# include # include # include # include # include # include using namespace std; # include "lagrange_interp_1d.hpp" # include "test_interp_1d.hpp" # include "r8lib.hpp" int main ( ); void test02 ( int prob, int nd ); void test03 ( int prob, int nd ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for LAGRANGE_INTERP_1D_PRB. // // Discussion: // // LAGRANGE_INTERP_1D_PRB tests the LAGRANGE_INTERP_1D library. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 October 2012 // // Author: // // John Burkardt // { int nd_test_num = 6; int j; int nd; int nd_test[6] = { 4, 8, 16, 32, 64, 256 }; int prob; int prob_num; timestamp ( ); cout << "\n"; cout << "LAGRANGE_INTERP_1D_PRB:\n"; cout << " C++ version\n"; cout << " Test the LAGRANGE_INTERP_1D library.\n"; cout << " The R8LIB library is needed.\n"; cout << " These tests need the TEST_INTERP_1D library.\n"; prob_num = p00_prob_num ( ); for ( prob = 1; prob <= prob_num; prob++ ) { for ( j = 0; j < nd_test_num; j++ ) { nd = nd_test[j]; test02 ( prob, nd ); } } for ( prob = 1; prob <= prob_num; prob++ ) { for ( j = 0; j < nd_test_num; j++ ) { nd = nd_test[j]; test03 ( prob, nd ); } } // // Terminate. // cout << "\n"; cout << "LAGRANGE_INTERP_1D_PRB:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void test02 ( int prob, int nd ) //*****************************************************************************80 // // Purpose: // // TEST02 tests LAGRANGE_VALUE_1D with evenly spaced data. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 September 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int PROB, the problem index. // // Input, int ND, the number of data points to use. // { double a; double b; int i; double int_error; double ld; double li; int ni; double *xd; double *xi; double *yd; double *yi; double ymax; double ymin; cout << "\n"; cout << "TEST02:\n"; cout << " Interpolate data from TEST_INTERP_1D problem #" << prob << "\n"; cout << " Use even spacing for data points.\n"; cout << " Number of data points = " << nd << "\n"; a = 0.0; b = 1.0; xd = r8vec_linspace_new ( nd, a, b ); yd = p00_f ( prob, nd, xd ); if ( nd < 10 ) { r8vec2_print ( nd, xd, yd, " Data array:" ); } // // #1: Does interpolant match function at interpolation points? // ni = nd; xi = r8vec_copy_new ( ni, xd ); yi = lagrange_value_1d ( nd, xd, yd, ni, xi ); int_error = r8vec_norm_affine ( nd, yi, yd ) / ( double ) ( ni ); cout << "\n"; cout << " L2 interpolation error averaged per interpolant node = " << int_error << "\n"; delete [] xi; delete [] yi; // // #2: Compare estimated curve length to piecewise linear (minimal) curve length. // Assume data is sorted, and normalize X and Y dimensions by (XMAX-XMIN) and // (YMAX-YMIN). // ymin = r8vec_min ( nd, yd ); ymax = r8vec_max ( nd, yd ); ni = 501; xi = r8vec_linspace_new ( ni, a, b ); yi = lagrange_value_1d ( nd, xd, yd, ni, xi ); ld = 0.0; for ( i = 0; i < nd - 1; i++ ) { ld = ld + sqrt ( pow ( ( xd[i+1] - xd[i] ) / ( b - a ), 2 ) + pow ( ( yd[i+1] - yd[i] ) / ( ymax - ymin ), 2 ) ); } li = 0.0; for ( i = 0; i < ni - 1; i++ ) { li = li + sqrt ( pow ( ( xi[i+1] - xi[i] ) / ( b - a ), 2 ) + pow ( ( yi[i+1] - yi[i] ) / ( ymax - ymin ), 2 ) ); } cout << "\n"; cout << " Normalized length of piecewise linear interpolant = " << ld << "\n"; cout << " Normalized length of polynomial interpolant = " << li << "\n"; delete [] xd; delete [] xi; delete [] yd; delete [] yi; return; } //****************************************************************************80 void test03 ( int prob, int nd ) //*****************************************************************************80 // // Purpose: // // TEST03 tests LAGRANGE_VALUE_1D with Chebyshev spaced data. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 September 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int PROB, the problem index. // // Input, int ND, the number of data points to use. // { double a; double b; int i; double int_error; double ld; double li; int ni; double *xd; double *xi; double *yd; double *yi; double ymax; double ymin; cout << "\n"; cout << "TEST02:\n"; cout << " Interpolate data from TEST_INTERP_1D problem #" << prob << "\n"; cout << " Use Chebyshev spacing for data points.\n"; cout << " Number of data points = " << nd << "\n"; a = 0.0; b = 1.0; xd = r8vec_chebyspace_new ( nd, a, b ); yd = p00_f ( prob, nd, xd ); if ( nd < 10 ) { r8vec2_print ( nd, xd, yd, " Data array:" ); } // // #1: Does interpolant match function at interpolation points? // ni = nd; xi = r8vec_copy_new ( ni, xd ); yi = lagrange_value_1d ( nd, xd, yd, ni, xi ); int_error = r8vec_norm_affine ( nd, yi, yd ) / ( double ) ( ni ); cout << "\n"; cout << " L2 interpolation error averaged per interpolant node = " << int_error << "\n"; delete [] xi; delete [] yi; // // #2: Compare estimated curve length to piecewise linear (minimal) curve length. // Assume data is sorted, and normalize X and Y dimensions by (XMAX-XMIN) and // (YMAX-YMIN). // ymin = r8vec_min ( nd, yd ); ymax = r8vec_max ( nd, yd ); ni = 501; xi = r8vec_linspace_new ( ni, a, b ); yi = lagrange_value_1d ( nd, xd, yd, ni, xi ); ld = 0.0; for ( i = 0; i < nd - 1; i++ ) { ld = ld + sqrt ( pow ( ( xd[i+1] - xd[i] ) / ( b - a ), 2 ) + pow ( ( yd[i+1] - yd[i] ) / ( ymax - ymin ), 2 ) ); } li = 0.0; for ( i = 0; i < ni - 1; i++ ) { li = li + sqrt ( pow ( ( xi[i+1] - xi[i] ) / ( b - a ), 2 ) + pow ( ( yi[i+1] - yi[i] ) / ( ymax - ymin ), 2 ) ); } cout << "\n"; cout << " Normalized length of piecewise linear interpolant = " << ld << "\n"; cout << " Normalized length of polynomial interpolant = " << li << "\n"; delete [] xd; delete [] xi; delete [] yd; delete [] yi; return; }