03 February 2008 11:43:48 AM INT_EXACTNESS_GEN_LAGUERRE C++ version Investigate the polynomial exactness of a generalized Gauss-Laguerre quadrature rule by integrating exponentially weighted monomials up to a given degree over the [0,+oo) interval. The rule may be defined on another interval [A,+oo) in which case it is adjusted to the [0,+oo) interval. INT_EXACTNESS_GEN_LAGUERRE: User input: Quadrature rule X file = "gen_lag_o8_a0.5_modified_x.txt". Quadrature rule W file = "gen_lag_o8_a0.5_modified_w.txt". Quadrature rule R file = "gen_lag_o8_a0.5_modified_r.txt". Maximum degree to check = 18 Weighting exponent ALPHA = 0.5 OPTION = 1, integrate f(x) Spatial dimension = 1 Number of points = 8 The quadrature rule to be tested is a generalized Gauss-Laguerre rule ORDER = 8 with A = 0 and ALPHA = 0.5 Modified rule: Integral ( A <= x < +oo ) f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: w[ 0] = 0.5667959040373108 w[ 1] = 1.152554801535448 w[ 2] = 1.779950217632814 w[ 3] = 2.481006938138433 w[ 4] = 3.308723863102907 w[ 5] = 4.367551532175377 w[ 6] = 5.920274042911893 w[ 7] = 9.024207305917878 Abscissas X: x[ 0] = 0.2826336481165992 x[ 1] = 1.139873801581614 x[ 2] = 2.601524843406029 x[ 3] = 4.72411453752779 x[ 4] = 7.605256299231614 x[ 5] = 11.41718207654583 x[ 6] = 16.49941079765582 x[ 7] = 23.73000399593471 Region R: r[ 0] = 0 r[ 1] = 1e+30 A generalized Gauss-Laguerre rule would be able to exactly integrate monomials up to and including degree = 15 Error Degree 2.50550506363359e-16 0 1.67033670908906e-16 1 5.345077469084992e-16 2 0 3 1.357479992148569e-16 4 0 5 0 6 0 7 1.219852032982979e-16 8 0 9 3.130647823996416e-16 10 2.831194553875013e-15 11 1.393818857292318e-16 12 5.286187073582691e-15 13 3.281081631878939e-15 14 2.634273424877713e-15 15 5.616714546003125e-05 16 0.0004926661044422058 17 0.002279952382453439 18 INT_EXACTNESS_GEN_LAGUERRE: Normal end of execution. 03 February 2008 11:43:48 AM