03 February 2008 11:43:48 AM INT_EXACTNESS_GEN_LAGUERRE C++ version Investigate the polynomial exactness of a generalized Gauss-Laguerre quadrature rule by integrating exponentially weighted monomials up to a given degree over the [0,+oo) interval. The rule may be defined on another interval [A,+oo) in which case it is adjusted to the [0,+oo) interval. INT_EXACTNESS_GEN_LAGUERRE: User input: Quadrature rule X file = "gen_lag_o16_a0.5_modified_x.txt". Quadrature rule W file = "gen_lag_o16_a0.5_modified_w.txt". Quadrature rule R file = "gen_lag_o16_a0.5_modified_r.txt". Maximum degree to check = 35 Weighting exponent ALPHA = 0.5 OPTION = 1, integrate f(x) Spatial dimension = 1 Number of points = 16 The quadrature rule to be tested is a generalized Gauss-Laguerre rule ORDER = 16 with A = 0 and ALPHA = 0.5 Modified rule: Integral ( A <= x < +oo ) f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: w[ 0] = 0.2950148257926292 w[ 1] = 0.5926504061509453 w[ 2] = 0.8956575998744516 w[ 3] = 1.207063433953284 w[ 4] = 1.530352787791976 w[ 5] = 1.869714179339352 w[ 6] = 2.230395748423061 w[ 7] = 2.619252244761896 w[ 8] = 3.045634801992271 w[ 9] = 3.52292968201735 w[10] = 4.071417057880741 w[11] = 4.724080738693911 w[12] = 5.539909876059123 w[13] = 6.639993574123777 w[14] = 8.335658835078922 w[15] = 11.89633502881635 Abscissas X: x[ 0] = 0.147399184616311 x[ 1] = 0.5909018112431889 x[ 2] = 1.334487511614577 x[ 3] = 2.385011552004654 x[ 4] = 3.752567873874769 x[ 5] = 5.451062939568397 x[ 6] = 7.499085532907372 x[ 7] = 9.92121913607243 x[ 8] = 12.75005546011707 x[ 9] = 16.02938636037513 x[10] = 19.81951287710202 x[11] = 24.20668064346831 x[12] = 29.32145610335233 x[13] = 35.37955078717556 x[14] = 42.79325597075464 x[15] = 52.61836625575324 Region R: r[ 0] = 0 r[ 1] = 1e+30 A generalized Gauss-Laguerre rule would be able to exactly integrate monomials up to and including degree = 31 Error Degree 6.263762659083974e-16 0 8.351683545445299e-16 1 1.202642430544123e-15 2 6.108659964668561e-16 3 1.357479992148569e-16 4 1.9745163522161e-16 5 1.215086985979139e-16 6 0 7 1.219852032982979e-16 8 0 9 1.565323911998208e-16 10 2.395626160971164e-15 11 8.362913143753911e-16 12 4.625413689384855e-15 13 4.192493196289756e-15 14 3.386922974842773e-15 15 1.277223478728582e-15 16 2.835957438483067e-15 17 3.462663454300472e-15 18 9.470532524582465e-16 19 5.358935477324679e-15 20 3.162932246440234e-15 21 3.911645676757019e-16 22 8.921881203156351e-15 23 3.304601749326304e-15 24 5.019993575859987e-15 25 2.767379559456837e-15 26 1.686783731478461e-15 27 2.926986762118911e-15 28 7.844207793196006e-15 29 5.682611110137386e-15 30 2.985936872321772e-15 31 1.189840681881813e-09 32 1.994308862397206e-08 33 1.720073246770339e-07 34 1.017043578067322e-06 35 INT_EXACTNESS_GEN_LAGUERRE: Normal end of execution. 03 February 2008 11:43:48 AM