# include # include # include # include using namespace std; # include "hypersphere_monte_carlo.hpp" int main ( ); void test01 ( ); void test02 ( ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for HYPERSPHERE_MONTE_CARLO_PRB. // // Discussion: // // HYPERSPHERE_MONTE_CARLO_PRB tests the HYPERSPHERE_MONTE_CARLO library. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 January 2014 // // Author: // // John Burkardt // { timestamp ( ); cout << "\n"; cout << "HYPERSPHERE_MONTE_CARLO_PRB\n"; cout << " C++ version\n"; cout << " Test the HYPERSPHERE_MONTE_CARLO library.\n"; test01 ( ); test02 ( ); // // Terminate. // cout << "\n"; cout << "HYPERSPHERE_MONTE_CARLO_PRB\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void test01 ( ) //****************************************************************************80 // // Purpose: // // TEST01 uses HYPERSPHERE01_SAMPLE to estimate integrals in 3D. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 January 2014 // // Author: // // John Burkardt // { int e[3]; int e_test[3*7] = { 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 4, 0, 0, 2, 2, 0, 0, 0, 4 }; int i; int j; int m = 3; int n; double result; int seed; double *value; double *x; cout << "\n"; cout << "TEST01\n"; cout << " Use HYPERSPHERE01_SAMPLE to estimate integrals\n"; cout << " on the surface of the unit hypersphere in M dimensions.\n"; cout << "\n"; cout << " Spatial dimension M = " << m << "\n"; seed = 123456789; cout << "\n"; cout << " N 1 X^2 Y^2"; cout << " Z^2 X^4 X^2Y^2 Z^4\n"; cout << "\n"; n = 1; while ( n <= 65536 ) { x = hypersphere01_sample ( m, n, seed ); cout << " " << setw(8) << n; for ( j = 0; j < 7; j++ ) { for ( i = 0; i < m; i++ ) { e[i] = e_test[i+j*m]; } value = monomial_value ( m, n, e, x ); result = hypersphere01_area ( m ) * r8vec_sum ( n, value ) / ( double ) ( n ); cout << " " << setprecision(10) << setw(14) << result; delete [] value; } cout << "\n"; delete [] x; n = 2 * n; } cout << "\n"; cout << " " << " Exact"; for ( j = 0; j < 7; j++ ) { for ( i = 0; i < m; i++ ) { e[i] = e_test[i+j*m]; } result = hypersphere01_monomial_integral ( m, e ); cout << " " << setprecision(10) << setw(14) << result; } cout << "\n"; return; } //****************************************************************************80 void test02 ( ) //****************************************************************************80 // // Purpose: // // TEST02 uses HYPERSPHERE01_SAMPLE to estimate integrals in 6D. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 January 2014 // // Author: // // John Burkardt // { int e[6]; int e_test[6*7] = { 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 6 }; int i; int j; int m = 6; int n; double result; int seed; double *value; double *x; cout << "\n"; cout << "TEST02\n"; cout << " Use HYPERSPHERE01_SAMPLE to estimate integrals\n"; cout << " on the surface of the unit hypersphere in M dimensions.\n"; cout << "\n"; cout << " Spatial dimension M = " << m << "\n"; seed = 123456789; cout << "\n"; cout << " N"; cout << " 1 "; cout << " U "; cout << " V^2 "; cout << " V^2W^2"; cout << " X^4 "; cout << " Y^2Z^2"; cout << " Z^6\n"; cout << "\n"; n = 1; while ( n <= 65536 ) { x = hypersphere01_sample ( m, n, seed ); cout << " " << setw(8) << n; for ( j = 0; j < 7; j++ ) { for ( i = 0; i < m; i++ ) { e[i] = e_test[i+j*m]; } value = monomial_value ( m, n, e, x ); result = hypersphere01_area ( m ) * r8vec_sum ( n, value ) / ( double ) ( n ); cout << " " << setprecision(10) << setw(14) << result; delete [] value; } cout << "\n"; delete [] x; n = 2 * n; } cout << "\n"; cout << " " << " Exact"; for ( j = 0; j < 7; j++ ) { for ( i = 0; i < m; i++ ) { e[i] = e_test[i+j*m]; } result = hypersphere01_monomial_integral ( m, e ); cout << " " << setprecision(10) << setw(14) << result; } cout << "\n"; return; }