# include # include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); int i4_max ( int i1, int i2 ); int i4_min ( int i1, int i2 ); int i4_modp ( int i, int j ); int i4_wrap ( int ival, int ilo, int ihi ); void ising_2d_agree ( int m, int n, int c1[], int c5[] ); int *ising_2d_initialize ( int m, int n, double thresh, int *seed ); void ising_2d_stats ( int step, int m, int n, int c1[] ); void neighbor_2d_stats ( int step, int m, int n, int c1[], int c5[] ); void plot_file ( int m, int n, int c1[], string title, string plot_filename, string png_filename ); void r8mat_uniform_01 ( int m, int n, int *seed, double r[] ); void timestamp ( ); void transition ( int m, int n, int iterations, double prob[], double thresh, int *seed, int c1[] ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for ISING_2D_SIMULATION. // // Usage: // // ising_2d_simulation m n iterations thresh seed // // * M, N, the number of rows and columns. // * ITERATIONS, the number of iterations. // * THRESH, the threshhold. // * SEED, a seed for the random number generator. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 June 2013 // // Author: // // John Burkardt // { int *c1; int i; int iterations; int m; int n; string plot_filename = "ising_2d_final.txt"; string png_filename = "ising_2d_final.png"; double prob[5] = { 0.98, 0.85, 0.50, 0.15, 0.02 }; int seed; double thresh; string title = "Final Configuration"; timestamp ( ); cout << "\n"; cout << "ISING_2D_SIMULATION\n"; cout << " C++ version\n"; cout << " Monte Carlo simulation of a 2D Ising model.\n"; // // Get input. // if ( 1 < argc ) { m = atoi ( argv[1] ); } else { m = 10; } if ( 2 < argc ) { n = atoi ( argv[2] ); } else { n = 10; } if ( 3 < argc ) { iterations = atoi ( argv[3] ); } else { iterations = 15; } if ( 4 < argc ) { thresh = atof ( argv[4] ); } else { thresh = 0.50; } if ( 5 < argc ) { seed = atoi ( argv[5] ); } else { seed = 123456789; } cout << "\n"; cout << " The number of rows is M = " << m << "\n"; cout << " The number of columns is N = " << n << "\n"; cout << " The number of iterations taken is ITERATIONS = " << iterations << "\n"; cout << " The threshhold THRESH = " << thresh << "\n"; cout << " The seed SEED = " << seed << "\n"; cout << "\n"; cout << " The transition probability table, based on the number of\n"; cout << " neighbors with the same spin.\n"; cout << "\n"; cout << " 1 2 3 4 5\n"; cout << "\n"; for ( i = 0; i < 5; i++ ) { cout << setw(10) << prob[i]; } cout << "\n"; // // Initialize the system. // c1 = ising_2d_initialize ( m, n, thresh, &seed ); // // Write the initial state to a gnuplot file. // plot_file ( m, n, c1, "Initial Configuration", "ising_2d_initial.txt", "ising_2d_initial.png" ); // // Do the simulation. // transition ( m, n, iterations, prob, thresh, &seed, c1 ); // // Write the final state to a gnuplot file. // plot_file ( m, n, c1, title, plot_filename, png_filename ); // // Free memory. // free ( c1 ); // // Terminate. // cout << "\n"; cout << "ISING_2D_SIMULATION\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_modp ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_MODP returns the nonnegative remainder of I4 division. // // Discussion: // // If // NREM = I4_MODP ( I, J ) // NMULT = ( I - NREM ) / J // then // I = J * NMULT + NREM // where NREM is always nonnegative. // // The MOD function computes a result with the same sign as the // quantity being divided. Thus, suppose you had an angle A, // and you wanted to ensure that it was between 0 and 360. // Then mod(A,360) would do, if A was positive, but if A // was negative, your result would be between -360 and 0. // // On the other hand, I4_MODP(A,360) is between 0 and 360, always. // // I J MOD I4_MODP I4_MODP Factorization // // 107 50 7 7 107 = 2 * 50 + 7 // 107 -50 7 7 107 = -2 * -50 + 7 // -107 50 -7 43 -107 = -3 * 50 + 43 // -107 -50 -7 43 -107 = 3 * -50 + 43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number to be divided. // // Input, int J, the number that divides I. // // Output, int I4_MODP, the nonnegative remainder when I is // divided by J. // { int value; if ( j == 0 ) { cerr << "\n"; cerr << "I4_MODP - Fatal error!\n"; cerr << " I4_MODP ( I, J ) called with J = " << j << "\n"; exit ( 1 ); } value = i % j; if ( value < 0 ) { value = value + abs ( j ); } return value; } //****************************************************************************80 int i4_wrap ( int ival, int ilo, int ihi ) //****************************************************************************80 // // Purpose: // // I4_WRAP forces an I4 to lie between given limits by wrapping. // // Example: // // ILO = 4, IHI = 8 // // I Value // // -2 8 // -1 4 // 0 5 // 1 6 // 2 7 // 3 8 // 4 4 // 5 5 // 6 6 // 7 7 // 8 8 // 9 4 // 10 5 // 11 6 // 12 7 // 13 8 // 14 4 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int IVAL, an integer value. // // Input, int ILO, IHI, the desired bounds for the integer value. // // Output, int I4_WRAP, a "wrapped" version of IVAL. // { int jhi; int jlo; int value; int wide; jlo = i4_min ( ilo, ihi ); jhi = i4_max ( ilo, ihi ); wide = jhi + 1 - jlo; if ( wide == 1 ) { value = jlo; } else { value = jlo + i4_modp ( ival - jlo, wide ); } return value; } //****************************************************************************80 void ising_2d_agree ( int m, int n, int c1[], int c5[] ) //****************************************************************************80 // // Purpose: // // ISING_2D_AGREE returns the number of neighbors agreeing with each cell. // // Discussion: // // The count includes the cell itself, so it is between 1 and 5. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 Noveber 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of cells in each // spatial dimension. // // Input, int C1[M*N], an array of 1's and -1's. // // Output, int C5[M*N], the number of neighbors // that agree. 1, 2, 3, 4, or 5. // { int i; int im; int ip; int j; int jm; int jp; for ( j = 0; j < n; j++ ) { jp = i4_wrap ( j + 1, 0, n - 1 ); jm = i4_wrap ( j - 1, 0, n - 1 ); for ( i = 0; i < m; i++ ) { ip = i4_wrap ( i + 1, 0, m - 1 ); im = i4_wrap ( i - 1, 0, m - 1 ); c5[i+j*m] = c1[i+j*m] + c1[ip+j*m] + c1[im+j*m] + c1[i+jm*m] + c1[i+jp*m]; if ( 0 < c1[i+j*m] ) { c5[i+j*m] = ( 5 + c5[i+j*m] ) / 2; } else { c5[i+j*m] = ( 5 - c5[i+j*m] ) / 2; } } } return; } //****************************************************************************80 int *ising_2d_initialize ( int m, int n, double thresh, int *seed ) //****************************************************************************80 // // Purpose: // // ISING_2D_INITIALIZE initializes the Ising array. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 November 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double THRESH, the threshhold. // // Input/output, int *SEED, a seed for the random // number generator. // // Output, in ISING_2D_INITIALIZE[M*N], the initial Ising array. // { int *c1; int i; int j; double *r; r = new double[m*n]; r8mat_uniform_01 ( m, n, seed, r ); c1 = new int[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( r[i+j*m] <= thresh ) { c1[i+j*m] = -1; } else { c1[i+j*m] = +1; } } } delete [] r; return c1; } //****************************************************************************80 void ising_2d_stats ( int step, int m, int n, int c1[] ) //****************************************************************************80 // // Purpose: // // ISING_2D_STATS prints information about the current step. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 November 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int STEP, the step number. // // Input, int M, N, the number of rows and columns. // // Input, int C1[M*N], the current state of the system. // { int i; int j; int pos_count; double pos_percent; int neg_count; double neg_percent; if ( step == 0 ) { cout << "\n"; cout << " Step Positives Negatives\n"; cout << " # %% # %%\n"; cout << "\n"; } pos_count = 0; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( 0 < c1[i+j*m] ) { pos_count = pos_count + 1; } } } neg_count = m * n - pos_count; pos_percent = ( double ) ( 100 * pos_count ) / ( double ) ( m * n ); neg_percent = ( double ) ( 100 * neg_count ) / ( double ) ( m * n ); cout << " " << setw(4) << step << " " << setw(6) << pos_count << " " << setw(6) << pos_percent << " " << setw(6) << neg_count << " " << setw(6) << neg_percent << "\n"; return; } //****************************************************************************80 void neighbor_2d_stats ( int step, int m, int n, int c1[], int c5[] ) //****************************************************************************80 /* Purpose: NEIGHBOR_2D_STATS prints neighbor statistics about the current step. Licensing: This code is distributed under the GNU LGPL license. Modified: 23 November 2011 Author: John Burkardt Parameters: Input, int STEP, the step number. Input, int M, N, the number of rows and columns. Input, int C1[M*N], the current state of the system. Input, int C5[M*N], the number of agreeable neighbors. */ { int i; int j; int stats[11]; if ( step == 0 ) { cout << "\n"; cout << " Step Neighborhood Charge:\n"; cout << " -5 -4 -3 -2 -1 +1 +2 +3 +4 +5\n"; cout << "\n"; } for ( i = - 5; i <= 5; i++ ) { stats[i+5] = 0; } for (j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { stats[c5[i+j*m]-1+5] = stats[c5[i+j*m]-1+5] + 1; } } cout << " " << setw(4) << step; for ( i = - 5; i <= 5; i++ ) { if ( i != 0 ) { cout << " " << setw(4) << stats[i+5]; } } cout << "\n"; return; } //****************************************************************************80 void plot_file ( int m, int n, int c1[], string title, string plot_filename, string png_filename ) //****************************************************************************80 // // Purpose: // // PLOT_FILE writes the current configuration to a GNUPLOT plot file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 June 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int C1[M*N], the current state of the system. // // Input, string TITLE, a title for the plot. // // Input, string PLOT_FILENAME, a name for the GNUPLOT // command file to be created. // // Input, string PNG_FILENAME, the name of the PNG graphics // file to be created. // { int i; int j; ofstream plot_unit; double ratio; int x1; int x2; int y1; int y2; plot_unit.open ( plot_filename.c_str ( ) ); ratio = ( double ) ( n ) / ( double ) ( m ); plot_unit << "set term png\n"; plot_unit << "set output \"" << png_filename << "\"\n"; plot_unit << "set xrange [ 0 : " << m << " ]\n"; plot_unit << "set yrange [ 0 : " << n << " ]\n"; plot_unit << "set nokey\n"; plot_unit << "set title \"" << title << "\"\n"; plot_unit << "unset tics\n"; plot_unit << "set size ratio " << ratio << "\n"; for ( j = 0; j < n; j++ ) { y1 = j; y2 = j + 1; for ( i = 0; i < m; i++ ) { x1 = m - i - 1; x2 = m - i; if ( c1[i+j*m] < 0 ) { plot_unit << "set object rectangle from " << x1 << "," << y1 << " to " << x2 << "," << y2 << " fc rgb 'blue'\n"; } else { plot_unit << "set object rectangle from " << x1 << "," << y1 << " to " << x2 << "," << y2 << " fc rgb 'red'\n"; } } } plot_unit << "plot 1\n"; plot_unit << "quit\n"; plot_unit.close ( ); cout << "\n"; cout << " Created the gnuplot graphics file \"" << plot_filename << "\"\n"; return; } //****************************************************************************80 void r8mat_uniform_01 ( int m, int n, int *seed, double r[] ) //****************************************************************************80 // // Purpose: // // R8MAT_UNIFORM_01 returns a unit pseudorandom R8MAT. // // Discussion: // // An R8MAT is an array of R8's. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int *SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has // been updated. // // Output, double R[M*N], a matrix of pseudorandom values. // { int i; int i4_huge = 2147483647; int j; int k; if ( *seed == 0 ) { cerr << "\n"; cerr << "R8MAT_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } r[i+j*m] = ( double ) ( *seed ) * 4.656612875E-10; } } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 void transition ( int m, int n, int iterations, double prob[], double thresh, int *seed, int c1[] ) //****************************************************************************80 // // Purpose: // // TRANSITION carries out a Monte Carlo simulation of a 3D Ising model. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 June 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int ITERATIONS, the number of iterations. // // Input, double PROB[5]. PROB[I-1] represents the probability // that the spin of a given cell will be reversed, given that it has I // immediate neighbors (including itself) with spin the same as its own. // // Input, double THRESH, the threshhold. // // Input/output, int *SEED, a seed for the random number // generator. // // Input/output, int C1[M*N], the current state. { int *c5; int i; int j; double *r; int step; c5 = new int[m*n]; r = new double[m*n]; step = 0; ising_2d_stats ( step, m, n, c1 ); for ( step = 1; step <= iterations; step++ ) { // // C5 contains 1 through 5, the number of cells that agree with the center cell. // ising_2d_agree ( m, n, c1, c5 ); if ( 0 ) { neighbor_2d_stats ( step, m, n, c1, c5 ); } // // Determine the chances of flipping cell (I,J). // r8mat_uniform_01 ( m, n, seed, r ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( r[i+j*m] < prob[c5[i+j*m]-1] ) { c1[i+j*m] = - c1[i+j*m]; } } } ising_2d_stats ( step, m, n, c1 ); } delete [] c5; delete [] r; return; }