# include # include # include # include # include # include using namespace std; # include "interp.hpp" //****************************************************************************80 double *cc_abscissas ( int n ) //****************************************************************************80 // // Purpose: // // CC_ABSCISSAS computes the Clenshaw Curtis abscissas. // // Discussion: // // The interval is [ -1, 1 ]. // // The abscissas are the cosines of equally spaced angles between // 180 and 0 degrees, including the endpoints. // // X(I) = cos ( ( ORDER - I ) * PI / ( ORDER - 1 ) ) // // except for the basic case ORDER = 1, when // // X(1) = 0. // // If the value of ORDER is increased in a sensible way, then // the new set of abscissas will include the old ones. One such // sequence would be ORDER(K) = 2*K+1 for K = 0, 1, 2, ... // // When doing interpolation with Lagrange polynomials, the Clenshaw Curtis // abscissas can be a better choice than regularly spaced abscissas. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2014 // // Author: // // John Burkardt // // Reference: // // Charles Clenshaw, Alan Curtis, // A Method for Numerical Integration on an Automatic Computer, // Numerische Mathematik, // Volume 2, Number 1, December 1960, pages 197-205. // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Joerg Waldvogel, // Fast Construction of the Fejer and Clenshaw-Curtis Quadrature Rules, // BIT Numerical Mathematics, // Volume 43, Number 1, 2003, pages 1-18. // // Parameters: // // Input, int N, the order of the rule. // // Output, double CC_ABSCISSAS[N], the abscissas. // { int i; const double r8_pi = 3.141592653589793; double theta; double *x; if ( n < 1 ) { cerr << "\n"; cerr << "CC_ABSCISSA - Fatal error\n"; cerr << " N < 1.\n"; exit ( 1 ); } x = new double[n]; if ( n == 1 ) { x[0] = 0.0; return x; } for ( i = 0; i < n; i++ ) { theta = r8_pi * ( double ) ( n - 1 - i ) / ( double ) ( n - 1 ); x[i] = cos ( theta ); } return x; } //****************************************************************************80 double *cc_abscissas_ab ( double a, double b, int n ) //****************************************************************************80 // // Purpose: // // CC_ABSCISSAS_AB computes Clenshaw Curtis abscissas for the interval [A,B]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2014 // // Author: // // John Burkardt // // Parameters: // // Input, double A, B, the endpoints of the interval. // // Input, int N, the order of the rule. // // Output, double CC_ABSCISSAS_AB[N], the abscissas. // { int i; const double r8_pi = 3.141592653589793; double theta; double *x; if ( n < 1 ) { cerr << "\n"; cerr << "CC_ABSCISSAS_AB - Fatal error\n"; cerr << " N < 1.\n"; exit ( 1 ); } x = new double[n]; if ( n == 1 ) { x[0] = 0.5 * ( b + a ); return x; } for ( i = 0; i < n; i++ ) { theta = r8_pi * ( double ) ( n - 1 - i ) / ( double ) ( n - 1 ); x[i] = 0.5 * ( ( b + a ) + ( b - a ) * cos ( theta ) ); } return x; } //****************************************************************************80 double *f1_abscissas ( int n ) //****************************************************************************80 // // Purpose: // // F1_ABSCISSAS computes Fejer type 1 abscissas. // // Discussion: // // The interval is [ -1, +1 ]. // // The abscissas are the cosines of equally spaced angles, which // are the midpoints of N equal intervals between 0 and PI. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2014 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Walter Gautschi, // Numerical Quadrature in the Presence of a Singularity, // SIAM Journal on Numerical Analysis, // Volume 4, Number 3, 1967, pages 357-362. // // Joerg Waldvogel, // Fast Construction of the Fejer and Clenshaw-Curtis Quadrature Rules, // BIT Numerical Mathematics, // Volume 43, Number 1, 2003, pages 1-18. // // Parameters: // // Input, int N, the order of the rule. // // Output, double F1_ABSCISSAS[N], the abscissas. // { int i; const double r8_pi = 3.141592653589793; double theta; double *x; if ( n < 1 ) { cerr << "\n"; cerr << "F1_ABSCISSAS - Fatal error\n"; cerr << " N < 1.\n"; exit ( 1 ); } x = new double[n]; if ( n == 1 ) { x[0] = 0.0; return x; } for ( i = 0; i < n; i++ ) { theta = ( double ) ( 2 * n - 2 * i - 1 ) * r8_pi / ( double ) ( 2 * n ); x[i] = cos ( theta ); } return x; } //****************************************************************************80 double *f1_abscissas_ab ( double a, double b, int n ) //****************************************************************************80 // // Purpose: // // F1_ABSCISSAS_AB computes Fejer type 1 abscissas for the interval [A,B]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2014 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Walter Gautschi, // Numerical Quadrature in the Presence of a Singularity, // SIAM Journal on Numerical Analysis, // Volume 4, Number 3, 1967, pages 357-362. // // Joerg Waldvogel, // Fast Construction of the Fejer and Clenshaw-Curtis Quadrature Rules, // BIT Numerical Mathematics, // Volume 43, Number 1, 2003, pages 1-18. // // Parameters: // // Input, double A, B, the endpoints of the interval. // // Input, int N, the order of the rule. // // Output, double F1_ABSCISSAS_AB[N], the abscissas. // { int i; const double r8_pi = 3.141592653589793; double theta; double *x; if ( n < 1 ) { cerr << "\n"; cerr << "F1_ABSCISSAS_AB - Fatal error\n"; cerr << " N < 1.\n"; exit ( 1 ); } x = new double[n]; if ( n == 1 ) { x[0] = 0.5 * ( b + a ); return x; } for ( i = 0; i < n; i++ ) { theta = ( double ) ( 2 * n - 2 * i - 1 ) * r8_pi / ( double ) ( 2 * n ); x[i] = 0.5 * ( ( b + a ) + ( b - a ) * cos ( theta ) ); } return x; } //****************************************************************************80 double *f2_abscissas ( int n ) //****************************************************************************80 // // Purpose: // // F2_ABSCISSAS computes Fejer Type 2 abscissas. // // Discussion: // // The interval is [-1,+1]. // // The abscissas are the cosines of equally spaced angles. // The angles are computed as N+2 equally spaced values between 0 and PI, // but with the first and last angle omitted. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2014 // // Author: // // John Burkardt // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Walter Gautschi, // Numerical Quadrature in the Presence of a Singularity, // SIAM Journal on Numerical Analysis, // Volume 4, Number 3, 1967, pages 357-362. // // Joerg Waldvogel, // Fast Construction of the Fejer and Clenshaw-Curtis Quadrature Rules, // BIT Numerical Mathematics, // Volume 43, Number 1, 2003, pages 1-18. // // Parameters: // // Input, int N, the order of the rule. // // Output, double F2_ABSCISSAS[N], the abscissas. // { int i; const double r8_pi = 3.141592653589793; double theta; double *x; if ( n < 1 ) { cerr << "\n"; cerr << "F2_ABSCISSAS - Fatal error\n"; cerr << " N < 1.\n"; exit ( 1 ); } x = new double[n]; if ( n == 1 ) { x[0] = 0.0; return x; } else if ( n == 2 ) { x[0] = -0.5; x[1] = 0.5; return x; } for ( i = 0; i < n; i++ ) { theta = ( double ) ( n - i ) * r8_pi / ( double ) ( n + 1 ); x[i] = cos ( theta ); } return x; } //****************************************************************************80 double *f2_abscissas_ab ( double a, double b, int n ) //****************************************************************************80 // // Purpose: // // F2_ABSCISSAS_AB computes Fejer Type 2 abscissas for the interval [A,B]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2014 // // Author: // // John Burkardt // // Parameters: // // Input, double A, B, the endpoints of the interval. // // Input, int N, the order of the rule. // // Output, double F2_ABSCISSAS_AB[N], the abscissas. // { int i; const double r8_pi = 3.141592653589793; double theta; double *x; if ( n < 1 ) { cerr << "\n"; cerr << "F2_ABSCISSAS_AB - Fatal error\n"; cerr << " N < 1.\n"; exit ( 1 ); } x = new double[n]; for ( i = 0; i < n; i++ ) { theta = ( double ) ( n - i ) * r8_pi / ( double ) ( n + 1 ); x[i] = 0.5 * ( ( b + a ) + ( b - a ) * cos ( theta ) ); } return x; } //****************************************************************************80 double *interp_lagrange ( int m, int data_num, double t_data[], double p_data[], int interp_num, double t_interp[] ) //****************************************************************************80 // // Purpose: // // INTERP_LAGRANGE: Lagrange polynomial interpolant to a curve in M dimensions. // // Discussion: // // From a space of M dimensions, we are given a sequence of // DATA_NUM points, which are presumed to be successive samples // from a curve of points P. // // We are also given a parameterization of this data, that is, // an associated sequence of DATA_NUM values of a variable T. // // Thus, we have a sequence of values P(T), where T is a scalar, // and each value of P is of dimension M. // // We are then given INTERP_NUM values of T, for which values P // are to be produced, by linear interpolation of the data we are given. // // The user may request extrapolation. This occurs whenever // a T_INTERP value is less than the minimum T_DATA or greater than the // maximum T_DATA. In that case, extrapolation is used. // // For each spatial component, a polynomial of degree // ( DATA_NUM - 1 ) is generated for the interpolation. In most cases, // such a polynomial interpolant begins to oscillate as DATA_NUM // increases, even if the original data seems well behaved. Typically, // values of DATA_NUM should be no greater than 10 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int DATA_NUM, the number of data points. // // Input, double T_DATA[DATA_NUM], the value of the // independent variable at the sample points. // // Input, double P_DATA[M*DATA_NUM], the value of the // dependent variables at the sample points. // // Input, int INTERP_NUM, the number of points // at which interpolation is to be done. // // Input, double T_INTERP[INTERP_NUM], the value of the // independent variable at the interpolation points. // // Output, double INTERP_LAGRANGE[M*DATA_NUM], the interpolated // values of the dependent variables at the interpolation points. // { double *l_interp; double *p_interp; // // Evaluate the DATA_NUM Lagrange polynomials associated with T_DATA(1:DATA_NUM) // for the interpolation points T_INTERP(1:INTERP_NUM). // l_interp = lagrange_value ( data_num, t_data, interp_num, t_interp ); // // Multiply P_DATA(1:M,1:DATA_NUM) * L_INTERP(1:DATA_NUM,1:INTERP_NUM) // to get P_INTERP(1:M,1:INTERP_NUM). // p_interp = r8mat_mm_new ( m, data_num, interp_num, p_data, l_interp ); delete [] l_interp; return p_interp; } //****************************************************************************80 double *interp_linear ( int m, int data_num, double t_data[], double p_data[], int interp_num, double t_interp[] ) //****************************************************************************80 // // Purpose: // // INTERP_LINEAR: piecewise linear interpolation to a curve in M dimensions. // // Discussion: // // From a space of M dimensions, we are given a sequence of // DATA_NUM points, which are presumed to be successive samples // from a curve of points P. // // We are also given a parameterization of this data, that is, // an associated sequence of DATA_NUM values of a variable T. // The values of T are assumed to be strictly increasing. // // Thus, we have a sequence of values P(T), where T is a scalar, // and each value of P is of dimension M. // // We are then given INTERP_NUM values of T, for which values P // are to be produced, by linear interpolation of the data we are given. // // Note that the user may request extrapolation. This occurs whenever // a T_INTERP value is less than the minimum T_DATA or greater than the // maximum T_DATA. In that case, linear extrapolation is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int DATA_NUM, the number of data points. // // Input, double T_DATA[DATA_NUM], the value of the // independent variable at the sample points. The values of T_DATA // must be strictly increasing. // // Input, double P_DATA[M*DATA_NUM], the value of the // dependent variables at the sample points. // // Input, int INTERP_NUM, the number of points // at which interpolation is to be done. // // Input, double T_INTERP[INTERP_NUM], the value of the // independent variable at the interpolation points. // // Output, double INTERP_LINEAR[M*DATA_NUM], the interpolated // values of the dependent variables at the interpolation points. // { int i; int interp; int left; double *p_interp; int right; double t; if ( ! r8vec_ascends_strictly ( data_num, t_data ) ) { cerr << "\n"; cerr << "INTERP_LINEAR - Fatal error\n"; cerr << " Independent variable array T_DATA is not strictly increasing.\n"; exit ( 1 ); } p_interp = new double[m*interp_num]; for ( interp = 0; interp < interp_num; interp++ ) { t = t_interp[interp]; // // Find the interval [ TDATA(LEFT), TDATA(RIGHT) ] that contains, or is // nearest to, TVAL. // r8vec_bracket0 ( data_num, t_data, t, left, right ); for ( i = 0; i < m; i++ ) { p_interp[i+interp*m] = ( ( t_data[right] - t ) * p_data[i+left*m] + ( t - t_data[left] ) * p_data[i+right*m] ) / ( t_data[right] - t_data[left] ); } } return p_interp; } //****************************************************************************80 double *interp_nearest ( int m, int data_num, double t_data[], double p_data[], int interp_num, double t_interp[] ) //****************************************************************************80 // // Purpose: // // INTERP_NEAREST: Nearest neighbor interpolation to a curve in M dimensions. // // Discussion: // // From a space of M dimensions, we are given a sequence of // DATA_NUM points, which are presumed to be successive samples // from a curve of points P. // // We are also given a parameterization of this data, that is, // an associated sequence of DATA_NUM values of a variable T. // // Thus, we have a sequence of values P(T), where T is a scalar, // and each value of P is of dimension M. // // We are then given INTERP_NUM values of T, for which values P // are to be produced, by nearest neighbor interpolation. // // The user may request extrapolation. This occurs whenever // a T_INTERP value is less than the minimum T_DATA or greater than the // maximum T_DATA. In that case, extrapolation is used. // // The resulting interpolant is piecewise constant. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int DATA_NUM, the number of data points. // // Input, double T_DATA[DATA_NUM], the value of the // independent variable at the sample points. // // Input, double P_DATA[M*DATA_NUM], the value of the // dependent variables at the sample points. // // Input, int INTERP_NUM, the number of points // at which interpolation is to be done. // // Input, double T_INTERP[INTERP_NUM], the value of the // independent variable at the interpolation points. // // Output, double INTERP_NEAREST[M*DATA_NUM], the interpolated // values of the dependent variables at the interpolation points. // { int i; int jd; int ji; double *p_interp; // // For each interpolation point, find the index of the nearest data point. // p_interp = new double[m*interp_num]; for ( ji = 0; ji < interp_num; ji++ ) { jd = r8vec_sorted_nearest0 ( data_num, t_data, t_interp[ji] ); for ( i = 0; i < m; i++ ) { p_interp[i+ji*m] = p_data[i+jd*m]; } } return p_interp; } //****************************************************************************80 double *lagrange_value ( int data_num, double t_data[], int interp_num, double t_interp[] ) //****************************************************************************80 // // Purpose: // // LAGRANGE_VALUE evaluates the Lagrange polynomials. // // Discussion: // // Given DATA_NUM distinct abscissas, T_DATA(1:DATA_NUM), // the I-th Lagrange polynomial L(I)(T) is defined as the polynomial of // degree DATA_NUM - 1 which is 1 at T_DATA(I) and 0 at the DATA_NUM - 1 // other abscissas. // // A formal representation is: // // L(I)(T) = Product ( 1 <= J <= DATA_NUM, I /= J ) // ( T - T(J) ) / ( T(I) - T(J) ) // // This routine accepts a set of INTERP_NUM values at which all the Lagrange // polynomials should be evaluated. // // Given data values P_DATA at each of the abscissas, the value of the // Lagrange interpolating polynomial at each of the interpolation points // is then simple to compute by matrix multiplication: // // P_INTERP(1:INTERP_NUM) = // P_DATA(1:DATA_NUM) * L_INTERP(1:DATA_NUM,1:INTERP_NUM) // // or, in the case where P is multidimensional: // // P_INTERP(1:M,1:INTERP_NUM) = // P_DATA(1:M,1:DATA_NUM) * L_INTERP(1:DATA_NUM,1:INTERP_NUM) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int DATA_NUM, the number of data points. // DATA_NUM must be at least 1. // // Input, double T_DATA[DATA_NUM], the data points. // // Input, int INTERP_NUM, the number of // interpolation points. // // Input, double T_INTERP[INTERP_NUM], the // interpolation points. // // Output, double LAGRANGE_VALUE[DATA_NUM*INTERP_NUM], the values // of the Lagrange polynomials at the interpolation points. // { int i; int i1; int i2; int j; double *l_interp; l_interp = new double[data_num*interp_num]; // // Evaluate the polynomial. // for ( j = 0; j < interp_num; j++ ) { for ( i = 0; i < data_num; i++ ) { l_interp[i+j*data_num] = 1.0; } } for ( i1 = 0; i1 < data_num; i1++ ) { for ( i2 = 0; i2 < data_num; i2++ ) { if ( i1 != i2 ) { for ( j = 0; j < interp_num; j++ ) { l_interp[i1+j*data_num] = l_interp[i1+j*data_num] * ( t_interp[j] - t_data[i2] ) / ( t_data[i1] - t_data[i2] ); } } } } return l_interp; } //****************************************************************************80 double *ncc_abscissas ( int n ) //****************************************************************************80 // // Purpose: // // NCC_ABSCISSAS computes the Newton Cotes Closed abscissas. // // Discussion: // // The interval is [ -1, 1 ]. // // The abscissas are the equally spaced points between -1 and 1, // including the endpoints. // // If N is 1, however, the single abscissas is X = 0. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the rule. // // Output, double NCC_ABSCISSAS[N], the abscissas. // { int i; double *x; if ( n < 1 ) { cerr << "\n"; cerr << "NCC_ABSCISSAS - Fatal error\n"; cerr << " N < 1.\n"; exit ( 1 ); } x = new double[n]; if ( n == 1 ) { x[0] = 0.0; return x; } for ( i = 0; i < n; i++ ) { x[i] = ( ( double ) ( n - i - 1 ) * ( -1.0 ) + ( double ) ( i ) * ( +1.0 ) ) / ( double ) ( n - 1 ); } return x; } //****************************************************************************80 double *ncc_abscissas_ab ( double a, double b, int n ) //****************************************************************************80 // // Purpose: // // NCC_ABSCISSAS_AB computes the Newton Cotes Closed abscissas for [A,B]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2014 // // Author: // // John Burkardt // // Parameters: // // Input, double A, B, the endpoints of the interval. // // Input, int N, the order of the rule. // // Output, double NCC_ABSCISSAS_AB[N], the abscissas. // { int i; double *x; if ( n < 1 ) { cerr << "\n"; cerr << "NCC_ABSCISSAS_AB - Fatal error\n"; cerr << " N < 1.\n"; exit ( 1 ); } x = new double[n]; if ( n == 1 ) { x[0] = 0.5 * ( b + a ); return x; } for ( i = 0; i < n; i++ ) { x[i] = ( ( double ) ( n - i - 1 ) * ( a ) + ( double ) ( i ) * ( b ) ) / ( double ) ( n - 1 ); } return x; } //****************************************************************************80 double *nco_abscissas ( int n ) //****************************************************************************80 // // Purpose: // // NCO_ABSCISSAS computes the Newton Cotes Open abscissas. // // Discussion: // // The interval is [ -1, 1 ]. // // The abscissas are the equally spaced points between -1 and 1, // not including the endpoints. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the rule. // // Output, double NCO_ABSCISSAS[N], the abscissas. // { int i; double *x; if ( n < 1 ) { cerr << "\n"; cerr << "NCO_ABSCISSAS - Fatal error\n"; cerr << " N < 1.\n"; exit ( 1 ); } x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = ( ( double ) ( n - i ) * ( -1.0 ) + ( double ) ( i + 1 ) * ( +1.0 ) ) / ( double ) ( n + 1 ); } return x; } //****************************************************************************80 double *nco_abscissas_ab ( double a, double b, int n ) //****************************************************************************80 // // Purpose: // // NCO_ABSCISSAS_AB computes the Newton Cotes Open abscissas for [A,B]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2014 // // Author: // // John Burkardt // // Parameters: // // Input, double A, B, the endpoints of the interval. // // Input, int N, the order of the rule. // // Output, double NCO_ABSCISSAS_AB[N], the abscissas. // { int i; double *x; if ( n < 1 ) { cerr << "\n"; cerr << "NCO_ABSCISSAS_AB - Fatal error\n"; cerr << " N < 1.\n"; exit ( 1 ); } x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = ( ( double ) ( n - i ) * ( a ) + ( double ) ( i + 1 ) * ( b ) ) / ( double ) ( n + 1 ); } return x; } //****************************************************************************80 double *parameterize_arc_length ( int m, int data_num, double p_data[] ) //****************************************************************************80 // // Purpose: // // PARAMETERIZE_ARC_LENGTH parameterizes data by pseudo-arclength. // // Discussion: // // A parameterization is required for the interpolation. // // This routine provides a parameterization by computing the // pseudo-arclength of the data, that is, the Euclidean distance // between successive points. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int DATA_NUM, the number of data points. // // Input, double P_DATA[M*DATA_NUM], the data values. // // Output, double PARAMETERIZE_ARC_LENGTH[DATA_NUM], parameter values // assigned to the data. // { int i; int j; double t; double *t_data; t_data = new double[data_num]; t_data[0] = 0.0; for ( j = 1; j < data_num; j++ ) { t = 0.0; for ( i = 0; i < m; i++ ) { t = t + pow ( p_data[i+j*m] - p_data[i+(j-1)*m], 2 ); } t_data[j] = t_data[j-1] + sqrt ( t ); } return t_data; } //****************************************************************************80 double *parameterize_index ( int m, int data_num, double p_data[] ) //****************************************************************************80 // // Purpose: // // PARAMETERIZE_INDEX parameterizes data by its index. // // Discussion: // // A parameterization is required for the interpolation. // // This routine provides a naive parameterization by vector index. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 March 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int DATA_NUM, the number of data points. // // Input, double P_DATA[M*DATA_NUM], the data values. // // Output, double PARAMETERIZE_INDEX[DATA_NUM], parameter values // assigned to the data. // { int j; double *t_data; t_data = new double[data_num]; for ( j = 0; j < data_num; j++ ) { t_data[j] = ( double ) j; } return t_data; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = + x; } else { value = - x; } return value; } //****************************************************************************80 double *r8mat_expand_linear2 ( int m, int n, double a[], int m2, int n2 ) //****************************************************************************80 // // Purpose: // // R8MAT_EXPAND_LINEAR2 expands an R8MAT by linear interpolation. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // In this version of the routine, the expansion is indicated // by specifying the dimensions of the expanded array. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns in A. // // Input, double A(M,N), a "small" M by N array. // // Input, int M2, N2, the number of rows and columns in A2. // // Output, double R8MAT_EXPAND_LINEAR2[M2*N2], the expanded array, // which contains an interpolated version of the data in A. // { double *a2; int i; int i1; int i2; int j; int j1; int j2; double r; double r1; double r2; double s; double s1; double s2; a2 = new double[m2*n2]; for ( i = 1; i <= m2; i++ ) { if ( m2 == 1 ) { r = 0.5; } else { r = ( double ) ( i - 1 ) / ( double ) ( m2 - 1 ); } i1 = 1 + ( int ) ( r * ( double ) ( m - 1 ) ); i2 = i1 + 1; if ( m < i2 ) { i1 = m - 1; i2 = m; } r1 = ( double ) ( i1 - 1 ) / ( double ) ( m - 1 ); r2 = ( double ) ( i2 - 1 ) / ( double ) ( m - 1 ); for ( j = 1; j <= n2; j++ ) { if ( n2 == 1 ) { s = 0.5; } else { s = ( double ) ( j - 1 ) / ( double ) ( n2 - 1 ); } j1 = 1 + ( int ) ( s * ( double ) ( n - 1 ) ); j2 = j1 + 1; if ( n < j2 ) { j1 = n - 1; j2 = n; } s1 = ( double ) ( j1 - 1 ) / ( double ) ( n - 1 ); s2 = ( double ) ( j2 - 1 ) / ( double ) ( n - 1 ); a2[i-1+(j-1)*m2] = ( ( r2 - r ) * ( s2 - s ) * a[i1-1+(j1-1)*m] + ( r - r1 ) * ( s2 - s ) * a[i2-1+(j1-1)*m] + ( r2 - r ) * ( s - s1 ) * a[i1-1+(j2-1)*m] + ( r - r1 ) * ( s - s1 ) * a[i2-1+(j2-1)*m] ) / ( ( r2 - r1 ) * ( s2 - s1 ) ); } } return a2; } //****************************************************************************80 double *r8mat_mm_new ( int n1, int n2, int n3, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // R8MAT_MM_NEW multiplies two matrices. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // For this routine, the result is returned as the function value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, N3, the order of the matrices. // // Input, double A[N1*N2], double B[N2*N3], the matrices to multiply. // // Output, double R8MAT_MM_NEW[N1*N3], the product matrix C = A * B. // { double *c; int i; int j; int k; c = new double[n1*n3]; for ( i = 0; i < n1; i++ ) { for ( j = 0; j < n3; j++ ) { c[i+j*n1] = 0.0; for ( k = 0; k < n2; k++ ) { c[i+j*n1] = c[i+j*n1] + a[i+k*n1] * b[k+j*n2]; } } } return c; } //****************************************************************************80 bool r8vec_ascends_strictly ( int n, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_ASCENDS_STRICTLY determines if an R8VEC is strictly ascending. // // Discussion: // // An R8VEC is a vector of R8's. // // Notice the effect of entry number 6 in the following results: // // X = ( -8.1, 1.3, 2.2, 3.4, 7.5, 7.4, 9.8 ) // Y = ( -8.1, 1.3, 2.2, 3.4, 7.5, 7.5, 9.8 ) // Z = ( -8.1, 1.3, 2.2, 3.4, 7.5, 7.6, 9.8 ) // // R8VEC_ASCENDS_STRICTLY ( X ) = FALSE // R8VEC_ASCENDS_STRICTLY ( Y ) = FALSE // R8VEC_ASCENDS_STRICTLY ( Z ) = TRUE // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the size of the array. // // Input, double X[N], the array to be examined. // // Output, bool R8VEC_ASCENDS_STRICTLY, is TRUE if the // entries of X strictly ascend. // { int i; bool value; for ( i = 0; i < n - 1; i++ ) { if ( x[i+1] <= x[i] ) { value = false; return value; } } value = true; return value; } //****************************************************************************80 void r8vec_bracket0 ( int n, double x[], double xval, int &left, int &right ) //****************************************************************************80 // // Purpose: // // R8VEC_BRACKET0 searches a sorted array for successive brackets of a value. // // Discussion: // // An R8VEC is a vector of R8's. // // If the values in the vector are thought of as defining intervals // on the real line, then this routine searches for the interval // nearest to or containing the given value. // // It is always true that RIGHT = LEFT+1. // // If XVAL < X[0], then LEFT = 1, RIGHT = 2, and // XVAL < X[0] < X[1]; // If X(1) <= XVAL < X[N-1], then // X[LEFT-1] <= XVAL < X[RIGHT-1]; // If X[N-1] <= XVAL, then LEFT = N-1, RIGHT = N, and // X[LEFT-1] <= X[RIGHT-1] <= XVAL. // // For consistency, this routine computes indices RIGHT and LEFT // that are 1-based, although it would be more natural in C and // C++ to use 0-based values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 February 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, length of input array. // // Input, double X[N], an array that has been sorted into ascending order. // // Input, double XVAL, a value to be bracketed. // // Output, int &LEFT, &RIGHT, the results of the search. // { int i; for ( i = 2; i <= n - 1; i++ ) { if ( xval < x[i-1] ) { left = i - 2; right = i - 1; return; } } left = n - 2; right = n - 1; return; } //****************************************************************************80 double *r8vec_expand_linear ( int n, double x[], int fat ) //****************************************************************************80 // // Purpose: // // R8VEC_EXPAND_LINEAR linearly interpolates new data into an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of input data values. // // Input, double X[N], the original data. // // Input, int FAT, the number of data values to interpolate // between each pair of original data values. // // Output, double R8VEC_EXPAND_LINEAR[(N-1)*(FAT+1)+1], the "fattened" data. // { int i; int j; int k; double *xfat; xfat = new double[(n-1)*(fat+1)+1]; k = 0; for ( i = 0; i < n-1; i++ ) { xfat[k] = x[i]; k = k + 1; for ( j = 1; j <= fat; j++ ) { xfat[k] = ( ( double ) ( fat - j + 1 ) * x[i] + ( double ) ( j ) * x[i+1] ) / ( double ) ( fat + 1 ); k = k + 1; } } xfat[k] = x[n-1]; k = k + 1; return xfat; } //****************************************************************************80 double *r8vec_expand_linear2 ( int n, double x[], int before, int fat, int after ) //****************************************************************************80 // // Purpose: // // R8VEC_EXPAND_LINEAR2 linearly interpolates new data into an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // This routine starts with a vector of data. // // The intent is to "fatten" the data, that is, to insert more points // between successive values of the original data. // // There will also be extra points placed BEFORE the first original // value and AFTER that last original value. // // The "fattened" data is equally spaced between the original points. // // The BEFORE data uses the spacing of the first original interval, // and the AFTER data uses the spacing of the last original interval. // // Example: // // N = 3 // BEFORE = 3 // FAT = 2 // AFTER = 1 // // X = (/ 0.0, 6.0, 7.0 /) // XFAT = (/ -6.0, -4.0, -2.0, 0.0, 2.0, 4.0, 6.0, 6.33, 6.66, 7.0, 7.66 /) // 3 "BEFORE's" Old 2 "FATS" Old 2 "FATS" Old 1 "AFTER" // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of input data values. // N must be at least 2. // // Input, double X[N], the original data. // // Input, int BEFORE, the number of "before" values. // // Input, int FAT, the number of data values to interpolate // between each pair of original data values. // // Input, int AFTER, the number of "after" values. // // Output, double R8VEC_EXPAND_LINEAR2[BEFORE+(N-1)*(FAT+1)+1+AFTER], the // "fattened" data. // { int i; int j; int k; double *xfat; xfat = new double[before+(n-1)*(fat+1)+1+after]; k = 0; // // Points BEFORE. // for ( j = 1 - before + fat; j <= fat; j++ ) { xfat[k] = ( ( double ) ( fat - j + 1 ) * ( x[0] - ( x[1] - x[0] ) ) + ( double ) ( j ) * x[0] ) / ( double ) ( fat + 1 ); k = k + 1; } // // Original points and FAT points. // for ( i = 0; i < n - 1; i++ ) { xfat[k] = x[0]; k = k + 1; for ( j = 1; j <= fat; j++ ) { xfat[k] = ( ( double ) ( fat - j + 1 ) * x[i] + ( double ) ( j ) * x[i+1] ) / ( double ) ( fat + 1 ); k = k + 1; } } xfat[k] = x[n-1]; k = k + 1; // // Points AFTER. // for ( j = 1; j <= after; j++ ) { xfat[k] = ( ( double ) ( fat - j + 1 ) * x[n-1] + ( double ) ( j ) * ( x[n-1] + ( x[n-1] - x[n-2] ) ) ) / ( double ) ( fat + 1 ); k = k + 1; } return xfat; } //****************************************************************************80 int r8vec_sorted_nearest0 ( int n, double a[], double value ) //****************************************************************************80 // // Purpose: // // R8VEC_SORTED_NEAREST0 returns the nearest element in a sorted R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Input, double A[N], a sorted vector. // // Input, double VALUE, the value whose nearest vector entry is sought. // // Output, int R8VEC_SORTED_NEAREST0, the index of the nearest // entry in the vector. // { int hi; int lo; int mid; if ( n < 1 ) { return (-1); } if ( n == 1 ) { return 0; } if ( a[0] < a[n-1] ) { if ( value < a[0] ) { return 0; } else if ( a[n-1] < value ) { return n - 1; } // // Seek an interval containing the value. // lo = 1; hi = n; while ( lo < hi - 1 ) { mid = ( lo + hi ) / 2; if ( value == a[mid-1] ) { return mid - 1; } else if ( value < a[mid-1] ) { hi = mid; } else { lo = mid; } } // // Take the nearest. // if ( r8_abs ( value - a[lo-1] ) < r8_abs ( value - a[hi-1] ) ) { return lo - 1; } else { return hi - 1; } } // // A descending sorted vector A. // else { if ( value < a[n-1] ) { return n - 1; } else if ( a[0] < value ) { return 0; } // // Seek an interval containing the value. // lo = n; hi = 1; while ( lo < hi - 1 ) { mid = ( lo + hi ) / 2; if ( value == a[mid-1] ) { return mid - 1; } else if ( value < a[mid-1] ) { hi = mid - 1; } else { lo = mid - 1; } } // // Take the nearest. // if ( r8_abs ( value - a[lo-1] ) < r8_abs ( value - a[hi-1] ) ) { return lo - 1; } else { return hi - 1; } } } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }