# include # include # include # include # include using namespace std; # include "hermite_test_int.hpp" //****************************************************************************80 void hermite_compute ( int order, double xtab[], double weight[] ) //****************************************************************************80 // // Purpose: // // HERMITE_COMPUTE computes a Gauss-Hermite quadrature rule. // // Discussion: // // The abscissas are the zeros of the N-th order Hermite polynomial. // // The integration interval is ( -oo, +oo ). // // The weight function is w(x) = exp ( - x*x ). // // The integral to approximate: // // Integral ( -oo < X < +oo ) exp ( - X*X ) * F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= ORDER ) WEIGHT(I) * F ( XTAB(I) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 April 2006 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order of the formula to be computed. // // Output, double XTAB[ORDER], the Gauss-Hermite abscissas. // // Output, double WEIGHT[ORDER], the Gauss-Hermite weights. // { double cc; double dp2; int i; double p1; double s; double temp; double x; cc = 1.7724538509 * r8_gamma ( ( double ) ( order ) ) / pow ( 2.0, order - 1 ); s = pow ( 2.0 * ( double ) ( order ) + 1.0, 1.0 / 6.0 ); for ( i = 0; i < ( order + 1 ) / 2; i++ ) { if ( i == 0 ) { x = s * s * s - 1.85575 / s; } else if ( i == 1 ) { x = x - 1.14 * pow ( ( double ) ( order ), 0.426 ) / x; } else if ( i == 2 ) { x = 1.86 * x - 0.86 * xtab[0]; } else if ( i == 3 ) { x = 1.91 * x - 0.91 * xtab[1]; } else { x = 2.0 * x - xtab[i-2]; } hermite_root ( &x, order, &dp2, &p1 ); xtab[i] = x; weight[i] = ( cc / dp2 ) / p1; xtab[order-i-1] = -x; weight[order-i-1] = weight[i]; } // // Reverse the order of the XTAB values. // r8vec_reverse ( order, xtab ); if ( false ) { for ( i = 0; i < order/2; i++ ) { temp = xtab[i]; xtab[i] = xtab[order-1-i]; xtab[order-1-i] = temp; } } return; } //****************************************************************************80 double hermite_integral ( int n ) //****************************************************************************80 // // Purpose: // // HERMITE_INTEGRAL returns the value of a Hermite polynomial integral. // // Discussion: // // H(n) = Integral ( -oo < x < +oo ) x^n exp(-x*x) dx // // H(n) is 0 for n odd. // // H(n) = (n-1)!! * sqrt(pi) / 2^(n/2) for n even. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 July 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the integral. // 0 <= N. // // Output, double VALUE, the value of the integral. // { const double r8_pi = 3.141592653589793; double value; if ( n < 0 ) { value = - r8_huge ( ); } else if ( ( n % 2 ) == 1 ) { value = 0.0; } else { value = ( double ) ( i4_factorial2 ( n - 1 ) ) * sqrt ( r8_pi ) / pow ( 2.0, n / 2 ); } return value; } //****************************************************************************80 void hermite_recur ( double *p2, double *dp2, double *p1, double x, int order ) //****************************************************************************80 // // Purpose: // // HERMITE_RECUR finds the value and derivative of a Hermite polynomial. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 April 2006 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Output, double *P2, the value of H(ORDER)(X). // // Output, double *DP2, the value of H'(ORDER)(X). // // Output, double *P1, the value of H(ORDER-1)(X). // // Input, double X, the point at which polynomials are evaluated. // // Input, int ORDER, the order of the polynomial to be computed. // { int i; double dq0; double dq1; double dq2; double q0; double q1; double q2; q1 = 1.0; dq1 = 0.0; q2 = x; dq2 = 1.0; for ( i = 2; i <= order; i++ ) { q0 = q1; dq0 = dq1; q1 = q2; dq1 = dq2; q2 = x * q1 - 0.5 * ( ( double ) ( i ) - 1.0 ) * q0; dq2 = x * dq1 + q1 - 0.5 * ( ( double ) ( i ) - 1.0 ) * dq0; } *p2 = q2; *dp2 = dq2; *p1 = q1; return; } //****************************************************************************80 void hermite_root ( double *x, int order, double *dp2, double *p1 ) //****************************************************************************80 // // Purpose: // // HERMITE_ROOT improves an approximate root of a Hermite polynomial. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 May 2006 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input/output, double *X, the approximate root, which // should be improved on output. // // Input, int ORDER, the order of the Hermite polynomial. // // Output, double *DP2, the value of H'(ORDER)(X). // // Output, double *P1, the value of H(ORDER-1)(X). // { double d; double eps = 1.0E-12; double p2; int step; int step_max = 10; for ( step = 1; step <= step_max; step++ ) { hermite_recur ( &p2, dp2, p1, *x, order ); d = p2 / ( *dp2 ); *x = *x - d; if ( r8_abs ( d ) <= eps * ( r8_abs ( *x ) + 1.0 ) ) { return; } } return; } //****************************************************************************80 int i4_factorial2 ( int n ) //****************************************************************************80 // // Purpose: // // I4_FACTORIAL2 computes the double factorial function. // // Formula: // // FACTORIAL2( N ) = Product ( N * (N-2) * (N-4) * ... * 2 ) (N even) // = Product ( N * (N-2) * (N-4) * ... * 1 ) (N odd) // // Example: // // N N!! // // 0 1 // 1 1 // 2 2 // 3 3 // 4 8 // 5 15 // 6 48 // 7 105 // 8 384 // 9 945 // 10 3840 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the argument of the double factorial function. // If N is less than 1, I4_FACTORIAL2 is returned as 1. // // Output, int I4_FACTORIAL2, the value of the double factorial of N. // { int value; if ( n < 1 ) { return 1; } value = 1; while ( 1 < n ) { value = value * n; n = n - 2; } return value; } //****************************************************************************80 double p00_exact ( int problem ) //****************************************************************************80 // // Purpose: // // P00_EXACT returns the exact integral for any problem. // // Discussion: // // This routine provides a "generic" interface to the exact integral // routines for the various problems, and allows a problem to be called // by index (PROBLEM) rather than by name. // // In most cases, the "exact" value of the integral is not given; // instead a "respectable" approximation is available. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 Julyl 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int PROBLEM, the index of the problem. // // Output, double P00_EXACT, the exact value of the integral. // { double exact; if ( problem == 1 ) { exact = p01_exact ( ); } else if ( problem == 2 ) { exact = p02_exact ( ); } else if ( problem == 3 ) { exact = p03_exact ( ); } else if ( problem == 4 ) { exact = p04_exact ( ); } else if ( problem == 5 ) { exact = p05_exact ( ); } else if ( problem == 6 ) { exact = p06_exact ( ); } else if ( problem == 7 ) { exact = p07_exact ( ); } else if ( problem == 8 ) { exact = p08_exact ( ); } else { cout << "\n"; cout << "P00_EXACT - Fatal error!\n"; cout << " Illegal problem number = " << problem << "\n"; exit ( 1 ); } return exact; } //****************************************************************************80 void p00_fun ( int problem, int option, int n, double x[], double f[] ) //****************************************************************************80 // // Purpose: // // P00_FUN evaluates the integrand for any problem. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int PROBLEM, the index of the problem. // // Input, int OPTION: // 0, integrand is f(x). // 1, integrand is exp(-x*x) * f(x); // 2, integrand is exp(-x*x/2) * f(x); // // Input, int N, the number of points. // // Input, double X[N], the evaluation points. // // Output, double F[N], the function values. // { if ( problem == 1 ) { p01_fun ( option, n, x, f ); } else if ( problem == 2 ) { p02_fun ( option, n, x, f ); } else if ( problem == 3 ) { p03_fun ( option, n, x, f ); } else if ( problem == 4 ) { p04_fun ( option, n, x, f ); } else if ( problem == 5 ) { p05_fun ( option, n, x, f ); } else if ( problem == 6 ) { p06_fun ( option, n, x, f ); } else if ( problem == 7 ) { p07_fun ( option, n, x, f ); } else if ( problem == 8 ) { p08_fun ( option, n, x, f ); } else { cout << "\n"; cout << "P00_FUN - Fatal error!\n"; cout << " Illegal problem number = " << problem << "\n"; exit ( 1 ); } return; } //****************************************************************************80 double p00_gauss_hermite ( int problem, int order ) //****************************************************************************80 // // Purpose: // // P00_GAUSS_HERMITE applies a Gauss-Hermite quadrature rule. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int PROBLEM, the index of the problem. // // Input, int ORDER, the order of the rule to apply. // // Output, double P00_GAUSS_HERMITE, the approximate integral. // { double *f_vec; int i; int option; double result; double *weight; double *xtab; f_vec = new double[order]; weight = new double[order]; xtab = new double[order]; hermite_compute ( order, xtab, weight ); option = 1; p00_fun ( problem, option, order, xtab, f_vec ); result = r8vec_dot_product ( order, weight, f_vec ); delete [] f_vec; delete [] weight; delete [] xtab; return result; } //****************************************************************************80 double p00_monte_carlo ( int problem, int order ) //****************************************************************************80 // // Purpose: // // P00_MONTE_CARLO applies a Monte Carlo procedure to Hermite integrals. // // Discussion: // // We wish to estimate the integral: // // I(f) = integral ( -oo < x < +oo ) f(x) exp ( - x * x ) dx // // We do this by a Monte Carlo sampling procedure, in which // we select N points X(1:N) from a standard normal distribution, // and estimate // // Q(f) = sum ( 1 <= I <= N ) f(x(i)) / sqrt ( pi ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 May 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int PROBLEM, the index of the problem. // // Input, int ORDER, the order of the Gauss-Laguerre rule // to apply. // // Output, double P00_MONTE_CARLO, the approximate integral. // { double *f_vec; int option; const double r8_pi = 3.141592653589793; double result; int seed; double weight; double *x_vec; seed = 123456789; x_vec = r8vec_normal_01_new ( order, &seed ); option = 2; f_vec = new double[order]; p00_fun ( problem, option, order, x_vec, f_vec ); weight = ( double ) ( order ) / sqrt ( r8_pi ) / sqrt ( 2.0 ); result = r8vec_sum ( order, f_vec ) / weight; delete [] f_vec; delete [] x_vec; return result; } //****************************************************************************80 int p00_problem_num ( ) //****************************************************************************80 // // Purpose: // // P00_PROBLEM_NUM returns the number of test integration problems. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 July 2010 // // Author: // // John Burkardt // // Parameters: // // Output, int P00_PROBLEM_NUM, the number of test problems. // { int problem_num; problem_num = 8; return problem_num; } //****************************************************************************80 string p00_title ( int problem ) //****************************************************************************80 // // Purpose: // // P00_TITLE returns the title for any problem. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 February 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int PROBLEM, the index of the problem. // // Output, string P00_TITLE, the title of the problem. // { string title; if ( problem == 1 ) { title = p01_title ( ); } else if ( problem == 2 ) { title = p02_title ( ); } else if ( problem == 3 ) { title = p03_title ( ); } else if ( problem == 4 ) { title = p04_title ( ); } else if ( problem == 5 ) { title = p05_title ( ); } else if ( problem == 6 ) { title = p06_title ( ); } else if ( problem == 7 ) { title = p07_title ( ); } else if ( problem == 8 ) { title = p08_title ( ); } else { cout << "\n"; cout << "P00_TITLE - Fatal error!\n"; cout << " Illegal problem number = " << problem << "\n"; exit ( 1 ); } return title; } //****************************************************************************80 double p00_turing ( int problem, double h, double tol, int *n ) //****************************************************************************80 // // Purpose: // // P00_TURING applies the Turing quadrature rule. // // Discussion // // We consider the approximation: // // Integral ( -oo < x < +oo ) f(x) dx // // = h * Sum ( -oo < i < +oo ) f(nh) + error term // // Given H and a tolerance TOL, we start summing at I = 0, and // adding one more term in the positive and negative I directions, // until the absolute value of the next two terms being added // is less than TOL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 2009 // // Author: // // John Burkardt // // Reference: // // Alan Turing, // A Method for the Calculation of the Zeta Function, // Proceedings of the London Mathematical Society, // Volume 48, 1943, pages 180-197. // // Parameters: // // Input, int PROBLEM, the index of the problem. // // Input, double H, the spacing to use. // // Input, double TOL, the tolerance. // // Output, int N, the number of pairs of steps taken. // The actual number of function evaluations is 2*N+1. // // Output, double P00_TURING, the approximate integral. // { double f_vec[2]; int i; int n_too_many = 100000; int option; int order; double result; double xtab[2]; option = 0; *n = 0; result = 0.0; order = 1; xtab[0] = 0.0; p00_fun ( problem, option, order, xtab, f_vec ); result = result + h * f_vec[0]; for ( ; ; ) { *n = *n + 1; xtab[0] = ( double ) ( *n ) * h; xtab[1] = - ( double ) ( *n ) * h; order = 2; p00_fun ( problem, option, order, xtab, f_vec ); result = result + h * ( f_vec[0] + f_vec[1] ); // // Just do a simple-minded absolute error tolerance check to start with. // if ( r8_abs ( f_vec[0] ) + r8_abs ( f_vec[1] ) <= tol ) { break; } // // Just in case things go crazy. // if ( n_too_many <= *n ) { cout << "\n"; cout << "P00_TURING - Warning!\n"; cout << " Number of steps exceeded N_TOO_MANY = " << n_too_many << "\n"; break; } } return result; } //****************************************************************************80 double p01_exact ( ) //****************************************************************************80 // // Purpose: // // P01_EXACT returns the exact integral for problem 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 July 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double P01_EXACT, the value of the integral. // { double exact; double omega = 1.0; const double r8_pi = 3.141592653589793; exact = sqrt ( r8_pi ) * exp ( - omega * omega ); return exact; } //****************************************************************************80 void p01_fun ( int option, int n, double x[], double f[] ) //****************************************************************************80 // // Purpose: // // P01_FUN evaluates the integrand for problem 1. // // Discussion: // // Squire gives exact value as sqrt(pi) * exp(-w*w). // // Integral ( -oo < x < +oo ) exp(-x*x) cos(2*w*x) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 2009 // // Author: // // John Burkardt // // Reference: // // William Squire, // Comparison of Gauss-Hermite and Midpoint Quadrature with Application // to the Voigt Function, // in Numerical Integration: // Recent Developments, Software and Applications, // edited by Patrick Keast, Graeme Fairweather, // Reidel, 1987, pages 337-340, // ISBN: 9027725144, // LC: QA299.3.N38. // // Parameters: // // Input, int OPTION: // 0, integrand is f(x). // 1, integrand is exp(-x*x) * f(x); // 2, integrand is exp(-x*x/2) * f(x); // // Input, int N, the number of points. // // Input, double X[N], the evaluation points. // // Output, double F[N], the function values. // { int i; double omega = 1.0; for ( i = 0; i < n; i++ ) { f[i] = cos ( 2.0 * omega * x[i] ); } if ( option == 0 ) { for ( i = 0; i < n; i++ ) { f[i] = f[i] * exp ( - x[i] * x[i] ); } } else if ( option == 1 ) { } else if ( option == 2 ) { for ( i = 0; i < n; i++ ) { f[i] = f[i] * exp ( - x[i] * x[i] / 2.0 ); } } return; } //****************************************************************************80 string p01_title ( ) //****************************************************************************80 // // Purpose: // // P01_TITLE returns the title for problem 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 2009 // // Author: // // John Burkardt // // Parameters: // // Output, string P01_TITLE, the title of the problem. // { string title; title = "exp(-x*x) * cos(2*omega*x)"; return title; } //****************************************************************************80 double p02_exact ( ) //****************************************************************************80 // // Purpose: // // P02_EXACT returns the exact integral for problem 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 July 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double P02_EXACT, the value of the integral. // { double exact; const double r8_pi = 3.141592653589793; exact = sqrt ( r8_pi ); return exact; } //****************************************************************************80 void p02_fun ( int option, int n, double x[], double f[] ) //****************************************************************************80 // // Purpose: // // P02_FUN evaluates the integrand for problem 2. // // Discussion: // // The exact value is sqrt(pi). // // Integral ( -oo < x < +oo ) exp(-x*x) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int OPTION: // 0, integrand is f(x). // 1, integrand is exp(-x*x) * f(x); // 2, integrand is exp(-x*x/2) * f(x); // // Input, int N, the number of points. // // Input, double X[N], the evaluation points. // // Output, double F[N], the function values. // { int i; for ( i = 0; i < n; i++ ) { f[i] = 1.0; } if ( option == 0 ) { for ( i = 0; i < n; i++ ) { f[i] = f[i] * exp ( - x[i] * x[i] ); } } else if ( option == 1 ) { } else if ( option == 2 ) { for ( i = 0; i < n; i++ ) { f[i] = f[i] * exp ( - x[i] * x[i] / 2.0 ); } } return; } //****************************************************************************80 string p02_title ( ) //****************************************************************************80 // // Purpose: // // P02_TITLE returns the title for problem 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 2009 // // Author: // // John Burkardt // // Parameters: // // Output, string P02_TITLE, the title of the problem. // { string title; title = "exp(-x*x)"; return title; } //****************************************************************************80 double p03_exact ( ) //****************************************************************************80 // // Purpose: // // P03_EXACT returns the exact integral for problem 3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 July 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double P03_EXACT, the value of the integral. // { double exact; double p = 1.0; double q = 3.0; const double r8_pi = 3.141592653589793; exact = r8_pi / ( q * sin ( r8_pi * p / q ) ); return exact; } //****************************************************************************80 void p03_fun ( int option, int n, double x[], double f[] ) //****************************************************************************80 // // Purpose: // // P03_FUN evaluates the integrand for problem 3. // // Discussion: // // The exact value is pi / (q*sin(pi*p/q) ), assuming 0 < p < q. // // Integral ( -oo < x < +oo ) exp(-px) / ( 1 + exp ( -qx) ) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int OPTION: // 0, integrand is f(x). // 1, integrand is exp(-x*x) * f(x); // 2, integrand is exp(-x*x/2) * f(x); // // Input, int N, the number of points. // // Input, double X[N], the evaluation points. // // Output, double F[N], the function values. // { int i; double p = 1.0; double q = 3.0; for ( i = 0; i < n; i++ ) { f[i] = exp ( - p * x[i] ) / ( 1.0 + exp ( -q * x[i] ) ); } if ( option == 0 ) { } else if ( option == 1 ) { for ( i = 0; i < n; i++ ) { f[i] = f[i] * exp ( + x[i] * x[i] ); } } else if ( option == 2 ) { for ( i = 0; i < n; i++ ) { f[i] = f[i] * exp ( + x[i] * x[i] / 2.0 ); } } return; } //****************************************************************************80 string p03_title ( ) //****************************************************************************80 // // Purpose: // // P03_TITLE returns the title for problem 3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 2009 // // Author: // // John Burkardt // // Parameters: // // Output, string P03_TITLE, the title of the problem. // { string title; title = "exp(-px) / ( 1 + exp(-qx) )"; return title; } //****************************************************************************80 double p04_exact ( ) //****************************************************************************80 // // Purpose: // // P04_EXACT returns the estimated integral for problem 4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 July 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double P04_EXACT, the estimated value of the integral. // { double exact; const double r8_pi = 3.141592653589793; exact = sqrt ( r8_pi / 2.0 ); return exact; } //****************************************************************************80 void p04_fun ( int option, int n, double x[], double f[] ) //****************************************************************************80 // // Purpose: // // P04_FUN evaluates the integrand for problem 4. // // Discussion: // // The exact value is sqrt ( pi / 2 ) // // Integral ( -oo < x < +oo ) sin ( x^2 ) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int OPTION: // 0, integrand is f(x). // 1, integrand is exp(-x*x) * f(x); // 2, integrand is exp(-x*x/2) * f(x); // // Input, int N, the number of points. // // Input, double X[N], the evaluation points. // // Output, double F[N], the function values. // { int i; for ( i = 0; i < n; i++ ) { f[i] = sin ( x[i] * x[i] ); } if ( option == 0 ) { } else if ( option == 1 ) { for ( i = 0; i < n; i++ ) { f[i] = f[i] * exp ( + x[i] * x[i] ); } } else if ( option == 2 ) { for ( i = 0; i < n; i++ ) { f[i] = f[i] * exp ( + x[i] * x[i] / 2.0 ); } } return; } //****************************************************************************80 string p04_title ( ) //****************************************************************************80 // // Purpose: // // P04_TITLE returns the title for problem 4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 2009 // // Author: // // John Burkardt // // Parameters: // // Output, string P04_TITLE, the title of the problem. // { string title; title = "sin(x^2)"; return title; } //****************************************************************************80 double p05_exact ( ) //****************************************************************************80 // // Purpose: // // P05_EXACT returns the estimated integral for problem 5. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 October 2006 // // Author: // // John Burkardt // // Parameters: // // Output, double P05_EXACT, the estimated value of the integral. // { double exact; const double r8_pi = 3.141592653589793; exact = r8_pi / 3.0; return exact; } //****************************************************************************80 void p05_fun ( int option, int n, double x[], double f[] ) //****************************************************************************80 // // Purpose: // // P05_FUN evaluates the integrand for problem 5. // // Discussion: // // The exact value is pi / 3. // // Integral ( -oo < x < +oo ) dx / ( (1+x^2) sqrt(4+3x^2) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int OPTION: // 0, integrand is f(x). // 1, integrand is exp(-x*x) * f(x); // 2, integrand is exp(-x*x/2) * f(x); // // Input, int N, the number of points. // // Input, double X[N], the evaluation points. // // Output, double F[N], the function values. // { int i; for ( i = 0; i < n; i++ ) { f[i] = 1.0 / ( ( 1.0 + x[i] * x[i] ) * sqrt ( 4.0 + 3.0 * x[i] * x[i] ) ); } if ( option == 0 ) { } else if ( option == 1 ) { for ( i = 0; i < n; i++ ) { f[i] = f[i] * exp ( + x[i] * x[i] ); } } else if ( option == 2 ) { for ( i = 0; i < n; i++ ) { f[i] = f[i] * exp ( + x[i] * x[i] / 2.0 ); } } return; } //****************************************************************************80 string p05_title ( ) //****************************************************************************80 // // Purpose: // // P05_TITLE returns the title for problem 5. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 2009 // // Author: // // John Burkardt // // Parameters: // // Output, string P05_TITLE, the title of the problem. // { string title; title = "1/( (1+x^2) sqrt(4+3x^2) )"; return title; } //****************************************************************************80 double p06_exact ( ) //****************************************************************************80 // // Purpose: // // P06_EXACT returns the exact integral for problem 6. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 2009 // // Author: // // John Burkardt // // Parameters: // // Output, double P06_EXACT, the value of the integral. // { double exact; int m; const double r8_pi = 3.141592653589793; p06_param ( 'G', 'M', &m ); if ( m <= -1 ) { exact = - r8_huge ( ); } else if ( ( m % 2 ) == 1 ) { exact = 0.0; } else { exact = ( double ) ( i4_factorial2 ( m - 1 ) ) * sqrt ( r8_pi ) / pow ( 2.0, m / 2 ); } return exact; } //****************************************************************************80 void p06_fun ( int option, int n, double x[], double f[] ) //****************************************************************************80 // // Purpose: // // P06_FUN evaluates the integrand for problem 6. // // Discussion: // // The exact value is (m-1)!! * sqrt ( pi ) / sqrt ( 2**m ). // // Integral ( -oo < x < +oo ) x^m exp (-x*x) dx // // The parameter M is set by calling P06_PARAM. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int OPTION: // 0, integrand is f(x). // 1, integrand is exp(-x*x) * f(x); // 2, integrand is exp(-x*x/2) * f(x); // // Input, int N, the number of points. // // Input, double X[N], the evaluation points. // // Output, double F[N], the function values. // { int i; int m; p06_param ( 'G', 'M', &m ); for ( i = 0; i < n; i++ ) { f[i] = pow ( x[i], m ); } if ( option == 0 ) { for ( i = 0; i < n; i++ ) { f[i] = f[i] * exp ( - x[i] * x[i] ); } } else if ( option == 1 ) { } else if ( option == 2 ) { for ( i = 0; i < n; i++ ) { f[i] = f[i] * exp ( - x[i] * x[i] / 2.0 ); } } return; } //****************************************************************************80 void p06_param ( char action, char name, int *value ) //****************************************************************************80 // // Purpose: // // P06_PARAM gets or sets parameters for problem 6. // // Discussion: // // The parameter is named "M", and it represents the value of the exponent // in the integrand function: // // Integral ( -oo < x < +oo ) x^m exp (-x*x) dx // // M must be greater than -1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 2009 // // Author: // // John Burkardt // // Parameters: // // Input, char ACTION, the action. // 'S' to set the value, // 'G' to get the value. // // Input, char NAME, the parameter name. // 'M', the exponent. // // Input/output, int *VALUE, the parameter value. // If ACTION = 'S', then VALUE is an input quantity, and M is set to VALUE. // If ACTION = 'G', then VALUE is an output quantity, and VALUE is set to M. // { static int m = 0; if ( action == 'S' || action == 's' ) { if ( *value <= -1 ) { cerr << "\n"; cerr << "P06_PARAM - Fatal error!\n"; cerr << " Parameter M must be greater than -1.\n"; exit ( 1 ); } m = *value; } else if ( action == 'G' || action == 'g' ) { *value = m; } else { cerr << "\n"; cerr << "P06_PARAM - Fatal error!\n"; cerr << " Unrecognized value of ACTION = \"" << action << "\".\n"; exit ( 1 ); } return; } //****************************************************************************80 string p06_title ( ) //****************************************************************************80 // // Purpose: // // P06_TITLE returns the title for problem 6. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 2009 // // Author: // // John Burkardt // // Parameters: // // Output, string P06_TITLE, the title of the problem. // { string title; title = "x^m exp(-x*x)"; return title; } //****************************************************************************80 double p07_exact ( ) //****************************************************************************80 // // Purpose: // // P07_EXACT returns the exact integral for problem 7. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 February 2010 // // Author: // // John Burkardt // // Parameters: // // Output, double P07_EXACT, the value of the integral. // { double e_sqrt_sqrt = 1.2840254166877414841; double exact; const double r8_pi = 3.141592653589793; exact = 0.25 * sqrt ( r8_pi ) / e_sqrt_sqrt; return exact; } //****************************************************************************80 void p07_fun ( int option, int n, double x[], double f[] ) //****************************************************************************80 // // Purpose: // // P07_FUN evaluates the integrand for problem 7. // // Discussion: // // The exact value is (1/4) sqrt(pi) / sqrt(sqrt(e)). // // Integral ( -oo < x < +oo ) x^2 cos(x) e^(-x^2) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 February 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int OPTION: // 0, integrand is f(x). // 1, integrand is exp(-x*x) * f(x); // 2, integrand is exp(-x*x/2) * f(x); // // Input, int N, the number of points. // // Input, double X[N], the evaluation points. // // Output, double F[N], the function values. // { int i; if ( option == 0 ) { for ( i = 0; i < n; i++ ) { f[i] = pow ( x[i], 2 ) * cos ( x[i] ) * exp ( - x[i] * x[i] ); } } else if ( option == 1 ) { for ( i = 0; i < n; i++ ) { f[i] = pow ( x[i], 2 ) * cos ( x[i] ); } } else if ( option == 2 ) { for ( i = 0; i < n; i++ ) { f[i] = pow ( x[i], 2 ) * cos ( x[i] ) * exp ( - x[i] * x[i] / 2.0 ); } } return; } //****************************************************************************80 string p07_title ( ) //****************************************************************************80 // // Purpose: // // P07_TITLE returns the title for problem 7. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 February 2010 // // Author: // // John Burkardt // // Parameters: // // Output, string P07_TITLE, the title of the problem. // { string title; title = "x^2 cos ( x ) exp(-x*x)"; return title; } //****************************************************************************80 double p08_exact ( ) //****************************************************************************80 // // Purpose: // // P08_EXACT returns the exact integral for problem 8. // // Discussion: // // The 20 digit value of the answer was computed by Mathematica. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 July 2010 // // Author: // // John Burkardt // // Parameters: // // Output, double P08_EXACT, the value of the integral. // { double exact; exact = 3.0088235661136433510; return exact; } //****************************************************************************80 void p08_fun ( int option, int n, double x[], double f[] ) //****************************************************************************80 // // Purpose: // // P08_FUN evaluates the integrand for problem 8. // // Discussion: // // The exact value is sqrt ( 2 pi ) * HypergeometricU ( -1/2, 0, 1 ). // // Integral ( -oo < x < +oo ) sqrt(1+x*x/2) * exp(-x*x/2) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 July 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int OPTION: // 0, integrand is f(x). // 1, integrand is exp(-x*x) * f(x); // 2, integrand is exp(-x*x/2) * f(x); // // Input, int N, the number of points. // // Input, double X[N], the evaluation points. // // Output, double F[N], the function values. // { int i; for ( i = 0; i < n; i++ ) { f[i] = sqrt ( 1.0 + 0.5 * x[i] * x[i] ); } if ( option == 0 ) { for ( i = 0; i < n; i++ ) { f[i] = f[i] * exp ( - 0.5 * x[i] * x[i] ); } } else if ( option == 1 ) { for ( i = 0; i < n; i++ ) { f[i] = f[i] * exp ( + 0.5 * x[i] * x[i] ); } } else if ( option == 2 ) { } return; } //****************************************************************************80 string p08_title ( ) //****************************************************************************80 // // Purpose: // // P08_TITLE returns the title for problem 8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 July 2010 // // Author: // // John Burkardt // // Parameters: // // Output, string P08_TITLE, the title of the problem. // { string title; title = "sqrt(1+x*x/2) * exp(-x*x/2)"; return title; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = x; } else { value = -x; } return value; } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 double r8_gamma ( double x ) //****************************************************************************80 // // Purpose: // // R8_GAMMA evaluates Gamma(X) for a real argument. // // Discussion: // // This routine calculates the gamma function for a real argument X. // // Computation is based on an algorithm outlined in reference 1. // The program uses rational functions that approximate the gamma // function to at least 20 significant decimal digits. Coefficients // for the approximation over the interval (1,2) are unpublished. // Those for the approximation for 12 <= X are from reference 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2008 // // Author: // // Original FORTRAN77 version by William Cody, Laura Stoltz. // C++ version by John Burkardt. // // Reference: // // William Cody, // An Overview of Software Development for Special Functions, // in Numerical Analysis Dundee, 1975, // edited by GA Watson, // Lecture Notes in Mathematics 506, // Springer, 1976. // // John Hart, Ward Cheney, Charles Lawson, Hans Maehly, // Charles Mesztenyi, John Rice, Henry Thatcher, // Christoph Witzgall, // Computer Approximations, // Wiley, 1968, // LC: QA297.C64. // // Parameters: // // Input, double X, the argument of the function. // // Output, double R8_GAMMA, the value of the function. // { // // Coefficients for minimax approximation over (12, INF). // double c[7] = { -1.910444077728E-03, 8.4171387781295E-04, -5.952379913043012E-04, 7.93650793500350248E-04, -2.777777777777681622553E-03, 8.333333333333333331554247E-02, 5.7083835261E-03 }; double eps = 2.22E-16; double fact; double half = 0.5; int i; int n; double one = 1.0; double p[8] = { -1.71618513886549492533811E+00, 2.47656508055759199108314E+01, -3.79804256470945635097577E+02, 6.29331155312818442661052E+02, 8.66966202790413211295064E+02, -3.14512729688483675254357E+04, -3.61444134186911729807069E+04, 6.64561438202405440627855E+04 }; bool parity; double q[8] = { -3.08402300119738975254353E+01, 3.15350626979604161529144E+02, -1.01515636749021914166146E+03, -3.10777167157231109440444E+03, 2.25381184209801510330112E+04, 4.75584627752788110767815E+03, -1.34659959864969306392456E+05, -1.15132259675553483497211E+05 }; const double r8_pi = 3.141592653589793; double res; double sqrtpi = 0.9189385332046727417803297; double sum; double two = 2.0; double value; double xbig = 171.624; double xden; double xinf = 1.79E+308; double xminin = 2.23E-308; double xnum; double y; double y1; double ysq; double z; double zero = 0.0;; parity = false; fact = one; n = 0; y = x; // // Argument is negative. // if ( y <= zero ) { y = - x; y1 = ( double ) ( int ) ( y ); res = y - y1; if ( res != zero ) { if ( y1 != ( double ) ( int ) ( y1 * half ) * two ) { parity = true; } fact = - r8_pi / sin ( r8_pi * res ); y = y + one; } else { res = xinf; value = res; return value; } } // // Argument is positive. // if ( y < eps ) { // // Argument < EPS. // if ( xminin <= y ) { res = one / y; } else { res = xinf; value = res; return value; } } else if ( y < 12.0 ) { y1 = y; // // 0.0 < argument < 1.0. // if ( y < one ) { z = y; y = y + one; } // // 1.0 < argument < 12.0. // Reduce argument if necessary. // else { n = ( int ) ( y ) - 1; y = y - ( double ) ( n ); z = y - one; } // // Evaluate approximation for 1.0 < argument < 2.0. // xnum = zero; xden = one; for ( i = 0; i < 8; i++ ) { xnum = ( xnum + p[i] ) * z; xden = xden * z + q[i]; } res = xnum / xden + one; // // Adjust result for case 0.0 < argument < 1.0. // if ( y1 < y ) { res = res / y1; } // // Adjust result for case 2.0 < argument < 12.0. // else if ( y < y1 ) { for ( i = 1; i <= n; i++ ) { res = res * y; y = y + one; } } } else { // // Evaluate for 12.0 <= argument. // if ( y <= xbig ) { ysq = y * y; sum = c[6]; for ( i = 0; i < 6; i++ ) { sum = sum / ysq + c[i]; } sum = sum / y - y + sqrtpi; sum = sum + ( y - half ) * log ( y ); res = exp ( sum ); } else { res = xinf; value = res; return value; } } // // Final adjustments and return. // if ( parity ) { res = - res; } if ( fact != one ) { res = fact / res; } value = res; return value; } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8 value. // { double value; value = 0.1797693134862E+309; return value; } //****************************************************************************80 double r8vec_dot_product ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of a pair of R8VEC's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 double *r8vec_normal_01_new ( int n, int *seed ) //****************************************************************************80 // // Purpose: // // R8VEC_NORMAL_01_NEW returns a unit pseudonormal R8VEC. // // Discussion: // // The standard normal probability distribution function (PDF) has // mean 0 and standard deviation 1. // // This routine can generate a vector of values on one call. It // has the feature that it should provide the same results // in the same order no matter how we break up the task. // // Before calling this routine, the user may call RANDOM_SEED // in order to set the seed of the random number generator. // // The Box-Muller method is used, which is efficient, but // generates an even number of values each time. On any call // to this routine, an even number of new values are generated. // Depending on the situation, one value may be left over. // In that case, it is saved for the next call. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of values desired. If N is negative, // then the code will flush its internal memory; in particular, // if there is a saved value to be used on the next call, it is // instead discarded. This is useful if the user has reset the // random number seed, for instance. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double R8VEC_NORMAL_01_NEW[N], a sample of the standard normal PDF. // // Local parameters: // // Local, int MADE, records the number of values that have // been computed. On input with negative N, this value overwrites // the return value of N, so the user can get an accounting of // how much work has been done. // // Local, real R(N+1), is used to store some uniform random values. // Its dimension is N+1, but really it is only needed to be the // smallest even number greater than or equal to N. // // Local, int SAVED, is 0 or 1 depending on whether there is a // single saved value left over from the previous call. // // Local, int X_LO, X_HI, records the range of entries of // X that we need to compute. This starts off as 1:N, but is adjusted // if we have a saved value that can be immediately stored in X(1), // and so on. // // Local, real Y, the value saved from the previous call, if // SAVED is 1. // { int i; int m; static int made = 0; double *r; const double r8_pi = 3.141592653589793; static int saved = 0; double *x; int x_hi; int x_lo; static double y = 0.0; x = new double[n]; // // I'd like to allow the user to reset the internal data. // But this won't work properly if we have a saved value Y. // I'm making a crock option that allows the user to signal // explicitly that any internal memory should be flushed, // by passing in a negative value for N. // if ( n < 0 ) { made = 0; saved = 0; y = 0.0; return NULL; } else if ( n == 0 ) { return NULL; } // // Record the range of X we need to fill in. // x_lo = 1; x_hi = n; // // Use up the old value, if we have it. // if ( saved == 1 ) { x[0] = y; saved = 0; x_lo = 2; } // // Maybe we don't need any more values. // if ( x_hi - x_lo + 1 == 0 ) { } // // If we need just one new value, do that here to avoid null arrays. // else if ( x_hi - x_lo + 1 == 1 ) { r = r8vec_uniform_01_new ( 2, seed ); x[x_hi-1] = sqrt ( -2.0 * log ( r[0] ) ) * cos ( 2.0 * r8_pi * r[1] ); y = sqrt ( -2.0 * log ( r[0] ) ) * sin ( 2.0 * r8_pi * r[1] ); saved = 1; made = made + 2; delete [] r; } // // If we require an even number of values, that's easy. // else if ( ( x_hi - x_lo + 1 ) % 2 == 0 ) { m = ( x_hi - x_lo + 1 ) / 2; r = r8vec_uniform_01_new ( 2*m, seed ); for ( i = 0; i <= 2*m-2; i = i + 2 ) { x[x_lo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * r8_pi * r[i+1] ); x[x_lo+i ] = sqrt ( -2.0 * log ( r[i] ) ) * sin ( 2.0 * r8_pi * r[i+1] ); } made = made + x_hi - x_lo + 1; delete [] r; } // // If we require an odd number of values, we generate an even number, // and handle the last pair specially, storing one in X(N), and // saving the other for later. // else { x_hi = x_hi - 1; m = ( x_hi - x_lo + 1 ) / 2 + 1; r = r8vec_uniform_01_new ( 2*m, seed ); for ( i = 0; i <= 2*m-4; i = i + 2 ) { x[x_lo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * r8_pi * r[i+1] ); x[x_lo+i ] = sqrt ( -2.0 * log ( r[i] ) ) * sin ( 2.0 * r8_pi * r[i+1] ); } i = 2*m - 2; x[x_lo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * r8_pi * r[i+1] ); y = sqrt ( -2.0 * log ( r[i] ) ) * sin ( 2.0 * r8_pi * r[i+1] ); saved = 1; made = made + x_hi - x_lo + 2; delete [] r; } return x; } //****************************************************************************80 void r8vec_reverse ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_REVERSE reverses the elements of an R8VEC. // // Discussion: // // An R8VEC is a vector of double precision values. // // Input: // // N = 5, // A = ( 11.0, 12.0, 13.0, 14.0, 15.0 ) // // Output: // // A = ( 15.0, 14.0, 13.0, 12.0, 11.0 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input/output, double A[N], the array to be reversed. // { int i; double temp; for ( i = 0; i < n / 2; i++ ) { temp = a[i]; a[i] = a[n-1-i]; a[n-1-i] = temp; } return; } //****************************************************************************80 double r8vec_sum ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_SUM returns the sum of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A[N], the vector. // // Output, double R8VEC_SUM, the sum of the vector. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a[i]; } return value; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int *seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; int i4_huge = 2147483647; int k; double *r; if ( *seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } r[i] = ( double ) ( *seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }