: 0-12-519260-6, // LC: QA164.N54. // // Parameters: // // Input, int N, the integer whose compositions are desired. // // Input, int K, the number of parts in the composition. // // Output, int COMP_ENUM, the number of compositions of N // into K parts. // { int number; number = i4_choose ( n + k - 1, n ); return number; } //****************************************************************************80 void comp_next_grlex ( int kc, int xc[] ) //****************************************************************************80 // // Purpose: // // COMP_NEXT_GRLEX returns the next composition in grlex order. // // Discussion: // // Example: // // KC = 3 // // # XC(1) XC(2) XC(3) Degree // +------------------------ // 1 | 0 0 0 0 // | // 2 | 0 0 1 1 // 3 | 0 1 0 1 // 4 | 1 0 0 1 // | // 5 | 0 0 2 2 // 6 | 0 1 1 2 // 7 | 0 2 0 2 // 8 | 1 0 1 2 // 9 | 1 1 0 2 // 10 | 2 0 0 2 // | // 11 | 0 0 3 3 // 12 | 0 1 2 3 // 13 | 0 2 1 3 // 14 | 0 3 0 3 // 15 | 1 0 2 3 // 16 | 1 1 1 3 // 17 | 1 2 0 3 // 18 | 2 0 1 3 // 19 | 2 1 0 3 // 20 | 3 0 0 3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int KC, the number of parts of the composition. // 1 <= KC. // // Input/output, int XC[KC], the current composition. // Each entry of XC must be nonnegative. // On return, XC has been replaced by the next composition in the // grlex order. // { int i; int im1; int j; int t; // // Ensure that 1 <= KC. // if ( kc < 1 ) { cerr << "\n"; cerr << "COMP_NEXT_GRLEX - Fatal error!\n"; cerr << " KC < 1\n"; exit ( 1 ); } // // Ensure that 0 <= XC(I). // for ( i = 0; i < kc; i++ ) { if ( xc[i] < 0 ) { cerr << "\n"; cerr << "COMP_NEXT_GRLEX - Fatal error!\n"; cerr << " XC[I] < 0\n"; exit ( 1 ); } } // // Find I, the index of the rightmost nonzero entry of X. // i = 0; for ( j = kc; 1 <= j; j-- ) { if ( 0 < xc[j-1] ) { i = j; break; } } // // set T = X(I) // set XC(I) to zero, // increase XC(I-1) by 1, // increment XC(KC) by T-1. // if ( i == 0 ) { xc[kc-1] = 1; return; } else if ( i == 1 ) { t = xc[0] + 1; im1 = kc; } else if ( 1 < i ) { t = xc[i-1]; im1 = i - 1; } xc[i-1] = 0; xc[im1-1] = xc[im1-1] + 1; xc[kc-1] = xc[kc-1] + t - 1; return; } //****************************************************************************80 int *comp_random_grlex ( int kc, int rank1, int rank2, int &seed, int &rank ) //****************************************************************************80 // // Purpose: // // COMP_RANDOM_GRLEX: random composition with degree less than or equal to NC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 September 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int KC, the number of parts in the composition. // // Input, int RANK1, RANK2, the minimum and maximum ranks. // 1 <= RANK1 <= RANK2. // // Input/output, int &SEED, the random number seed. // // Output, int &RANK, the rank of the composition. // // Output, int COMP_RANDOM_GRLEX[KC], the random composition. // { int *xc; // // Ensure that 1 <= KC. // if ( kc < 1 ) { cerr << "\n"; cerr << "COMP_RANDOM_GRLEX - Fatal error!\n"; cerr << " KC < 1\n"; exit ( 1 ); } // // Ensure that 1 <= RANK1. // if ( rank1 < 1 ) { cerr << "\n"; cerr << "COMP_RANDOM_GRLEX - Fatal error!\n"; cerr << " RANK1 < 1\n"; exit ( 1 ); } // // Ensure that RANK1 <= RANK2. // if ( rank2 < rank1 ) { cerr << "\n"; cerr << "COMP_RANDOM_GRLEX - Fatal error!\n"; cerr << " RANK2 < RANK1\n"; exit ( 1 ); } // // Choose RANK between RANK1 and RANK2. // rank = i4_uniform_ab ( rank1, rank2, seed ); // // Recover the composition of given RANK. // xc = comp_unrank_grlex ( kc, rank ); return xc; } //****************************************************************************80 int comp_rank_grlex ( int kc, int xc[] ) //****************************************************************************80 // // Purpose: // // COMP_RANK_GRLEX computes the graded lexicographic rank of a composition. // // Discussion: // // The graded lexicographic ordering is used, over all KC-compositions // for NC = 0, 1, 2, ... // // For example, if KC = 3, the ranking begins: // // Rank Sum 1 2 3 // ---- --- -- -- -- // 1 0 0 0 0 // // 2 1 0 0 1 // 3 1 0 1 0 // 4 1 1 0 1 // // 5 2 0 0 2 // 6 2 0 1 1 // 7 2 0 2 0 // 8 2 1 0 1 // 9 2 1 1 0 // 10 2 2 0 0 // // 11 3 0 0 3 // 12 3 0 1 2 // 13 3 0 2 1 // 14 3 0 3 0 // 15 3 1 0 2 // 16 3 1 1 1 // 17 3 1 2 0 // 18 3 2 0 1 // 19 3 2 1 0 // 20 3 3 0 0 // // 21 4 0 0 4 // .. .. .. .. .. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int KC, the number of parts in the composition. // 1 <= KC. // // Input, int XC[KC], the composition. // For each 1 <= I <= KC, we have 0 <= XC(I). // // Output, int COMP_RANK_GRLEX, the rank of the composition. // { int i; int j; int ks; int n; int nc; int ns; int rank; int tim1; int *xs; // // Ensure that 1 <= KC. // if ( kc < 1 ) { cerr << "\n"; cerr << "COMP_RANK_GRLEX - Fatal error!\n"; cerr << " KC < 1\n"; exit ( 1 ); } // // Ensure that 0 <= XC(I). // for ( i = 0; i < kc; i++ ) { if ( xc[i] < 0 ) { cerr << "\n"; cerr << "COMP_RANK_GRLEX - Fatal error!\n"; cerr << " XC[I] < 0\n"; exit ( 1 ); } } // // NC = sum ( XC ) // nc = i4vec_sum ( kc, xc ); // // Convert to KSUBSET format. // ns = nc + kc - 1; ks = kc - 1; xs = new int[ks]; xs[0] = xc[0] + 1; for ( i = 2; i < kc; i++ ) { xs[i-1] = xs[i-2] + xc[i-1] + 1; } // // Compute the rank. // rank = 1; for ( i = 1; i <= ks; i++ ) { if ( i == 1 ) { tim1 = 0; } else { tim1 = xs[i-2]; } if ( tim1 + 1 <= xs[i-1] - 1 ) { for ( j = tim1 + 1; j <= xs[i-1] - 1; j++ ) { rank = rank + i4_choose ( ns - j, ks - i ); } } } for ( n = 0; n < nc; n++ ) { rank = rank + i4_choose ( n + kc - 1, n ); } delete [] xs; return rank; } //****************************************************************************80 int *comp_unrank_grlex ( int kc, int rank ) //****************************************************************************80 // // Purpose: // // COMP_UNRANK_GRLEX computes the composition of given grlex rank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int KC, the number of parts of the composition. // 1 <= KC. // // Input, int RANK, the rank of the composition. // 1 <= RANK. // // Output, int COMP_UNRANK_GRLEX[KC], the composition XC of the given rank. // For each I, 0 <= XC[I] <= NC, and // sum ( 1 <= I <= KC ) XC[I] = NC. // { int i; int j; int ks; int nc; int nksub; int ns; int r; int rank1; int rank2; int *xc; int *xs; // // Ensure that 1 <= KC. // if ( kc < 1 ) { cerr << "\n"; cerr << "COMP_UNRANK_GRLEX - Fatal error!\n"; cerr << " KC < 1\n"; exit ( 1 ); } // // Ensure that 1 <= RANK. // if ( rank < 1 ) { cerr << "\n"; cerr << "COMP_UNRANK_GRLEX - Fatal error!\n"; cerr << " RANK < 1\n"; exit ( 1 ); } // // Determine the appropriate value of NC. // Do this by adding up the number of compositions of sum 0, 1, 2, // ..., without exceeding RANK. Moreover, RANK - this sum essentially // gives you the rank of the composition within the set of compositions // of sum NC. And that's the number you need in order to do the // unranking. // rank1 = 1; nc = -1; for ( ; ; ) { nc = nc + 1; r = i4_choose ( nc + kc - 1, nc ); if ( rank < rank1 + r ) { break; } rank1 = rank1 + r; } rank2 = rank - rank1; // // Convert to KSUBSET format. // Apology: an unranking algorithm was available for KSUBSETS, // but not immediately for compositions. One day we will come back // and simplify all this. // ks = kc - 1; ns = nc + kc - 1; xs = new int[ks]; nksub = i4_choose ( ns, ks ); j = 1; for ( i = 1; i <= ks; i++ ) { r = i4_choose ( ns - j, ks - i ); while ( r <= rank2 && 0 < r ) { rank2 = rank2 - r; j = j + 1; r = i4_choose ( ns - j, ks - i ); } xs[i-1] = j; j = j + 1; } // // Convert from KSUBSET format to COMP format. // xc = new int[kc]; xc[0] = xs[0] - 1; for ( i = 2; i < kc; i++ ) { xc[i-1] = xs[i-1] - xs[i-2] - 1; } xc[kc-1] = ns - xs[ks-1]; delete [] xs; return xc; } //****************************************************************************80 int i4_choose ( int n, int k ) //****************************************************************************80 // // Purpose: // // I4_CHOOSE computes the binomial coefficient C(N,K). // // Discussion: // // The value is calculated in such a way as to avoid overflow and // roundoff. The calculation is done in integer arithmetic. // // The formula used is: // // C(N,K) = N! / ( K! * (N-K)! ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 June 2007 // // Author: // // John Burkardt // // Reference: // // ML Wolfson, HV Wright, // Algorithm 160: // Combinatorial of M Things Taken N at a Time, // Communications of the ACM, // Volume 6, Number 4, April 1963, page 161. // // Parameters: // // Input, int N, K, are the values of N and K. // // Output, int I4_CHOOSE, the number of combinations of N // things taken K at a time. // { int i; int mn; int mx; int value; mn = i4_min ( k, n - k ); if ( mn < 0 ) { value = 0; } else if ( mn == 0 ) { value = 1; } else { mx = i4_max ( k, n - k ); value = mx + 1; for ( i = 2; i <= mn; i++ ) { value = ( value * ( mx + i ) ) / i; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MAX, the larger of i1 and i2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the smaller of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of i1 and i2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_uniform_ab ( int a, int b, int &seed ) //****************************************************************************80 // // Purpose: // // I4_UNIFORM_AB returns a scaled pseudorandom I4 between A and B. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 October 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int I4_UNIFORM, a number between A and B. // { int c; const int i4_huge = 2147483647; int k; float r; int value; if ( seed == 0 ) { cerr << "\n"; cerr << "I4_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } // // Guarantee A <= B. // if ( b < a ) { c = a; a = b; b = c; } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = round ( r ); // // Guarantee A <= VALUE <= B. // if ( value < a ) { value = a; } if ( b < value ) { value = b; } return value; } //****************************************************************************80 void i4vec_permute ( int n, int p[], int base, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_PERMUTE permutes an I4VEC in place. // // Discussion: // // An I4VEC is a vector of I4's. // // This routine permutes an array of integer "objects", but the same // logic can be used to permute an array of objects of any arithmetic // type, or an array of objects of any complexity. The only temporary // storage required is enough to store a single object. The number // of data movements made is N + the number of cycles of order 2 or more, // which is never more than N + N/2. // // Example: // // Input: // // N = 5 // P = ( 1, 3, 4, 0, 2 ) // A = ( 1, 2, 3, 4, 5 ) // // Output: // // A = ( 2, 4, 5, 1, 3 ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 October 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of objects. // // Input, int P[N], the permutation. P(I) = J means // that the I-th element of the output array should be the J-th // element of the input array. // // Input, int BASE, is 0 for a 0-based permutation and 1 for // a 1-based permutation. // // Input/output, int A[N], the array to be permuted. // { int a_temp; int i; int iget; int iput; int istart; if ( !perm_check ( n, p, base ) ) { cerr << "\n"; cerr << "I4VEC_PERMUTE - Fatal error!\n"; cerr << " PERM_CHECK rejects this permutation.\n"; exit ( 1 ); } // // In order for the sign negation trick to work, we need to assume that the // entries of P are strictly positive. Presumably, the lowest number is BASE. // So temporarily add 1-BASE to each entry to force positivity. // for ( i = 0; i < n; i++ ) { p[i] = p[i] + 1 - base; } // // Search for the next element of the permutation that has not been used. // for ( istart = 1; istart <= n; istart++ ) { if ( p[istart-1] < 0 ) { continue; } else if ( p[istart-1] == istart ) { p[istart-1] = - p[istart-1]; continue; } else { a_temp = a[istart-1]; iget = istart; // // Copy the new value into the vacated entry. // for ( ; ; ) { iput = iget; iget = p[iget-1]; p[iput-1] = - p[iput-1]; if ( iget < 1 || n < iget ) { cerr << "\n"; cerr << "I4VEC_PERMUTE - Fatal error!\n"; cerr << " Entry IPUT = " << iput << " of the permutation has\n"; cerr << " an illegal value IGET = " << iget << ".\n"; exit ( 1 ); } if ( iget == istart ) { a[iput-1] = a_temp; break; } a[iput-1] = a[iget-1]; } } } // // Restore the signs of the entries. // for ( i = 0; i < n; i++ ) { p[i] = - p[i]; } // // Restore the base of the entries. // for ( i = 0; i < n; i++ ) { p[i] = p[i] - 1 + base; } return; } //****************************************************************************80 void i4vec_print ( int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4VEC_PRINT prints an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(8) << a[i] << "\n"; } return; } //****************************************************************************80 int *i4vec_sort_heap_index_a ( int n, int base, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_SORT_HEAP_INDEX_A does an indexed heap ascending sort of an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // The sorting is not actually carried out. Rather an index array is // created which defines the sorting. This array may be used to sort // or index the array, or to sort or index related arrays keyed on the // original array. // // Once the index array is computed, the sorting can be carried out // "implicitly: // // a(indx(*)) // // or explicitly, by the call // // i4vec_permute ( n, indx, 0, a ) // // after which a(*) is sorted. // // Note that the index vector is 0-based. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, int A[N], an array to be index-sorted. // // Input, int BASE, the desired indexing for the sort index: // 0 for 0-based indexing, // 1 for 1-based indexing. // // Output, int I4VEC_SORT_HEAP_INDEX_A[N], contains the sort index. The // I-th element of the sorted array is A(INDX(I)). // { int aval; int i; int *indx; int indxt; int ir; int j; int l; if ( n < 1 ) { return NULL; } indx = new int[n]; for ( i = 0; i < n; i++ ) { indx[i] = i; } if ( n == 1 ) { indx[0] = indx[0] + base; return indx; } l = n / 2 + 1; ir = n; for ( ; ; ) { if ( 1 < l ) { l = l - 1; indxt = indx[l-1]; aval = a[indxt]; } else { indxt = indx[ir-1]; aval = a[indxt]; indx[ir-1] = indx[0]; ir = ir - 1; if ( ir == 1 ) { indx[0] = indxt; break; } } i = l; j = l + l; while ( j <= ir ) { if ( j < ir ) { if ( a[indx[j-1]] < a[indx[j]] ) { j = j + 1; } } if ( aval < a[indx[j-1]] ) { indx[i-1] = indx[j-1]; i = j; j = j + j; } else { j = ir + 1; } } indx[i-1] = indxt; } // // Take care of the base. // for ( i = 0; i < n; i++ ) { indx[i] = indx[i] + base; } return indx; } //****************************************************************************80 int i4vec_sum ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_SUM sums the entries of an I4VEC. // // Example: // // Input: // // A = ( 1, 2, 3, 4 ) // // Output: // // I4VEC_SUM = 10 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, int A[N], the vector to be summed. // // Output, int I4VEC_SUM, the sum of the entries of A. // { int i; int sum; sum = 0; for ( i = 0; i < n; i++ ) { sum = sum + a[i]; } return sum; } //****************************************************************************80 void hep_coefficients ( int n, int &o, double c[], int f[] ) //****************************************************************************80 // // Purpose: // // HEP_COEFFICIENTS: coefficients of Hermite polynomials He(n,x). // // Discussion: // // He(i,x) represents the probabilist's Hermite polynomial. // // First terms: // // N/K 0 1 2 3 4 5 6 7 8 9 10 // // 0 1 // 1 0 1 // 2 -1 0 1 // 3 0 -3 0 1 // 4 3 0 -6 0 1 // 5 0 15 0 -10 0 1 // 6 -15 0 45 0 -15 0 1 // 7 0 -105 0 105 0 -21 0 1 // 8 105 0 -420 0 210 0 -28 0 1 // 9 0 945 0 -1260 0 378 0 -36 0 1 // 10 -945 0 4725 0 -3150 0 630 0 -45 0 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 October 2014 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996. // // Parameters: // // Input, int N, the highest order polynomial to evaluate. // Note that polynomials 0 through N will be evaluated. // // Output, int &O, the number of coefficients. // // Output, double C[(N+2)/2], the coefficients of the Legendre // polynomial of degree N. // // Output, int F[(N+2)/2], the exponents. // { double *ct; int i; int j; int k; ct = new double[(n+1)*(n+1)]; for ( i = 0; i <= n; i++ ) { for ( j = 0; j <= n; j++ ) { ct[i+j*(n+1)] = 0.0; } } ct[0+0*(n+1)] = 1.0; if ( 0 < n ) { ct[1+1*(n+1)] = 1.0; for ( i = 2; i <= n; i++ ) { ct[i+0*(n+1)] = - ( double ) ( i - 1 ) * ct[i-2+0*(n+1)]; for ( j = 1; j <= i - 2; j++ ) { ct[i+j*(n+1)] = ct[i-1+(j-1)*(n+1)] - ( double ) ( i - 1 ) * ct[i-2+j*(n+1)]; } ct[i+(i-1)*(n+1)] = ct[i-1+(i-2)*(n+1)]; ct[i+ i *(n+1)] = ct[i-1+(i-1)*(n+1)]; } } // // Extract the nonzero data from the alternating columns of the last row. // o = ( n + 2 ) / 2; k = o; for ( j = n; 0 <= j; j = j - 2 ) { k = k - 1; c[k] = ct[n+j*(n+1)]; f[k] = j; } delete [] ct; return; } //****************************************************************************80 double *hep_value ( int n, int o, double x[] ) //****************************************************************************80 // // Purpose: // // HEP_VALUE evaluates the Hermite polynomials He(i,x). // // Discussion: // // He(i,x) represents the probabilist's Hermite polynomial. // // 1 // X // X^2 - 1 // X^3 - 3 X // X^4 - 6 X^2 + 3 // X^5 - 10 X^3 + 15 X // X^6 - 15 X^4 + 45 X^2 - 15 // X^7 - 21 X^5 + 105 X^3 - 105 X // X^8 - 28 X^6 + 210 X^4 - 420 X^2 + 105 // X^9 - 36 X^7 + 378 X^5 - 1260 X^3 + 945 X // X^10 - 45 X^8 + 630 X^6 - 3150 X^4 + 4725 X^2 - 945 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 October 2014 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996. // // Parameters: // // Input, int N, the number of evaluation points. // // Input, int O, the degree of the polynomial. // // Input, double X[N], the evaluation points. // // Output, double LP_VALUE[N], the value of the Hermite polynomial // of degree N at the points X. // { int i; int j; double *v; double *vtable; vtable = new double[n*(o+1)]; for ( i = 0; i < n; i++ ) { vtable[i+0*n] = 1.0; } if ( 1 <= o ) { for ( i = 0; i < n; i++ ) { vtable[i+1*n] = x[i]; } for ( j = 2; j <= o; j++ ) { for ( i = 0; i < n; i++ ) { vtable[i+j*n] = x[i] * vtable[i+(j-1)*n] - ( double ) ( j - 1 ) * vtable[i+(j-2)*n]; } } } v = new double[n]; for ( i = 0; i < n; i++ ) { v[i] = vtable[i+o*n]; } delete [] vtable; return v; } //****************************************************************************80 void hep_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // HEP_VALUES returns values of the Hermite polynomials He(n,x). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 October 2014 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the function. // // Output, double &X, the point where the function is evaluated. // // Output, double &FX, the value of the function. // { # define N_MAX 18 static double fx_vec[N_MAX] = { 1.000000000000000E+00, 5.000000000000000E+00, 24.00000000000000E+00, 110.0000000000000E+00, 478.0000000000000E+00, 1950.000000000000E+00, 7360.000000000000E+00, 25100.00000000000E+00, 73980.00000000000E+00, 169100.0000000000E+00, 179680.0000000000E+00, -792600.0000000000E+00, -5939480.000000000E+00, 0.000000000000000E+00, 6.281250000000000E+00, 6.000000000000000E+00, 18.00000000000000E+00, 90150.00000000000E+00 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 5, 5, 5, 5, 5 }; static double x_vec[N_MAX] = { 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 0.0E+00, 0.5E+00, 1.0E+00, 3.0E+00, 1.0E+01 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void hepp_to_polynomial ( int m, int l[], int o_max, int &o, double c[], int e[] ) //****************************************************************************80 // // Purpose: // // HEPP_TO_POLYNOMIAL writes a Hermite Product Polynomial as a polynomial. // // Discussion: // // For example, if // M = 3, // L = ( 1, 0, 2 ), // then // He(1,0,2)(X,Y,Z) // = He(1)(X) * He(0)(Y) * He(2)(Z) // = X * 1 * ( Z^3-3Z) // = - 3XZ + X Z^3 // so // O = 2 (2 nonzero terms) // C = -3.0 // 1.0 // E = 8 <-- index in 3-space of exponent (1,0,1) // 23 <-- index in 3-space of exponent (1,0,3) // // The output value of O is no greater than // O_MAX = product ( 1 <= I <= M ) (L(I)+2)/2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 October 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int L[M], the index of each product // polynomial factor. 0 <= L(*). // // Input, int O_MAX, an upper limit on the size of the // output arrays. // O_MAX = product ( 1 <= I <= M ) (L(I)+2)/2. // // Output, int &O, the "order" of the polynomial product. // // Output, double C[O], the coefficients of the polynomial product. // // Output, int E[O], the indices of the exponents of the // polynomial product. // { double *c1; double *c2; int *e1; int *e2; int *f2; int i; int i1; int i2; int j1; int j2; int o1; int o2; int *p; int *pp; c1 = new double[o_max]; c2 = new double[o_max]; e1 = new int[o_max]; e2 = new int[o_max]; f2 = new int[o_max]; pp = new int[m]; o1 = 1; c1[0] = 1.0; e1[0] = 1; // // Implicate one factor at a time. // for ( i = 0; i < m; i++ ) { hep_coefficients ( l[i], o2, c2, f2 ); o = 0; for ( j2 = 0; j2 < o2; j2++ ) { for ( j1 = 0; j1 < o1; j1++ ) { c[o] = c1[j1] * c2[j2]; if ( 0 < i ) { p = mono_unrank_grlex ( i, e1[j1] ); } for ( i2 = 0; i2 < i; i2++ ) { pp[i2] = p[i2]; } pp[i] = f2[j2]; e[o] = mono_rank_grlex ( i + 1, pp ); o = o + 1; if ( 0 < i ) { delete [] p; } } } polynomial_sort ( o, c, e ); polynomial_compress ( o, c, e, o, c, e ); o1 = o; for ( i1 = 0; i1 < o; i1++ ) { c1[i1] = c[i1]; e1[i1] = e[i1]; } } delete [] c1; delete [] c2; delete [] e1; delete [] e2; delete [] f2; delete [] pp; return; } //****************************************************************************80 double *hepp_value ( int m, int n, int o[], double x[] ) //****************************************************************************80 // // Purpose: // // HEPP_VALUE evaluates a Hermite Product Polynomial. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 October 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of evaluation points. // // Input, int O[M], the degree of the polynomial factors. // 0 <= O(*). // // Input, double X[M*N], the evaluation points. // // Output, double LPP_VALUE[N], the value of the Hermite Product // Polynomial of degree O at the points X. // { int i; int j; double *v; double *vi; double *xi; v = new double[n]; for ( j = 0; j < n; j++ ) { v[j] = 1.0; } xi = new double[n]; for ( i = 0; i < m; i++ ) { for ( j = 0; j < n; j++ ) { xi[j] = x[i+j*m]; } vi = hep_value ( n, o[i], xi ); for ( j = 0; j < n; j++ ) { v[j] = v[j] * vi[j]; } delete [] vi; } delete [] xi; return v; } //****************************************************************************80 int mono_rank_grlex ( int m, int x[] ) //****************************************************************************80 // // Purpose: // // MONO_RANK_GRLEX computes the graded lexicographic rank of a monomial. // // Discussion: // // The graded lexicographic ordering is used, over all monomials of // dimension M, for degree NM = 0, 1, 2, ... // // For example, if M = 3, the ranking begins: // // Rank Sum 1 2 3 // ---- --- -- -- -- // 1 0 0 0 0 // // 2 1 0 0 1 // 3 1 0 1 0 // 4 1 1 0 1 // // 5 2 0 0 2 // 6 2 0 1 1 // 7 2 0 2 0 // 8 2 1 0 1 // 9 2 1 1 0 // 10 2 2 0 0 // // 11 3 0 0 3 // 12 3 0 1 2 // 13 3 0 2 1 // 14 3 0 3 0 // 15 3 1 0 2 // 16 3 1 1 1 // 17 3 1 2 0 // 18 3 2 0 1 // 19 3 2 1 0 // 20 3 3 0 0 // // 21 4 0 0 4 // .. .. .. .. .. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // 1 <= D. // // Input, int XC[M], the monomial. // For each 1 <= I <= M, we have 0 <= XC(I). // // Output, int MONO_RANK_GRLEX, the rank. // { int i; int j; int ks; int n; int nm; int ns; int rank; int tim1; int *xs; // // Ensure that 1 <= M. // if ( m < 1 ) { cerr << "\n"; cerr << "MONO_RANK_GRLEX - Fatal error!\n"; cerr << " M < 1\n"; exit ( 1 ); } // // Ensure that 0 <= X(I). // for ( i = 0; i < m; i++ ) { if ( x[i] < 0 ) { cerr << "\n"; cerr << "MONO_RANK_GRLEX - Fatal error!\n"; cerr << " X[I] < 0\n"; exit ( 1 ); } } // // NM = sum ( X ) // nm = i4vec_sum ( m, x ); // // Convert to KSUBSET format. // ns = nm + m - 1; ks = m - 1; xs = new int[ks]; xs[0] = x[0] + 1; for ( i = 2; i < m; i++ ) { xs[i-1] = xs[i-2] + x[i-1] + 1; } // // Compute the rank. // rank = 1; for ( i = 1; i <= ks; i++ ) { if ( i == 1 ) { tim1 = 0; } else { tim1 = xs[i-2]; } if ( tim1 + 1 <= xs[i-1] - 1 ) { for ( j = tim1 + 1; j <= xs[i-1] - 1; j++ ) { rank = rank + i4_choose ( ns - j, ks - i ); } } } for ( n = 0; n < nm; n++ ) { rank = rank + i4_choose ( n + m - 1, n ); } delete [] xs; return rank; } //****************************************************************************80 int *mono_unrank_grlex ( int m, int rank ) //****************************************************************************80 // // Purpose: // // MONO_UNRANK_GRLEX computes the composition of given grlex rank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 January 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // 1 <= M. // // Input, int RANK, the rank. // 1 <= RANK. // // Output, int MONO_UNRANK_GRLEX[M], the monomial X of the given rank. // For each I, 0 <= XC[I] <= NM, and // sum ( 1 <= I <= M ) XC[I] = NM. // { int i; int j; int ks; int nksub; int nm; int ns; int r; int rank1; int rank2; int *x; int *xs; // // Ensure that 1 <= M. // if ( m < 1 ) { cerr << "\n"; cerr << "MONO_UNRANK_GRLEX - Fatal error!\n"; cerr << " M < 1\n"; exit ( 1 ); } // // Ensure that 1 <= RANK. // if ( rank < 1 ) { cerr << "\n"; cerr << "MONO_UNRANK_GRLEX - Fatal error!\n"; cerr << " RANK < 1\n"; exit ( 1 ); } // // Special case M == 1. // if ( m == 1 ) { x = new int[m]; x[0] = rank - 1; return x; } // // Determine the appropriate value of NM. // Do this by adding up the number of compositions of sum 0, 1, 2, // ..., without exceeding RANK. Moreover, RANK - this sum essentially // gives you the rank of the composition within the set of compositions // of sum NM. And that's the number you need in order to do the // unranking. // rank1 = 1; nm = -1; for ( ; ; ) { nm = nm + 1; r = i4_choose ( nm + m - 1, nm ); if ( rank < rank1 + r ) { break; } rank1 = rank1 + r; } rank2 = rank - rank1; // // Convert to KSUBSET format. // Apology: an unranking algorithm was available for KSUBSETS, // but not immediately for compositions. One day we will come back // and simplify all this. // ks = m - 1; ns = nm + m - 1; xs = new int[ks]; nksub = i4_choose ( ns, ks ); j = 1; for ( i = 1; i <= ks; i++ ) { r = i4_choose ( ns - j, ks - i ); while ( r <= rank2 && 0 < r ) { rank2 = rank2 - r; j = j + 1; r = i4_choose ( ns - j, ks - i ); } xs[i-1] = j; j = j + 1; } // // Convert from KSUBSET format to COMP format. // x = new int[m]; x[0] = xs[0] - 1; for ( i = 2; i < m; i++ ) { x[i-1] = xs[i-1] - xs[i-2] - 1; } x[m-1] = ns - xs[ks-1]; delete [] xs; return x; } //****************************************************************************80 double *mono_value ( int m, int n, int f[], double x[] ) //****************************************************************************80 // // Purpose: // // MONO_VALUE evaluates a monomial. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of evaluation points. // // Input, int F[M], the exponents of the monomial. // // Input, double X[M*N], the coordinates of the evaluation points. // // Output, double MONO_VALUE[N], the value of the monomial at X. // { int i; int j; double *v; v = new double[n]; for ( j = 0; j < n; j++ ) { v[j] = 1.0; for ( i = 0; i < m; i++ ) { v[j] = v[j] * pow ( x[i+j*m], f[i] ); } } return v; } //****************************************************************************80 bool perm_check ( int n, int p[], int base ) //****************************************************************************80 // // Purpose: // // PERM_CHECK checks that a vector represents a permutation. // // Discussion: // // The routine verifies that each of the integers from BASE to // to BASE+N-1 occurs among the N entries of the permutation. // // Set the input quantity BASE to 0, if P is a 0-based permutation, // or to 1 if P is a 1-based permutation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries. // // Input, int P[N], the array to check. // // Input, int BASE, the index base. // // Output, bool PERM_CHECK, is TRUE if the permutation is OK. // { bool found; int i; int seek; for ( seek = base; seek < base + n; seek++ ) { found = false; for ( i = 0; i < n; i++ ) { if ( p[i] == seek ) { found = true; break; } } if ( !found ) { return false; } } return true; } //****************************************************************************80 void polynomial_compress ( int o1, double c1[], int e1[], int &o2, double c2[], int e2[] ) //****************************************************************************80 // // Purpose: // // POLYNOMIAL_COMPRESS compresses a polynomial. // // Discussion: // // The function polynomial_sort ( ) should be called first. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 January 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int O1, the "order" of the polynomial. // // Input, double C1[O1], the coefficients of the polynomial. // // Input, int E1[O1], the indices of the exponents of // the polynomial. // // Output, int &O2, the "order" of the polynomial. // // Output, double C2[O2], the coefficients of the polynomial. // // Output, int E2[O2], the indices of the exponents of // the polynomial. // { int get; int put; const double r8_epsilon_sqrt = 0.1490116119384766E-07; get = 0; put = 0; while ( get < o1 ) { get = get + 1; if ( fabs ( c1[get-1] ) <= r8_epsilon_sqrt ) { continue; } if ( 0 == put ) { put = put + 1; c2[put-1] = c1[get-1]; e2[put-1] = e1[get-1]; } else { if ( e2[put-1] == e1[get-1] ) { c2[put-1] = c2[put-1] + c1[get-1]; } else { put = put + 1; c2[put-1] = c1[get-1]; e2[put-1] = e1[get-1]; } } } o2 = put; return; } //****************************************************************************80 void polynomial_print ( int m, int o, double c[], int e[], string title ) //****************************************************************************80 // // Purpose: // // POLYNOMIAL_PRINT prints a polynomial. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int O, the "order" of the polynomial, that is, // simply the number of terms. // // Input, double C[O], the coefficients. // // Input, int E[O], the indices of the exponents. // // Input, string TITLE, a title. // { int *f; int i; int j; cout << title << "\n"; if ( o == 0 ) { cout << " 0.\n"; } else { for ( j = 0; j < o; j++ ) { cout << " "; if ( c[j] < 0.0 ) { cout << "- "; } else { cout << "+ "; } cout << fabs ( c[j] ) << " * x^("; f = mono_unrank_grlex ( m, e[j] ); for ( i = 0; i < m; i++ ) { cout << f[i]; if ( i < m - 1 ) { cout << ","; } else { cout << ")"; } } delete [] f; if ( j == o - 1 ) { cout << "."; } cout << "\n"; } } return; } //****************************************************************************80 void polynomial_sort ( int o, double c[], int e[] ) //****************************************************************************80 // // Purpose: // // POLYNOMIAL_SORT sorts the information in a polynomial. // // Discussion // // The coefficients C and exponents E are rearranged so that // the elements of E are in ascending order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int O, the "order" of the polynomial. // // Input/output, double C[O], the coefficients of the polynomial. // // Input/output, int E[O], the indices of the exponents of // the polynomial. // { const int base = 0; int *indx; indx = i4vec_sort_heap_index_a ( o, base, e ); i4vec_permute ( o, indx, base, e ); r8vec_permute ( o, indx, base, c ); delete [] indx; return; } //****************************************************************************80 double *polynomial_value ( int m, int o, double c[], int e[], int n, double x[] ) //****************************************************************************80 // // Purpose: // // POLYNOMIAL_VALUE evaluates a polynomial. // // Discussion: // // The polynomial is evaluated term by term, and no attempt is made to // use an approach such as Horner's method to speed up the process. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int O, the "order" of the polynomial. // // Input, double C[O], the coefficients of the polynomial. // // Input, int E(O), the indices of the exponents // of the polynomial. // // Input, int N, the number of evaluation points. // // Input, double X[M*N], the coordinates of the evaluation points. // // Output, double POLYNOMIAL_VALUE[N], the value of the polynomial at X. // { int *f; int j; int k; double *p; double *v; p = new double[n]; for ( k = 0; k < n; k++ ) { p[k] = 0.0; } for ( j = 0; j < o; j++ ) { f = mono_unrank_grlex ( m, e[j] ); v = mono_value ( m, n, f, x ); for ( k = 0; k < n; k++ ) { p[k] = p[k] + c[j] * v[k]; } delete [] f; } return p; } //****************************************************************************80 void r8vec_permute ( int n, int p[], int base, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_PERMUTE permutes an R8VEC in place. // // Discussion: // // An R8VEC is a vector of R8's. // // This routine permutes an array of real "objects", but the same // logic can be used to permute an array of objects of any arithmetic // type, or an array of objects of any complexity. The only temporary // storage required is enough to store a single object. The number // of data movements made is N + the number of cycles of order 2 or more, // which is never more than N + N/2. // // Example: // // Input: // // N = 5 // P = ( 2, 4, 5, 1, 3 ) // A = ( 1.0, 2.0, 3.0, 4.0, 5.0 ) // BASE = 1 // // Output: // // A = ( 2.0, 4.0, 5.0, 1.0, 3.0 ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 October 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of objects. // // Input, int P[N], the permutation. // // Input, int BASE, is 0 for a 0-based permutation and 1 for a 1-based permutation. // // Input/output, double A[N], the array to be permuted. // { double a_temp; int i; int iget; int iput; int istart; if ( !perm_check ( n, p, base ) ) { cerr << "\n"; cerr << "R8VEC_PERMUTE - Fatal error!\n"; cerr << " PERM_CHECK rejects this permutation.\n"; exit ( 1 ); } // // In order for the sign negation trick to work, we need to assume that the // entries of P are strictly positive. Presumably, the lowest number is BASE. // So temporarily add 1-BASE to each entry to force positivity. // for ( i = 0; i < n; i++ ) { p[i] = p[i] + 1 - base; } // // Search for the next element of the permutation that has not been used. // for ( istart = 1; istart <= n; istart++ ) { if ( p[istart-1] < 0 ) { continue; } else if ( p[istart-1] == istart ) { p[istart-1] = - p[istart-1]; continue; } else { a_temp = a[istart-1]; iget = istart; // // Copy the new value into the vacated entry. // for ( ; ; ) { iput = iget; iget = p[iget-1]; p[iput-1] = - p[iput-1]; if ( iget < 1 || n < iget ) { cerr << "\n"; cerr << "R8VEC_PERMUTE - Fatal error!\n"; cerr << " A permutation index is out of range.\n"; cerr << " P(" << iput << ") = " << iget << "\n"; exit ( 1 ); } if ( iget == istart ) { a[iput-1] = a_temp; break; } a[iput-1] = a[iget-1]; } } } // // Restore the signs of the entries. // for ( i = 0; i < n; i++ ) { p[i] = - p[i]; } // // Restore the base of the entries. // for ( i = 0; i < n; i++ ) { p[i] = p[i] - 1 + base; } return; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i <= n-1; i++ ) { cout << " " << setw(8) << i << " " << setw(12) << a[i] << "\n"; } return; } //****************************************************************************80 double *r8vec_uniform_ab_new ( int n, double a, double b, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_AB_NEW returns a scaled pseudorandom R8VEC. // // Discussion: // // Each dimension ranges from A to B. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A, B, the lower and upper limits of the pseudorandom values. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_AB_NEW[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_AB_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = a + ( b - a ) * ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }