# include # include # include # include # include # include using namespace std; # include "knapsack_01.hpp" //****************************************************************************80 int *knapsack_01 ( int n, int w[], int c ) //****************************************************************************80 // // Purpose: // // KNAPSACK_01 seeks a solution of the 0/1 Knapsack problem. // // Discussion: // // In the 0/1 knapsack problem, a knapsack of capacity C is given, // as well as N items, with the I-th item of weight W(I). // // A selection is "acceptable" if the total weight is no greater than C. // // It is desired to find an optimal acceptable selection, that is, // an acceptable selection such that there is no acceptable selection // of greater weight. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 August 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of weights. // // Input, inte W[N], the weights. // // Input, int C, the maximum weight. // // Output, int KNAPSACK_01[N], is a binary vector which defines an // optimal selection. It is 1 for the weights to be selected, and // 0 otherwise. // { int i; int iadd; bool more; int ncard; int *s; int *s_test; int t; int t_test; s = new int[n]; s_test = new int[n]; more = false; ncard = 0; for ( i = 0; i < n; i++ ) { s_test[i] = 0; } t_test = 0; for ( i = 0; i < n; i++ ) { s[i] = s_test[i]; } t = 0; for ( ; ; ) { subset_gray_next ( n, s_test, more, ncard, iadd ); t_test = 0; for ( i = 0; i < n; i++ ) { t_test = t_test + s_test[i] * w[i]; } if ( t < t_test && t_test <= c ) { t = t_test; for ( i = 0; i < n; i++ ) { s[i] = s_test[i]; } } if ( ! more ) { break; } } delete [] s_test; return s; } //****************************************************************************80 void subset_gray_next ( int n, int a[], bool &more, int &ncard, int &iadd ) //****************************************************************************80 // // Purpose: // // SUBSET_GRAY_NEXT generates all subsets of a set of order N, one at a time. // // Discussion: // // It generates the subsets one at a time, by adding or subtracting // exactly one element on each step. // // The user should set MORE = .FALSE. and the value of N before // the first call. On return, the user may examine A which contains // the definition of the new subset, and must check .MORE., because // as soon as it is .FALSE. on return, all the subsets have been // generated and the user probably should cease calling. // // The first set returned is the empty set. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 May 2003 // // Author: // // Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt. // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms for Computers and Calculators, // Second Edition, // Academic Press, 1978, // ISBN: 0-12-519260-6, // LC: QA164.N54. // // Parameters: // // Input, int N, the order of the total set from which // subsets will be drawn. // // Input/output, int A[N]. On each return, the Gray code for the newly // generated subset. A[I] = 0 if element I is in the subset, 1 otherwise. // // Input/output, bool &MORE. Set this variable FALSE before // the first call. Normally, MORE will be returned TRUE but once // all the subsets have been generated, MORE will be // reset FALSE on return and you should stop calling the program. // // Input/output, int &NCARD, the cardinality of the set returned, // which may be any value between 0 (the empty set) and N (the // whole set). // // Output, int &IADD, the element which was added or removed to the // previous subset to generate the current one. Exception: // the empty set is returned on the first call, and IADD is set to -1. { int i; // // First set returned is the empty set. // if ( !more ) { for ( i = 0; i < n; i++ ) { a[i] = 0; } iadd = 0; ncard = 0; more = true; } else { iadd = 1; if ( ( ncard % 2 ) != 0 ) { for ( ; ; ) { iadd = iadd + 1; if ( a[iadd-2] != 0 ) { break; } } } a[iadd-1] = 1 - a[iadd-1]; ncard = ncard + 2 * a[iadd-1] - 1; // // Last set returned is the singleton A(N). // if ( ncard == a[n-1] ) { more = false; } } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }