# include # include # include # include # include using namespace std; # include "high_card_simulation.hpp" //****************************************************************************80 double *high_card_probability ( int n ) //****************************************************************************80 // // Purpose: // // HIGH_CARD_PROBABILITY: winning probabilities for the high card game. // // Discussion: // // The high card game presents the player with a deck of cards, each // having an unknown value. The player is allowed to go throught the // deck once, looking at the cards one at a time. At any time, the player // may decide to take a particular card, winning that amount and stopping // the game. If the player continues to the end, by default the last card // indicates the amount won. // // An optimal strategy for selecting the highest card is as follows: // * look at, but do not select, the first k-1 cards; // * stop at the first card, from k to n, that is higher than the first // k-1 cards. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 February 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of cards. // // Output, double P[N]. P[K] is the probability that a strategy // that skips K cards will win, given that the deck has N cards. // { int i; int j; double *p; double t; p = new double[n]; for ( i = 0; i < n; i++ ) { t = 0.0; for ( j = i + 1; j < n; j++ ) { t = t + 1.0 / ( double ) ( j ); } p[i] = ( 1.0 + ( double ) ( i ) * t ) / ( double ) ( n ); } return p; } //****************************************************************************80 int *high_card_shuffle ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // HIGH_CARD_SHUFFLE generates a sequence of numeric "cards" for a game. // // Discussion: // // In this game, you know that the deck contains N cards. You win by // choosing the highest card in the deck. You don't know what this card // is, and you must choose your card by saying "stop" as, one by one, // the cards of the deck are exposed. // // A random guesser would get the high card with probability 1/N. // // An intelligent guesser can do much better. // // It is the goal of this program so "shuffle" a deck of cards suitable // for this game. The problem is that we know the highest card in an // ordinary deck. Let's replace the cards by integers. Then if we know // in advance the range of the cards (say, they must lie between 1 and // 1,000), it may be true that we can guess the card that is the maximum. // // However, this program produces a sequence of integer card values for // which no information can be gained from the values. It does this // by regarding the card values as binary integers between 1 and 2^N - 1. // We can make a perfectly information-free sequence as follows: // // Card 1 sets bit N-1 to 1. // Card 2 sets bit N-2 to 1, bit N-1 randomly. // ... // Card I sets bit N-I to 1, bits N-1 down to N-I+1 randomly. // ... // Card N sets bit N-N to 1, bits N-1 down to 1 randomly. // // The I-th card has equal probability to fall in any of the I intervals // defined by the I-1 previous cards. So, knowing the previous cards tells // you absolutely nothing about where the next card will fall, and each // card is, at the moment you see it, as good a guess for the maximum as // the unseen cards. // // For example, the command "high_card_shuffle(7)" might yield // // 64 96 80 8 4 82 29 // or // 64 32 16 24 12 58 73 // or // 64 96 48 8 100 26 93 // or // 64 96 16 56 76 122 71 // // in which the highest card is #2, #7, #5, or #6 respectively. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 February 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of cards. N probably needs to // be less than 32. // // Input/output, int &SEED, a seed for the random // number generator. // // Output, int SEQUENCE[N], a set of N integer values // that can be used as the cards in the high card guessing game. // { int c; int i; int j; int k; int *sequence; if ( 32 <= n ) { cerr << "\n"; cerr << "HIGH_CARD_SHUFFLE - Fatal error!\n"; cerr << " This program can only handle N < 32.\n"; exit ( 1 ); } sequence = new int[n]; for ( i = 0; i < n; i++ ) { c = i4_power ( 2, n - i - 1 ); for ( j = 0; j < i; j++ ) { k = i4_uniform_ab ( 0, 1, seed ); c = c + k * i4_power ( 2, n - i + j ); } sequence[i] = c; } return sequence; } //****************************************************************************80 double high_card_simulation ( int deck_size, int skip_num, int trial_num, int &seed ) //****************************************************************************80 // // Purpose: // // HIGH_CARD_SIMULATION simulates a game of choosing the highest card in a deck. // // Discussion: // // You are given a deck of DECK_SIZE cards. // // Your goal is to select the high card. For convenience, we can assume // the cards are a permutation of the integers from 1 to DECK_SIZE, but in // fact the user mustn't see such values or else it's obvious which is the // largest card. // // However, your choice is made under the following rules: You may turn over // one card at a time. When a card is turned over, you may declare that to be // your choice, or else turn over another card. If you have not chosen a card // by the end, then your choice is the final card. // // If you have no idea what to do, and simply decide in advance to pick // a card "at random", that is, for example, you decide to pick the 15th card // before having seen any cards, then your probability of winning is // 1/DECK_SIZE. // // The question is, can you do better than that? // // Your strategy is as follows: always look at the first SKIP_NUM cards // without choosing them. Then choose the very next card you encounter // that is larger than the cards you skipped. // // Using this program, you can easily see that skipping 5 cards is much better // than picking one at random, skipping 10 is even better, and so on. // Of course, you can't skip too many cards, and in fact, the results seem // to be best for somewhere around 30 to 35 cards skipped. For problems // like this, the optimal value is somewhere around 1 / e, where E is the // base of the natural logarithm system. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 February 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int DECK_SIZE, the number of cards in the deck. // 2 <= DECK_SIZE. Default value is 52; // // Input, int SKIP_NUM, the number of initial cards you plan // to examine but will NOT select. If SKIP_NUM is 0, you don't look at any // cards first. 0 <= SKIP_NUM < DECK_SIZE. // // Input, int TRIAL_NUM, the number of times we will // simulate this process. // // Input/output, int &SEED, a seed for the random // number generator. // // Output, double HIGH_CARD_SIMULATION, the estimated probability that // your strategy of skipping SKIP_NUM cards and then selecting the next // card that is bigger, will result in choosing the highest card. // { int card; int *cards; int choice; int correct; int i4_huge = 2147483647; double p; int skip_max; int trial; int true_max; // // Check values. // if ( deck_size < 2 ) { cerr << "\n"; cerr << "HIGH_CARD_SIMULATION - Fatal error!\n"; cerr << " DECK_SIZE must be at least 2.\n"; cerr << " Your value was %d\n", deck_size; exit ( 1 ); } if ( skip_num < 0 ) { skip_num = 0; } if ( deck_size <= skip_num ) { cerr << "\n"; cerr << "HIGH_CARD_SIMULATION - Fatal error!\n"; cerr << " SKIP_NUM must be less than DECK_SIZE.\n"; cerr << " Your DECK_SIZE = " << deck_size << "\n"; cerr << " Your SKIP_NUM = " << skip_num << "\n"; exit ( 1 ); } if ( trial_num < 1 ) { cerr << "\n"; cerr << "HIGH_CARD_SIMULATION - Fatal error!\n"; cerr << " TRIAL_NUM must be at least 1.\n"; cerr << " Your TRIAL_NUM was " << trial_num << "\n"; exit ( 1 ); } correct = 0; for ( trial = 1; trial <= trial_num; trial++ ) { cards = perm_uniform_new ( deck_size, seed ); if ( 1 <= skip_num ) { skip_max = i4vec_max ( skip_num, cards ); } else { skip_max = - i4_huge; } true_max = i4vec_max ( deck_size, cards ); // // In case you don't encounter a card larger than SKIP_MAX, // we'll assume you pick the last card in the deck, even though // you know it's a loser. // choice = cards[deck_size-1]; // // Turn over the remaining cards in the deck, but stop // immediately when you find one bigger than SKIP_MAX. // for ( card = skip_num; card < deck_size; card++ ) { if ( skip_max < cards[card] ) { choice = cards[card]; break; } } // // Record successful choices. // if ( choice == true_max ) { correct = correct + 1; } free ( cards ); } // // Estimate the probability. // p = ( double ) ( correct ) / ( double ) ( trial_num ); return p; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 int i4_uniform_ab ( int a, int b, int &seed ) //****************************************************************************80 // // Purpose: // // I4_UNIFORM_AB returns a scaled pseudorandom I4 between A and B. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 October 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int I4_UNIFORM, a number between A and B. // { int c; int i4_huge = 2147483647; int k; float r; int value; if ( seed == 0 ) { cerr << "\n"; cerr << "I4_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } // // Guarantee A <= B. // if ( b < a ) { c = a; a = b; b = c; } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = round ( r ); // // Guarantee A <= VALUE <= B. // if ( value < a ) { value = a; } if ( b < value ) { value = b; } return value; } //****************************************************************************80 int i4vec_max ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_MAX returns the value of the maximum element in an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, int A[N], the array to be checked. // // Output, int I4VEC_MAX, the value of the maximum element. This // is set to 0 if N <= 0. // { int i; int value; if ( n <= 0 ) { return 0; } value = a[0]; for ( i = 1; i < n; i++ ) { if ( value < a[i] ) { value = a[i]; } } return value; } //****************************************************************************80 void i4vec_print ( int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4VEC_PRINT prints an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(8) << a[i] << "\n"; } return; } /******************************************************************************/ int *perm_uniform_new ( int n, int &seed ) /******************************************************************************/ // // Purpose: // // PERM_UNIFORM_NEW selects a random permutation of N objects. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 February 2014 // // Author: // // John Burkardt // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the number of objects to be permuted. // // Input/output, int &SEED, a seed for the random number generator. // // Output, int PERM_UNIFORM_NEW[N], a permutation of // (BASE, BASE+1, ..., BASE+N-1). // { int i; int j; int k; int *p; p = new int[n]; for ( i = 0; i < n; i++ ) { p[i] = i; } for ( i = 0; i < n - 1; i++ ) { j = i4_uniform_ab ( i, n - 1, seed ); k = p[i]; p[i] = p[j]; p[j] = k; } return p; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }