# include # include # include # include # include using namespace std; # include "lagrange_interp_nd.hpp" //****************************************************************************80 double *cc_compute_points ( int n ) //****************************************************************************80 // // Purpose: // // CC_COMPUTE_POINTS computes Clenshaw Curtis quadrature points. // // Discussion: // // Our convention is that the abscissas are numbered from left to right. // // This rule is defined on [-1,1]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 September 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the rule. // // Output, double CC_COMPUTE_POINTS[N], the abscissas. // { int i; double pi = 3.141592653589793; double *x; if ( n < 1 ) { cerr << "\n"; cerr << "CC_COMPUTE_POINTS - Fatal error!\n"; cerr << " N < 1.\n"; exit ( 1 ); } x = new double[n]; if ( n == 1 ) { x[0] = 0.0; } else { for ( i = 1; i <= n; i++ ) { x[i-1] = cos ( ( double ) ( n - i ) * pi / ( double ) ( n - 1 ) ); } x[0] = -1.0; if ( ( n % 2 ) == 1 ) { x[(n-1)/2] = 0.0; } x[n-1] = +1.0; } return x; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 int i4vec_product ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_PRODUCT multiplies the entries of an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Example: // // Input: // // A = ( 1, 2, 3, 4 ) // // Output: // // I4VEC_PRODUCT = 24 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, int A[N], the vector // // Output, int I4VEC_PRODUCT, the product of the entries of A. // { int i; int product; product = 1; for ( i = 0; i < n; i++ ) { product = product * a[i]; } return product; } //****************************************************************************80 double *lagrange_base_1d ( int nd, double xd[], int ni, double xi[] ) //****************************************************************************80 // // Purpose: // // LAGRANGE_BASE_1D evaluates the Lagrange basis polynomials. // // Discussion: // // Given ND distinct abscissas, XD(1:ND), // the I-th Lagrange basis polynomial LB(I)(T) is defined as the polynomial of // degree ND - 1 which is 1 at XD(I) and 0 at the ND - 1 // other abscissas. // // A formal representation is: // // LB(I)(T) = Product ( 1 <= J <= ND, I /= J ) // ( T - T(J) ) / ( T(I) - T(J) ) // // This routine accepts a set of NI values at which all the Lagrange // basis polynomials should be evaluated. // // Given data values YD at each of the abscissas, the value of the // Lagrange interpolating polynomial at each of the interpolation points // is then simple to compute by matrix multiplication: // // YI(1:NI) = LB(1:NI,1:ND) * YD(1:ND) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 September 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int ND, the number of data points. // ND must be at least 1. // // Input, double XD[ND], the data points. // // Input, int NI, the number of interpolation points. // // Input, double XI[NI], the interpolation points. // // Output, double LAGRANGE_BASIS[NI*ND], the values // of the Lagrange basis polynomials at the interpolation points. // { int i; int j; int k; double *lb; // // Evaluate the polynomial. // lb = new double[ni*nd]; for ( j = 0; j < nd; j++ ) { for ( i = 0; i < ni; i++ ) { lb[i+j*ni] = 1.0; } } for ( i = 0; i < nd; i++ ) { for ( j = 0; j < nd; j++ ) { if ( j != i ) { for ( k = 0; k < ni; k++ ) { lb[k+i*ni] = lb[k+i*ni] * ( xi[k] - xd[j] ) / ( xd[i] - xd[j] ); } } } } return lb; } //****************************************************************************80 double *lagrange_interp_nd_grid ( int m, int n_1d[], double a[], double b[], int nd ) //****************************************************************************80 // // Purpose: // // LAGRANGE_INTERP_ND_GRID sets an M-dimensional Lagrange interpolant grid. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 September 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N_1D[M], the order of the 1D rule to be used // in each dimension. // // Input, double A[M], B[M], the lower and upper limits. // // Input, int ND, the number of points in the product grid. // // Output, double LAGRANGE_INTERP_ND_GRID[M*ND], the points at which data // is to be sampled. // { int i; int j; int n; double *x_1d; double *xd; // // Compute the data points. // xd = new double[m*nd]; for ( j = 0; j < nd; j++ ) { for ( i = 0; i < m; i++ ) { xd[i+j*m] = 0.0; } } for ( i = 0; i < m; i++ ) { n = n_1d[i]; x_1d = cc_compute_points ( n ); for ( j = 0; j < n; j++ ) { x_1d[j] = 0.5 * ( ( 1.0 - x_1d[j] ) * a[i] + ( 1.0 + x_1d[j] ) * b[i] ); } r8vec_direct_product ( i, n, x_1d, m, nd, xd ); delete [] x_1d; } return xd; } //****************************************************************************80 double *lagrange_interp_nd_grid2 ( int m, int ind[], double a[], double b[], int nd ) //****************************************************************************80 // // Purpose: // // LAGRANGE_INTERP_ND_GRID2 sets an M-dimensional Lagrange interpolant grid. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 September 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int IND[M], the index or level of the 1D rule // to be used in each dimension. // // Input, double A[M], B[M], the lower and upper limits. // // Input, int ND, the number of points in the product grid. // // Output, double LAGRANGE_INTERP_ND_GRID2[M*ND], the points at which data // was sampled. // { int i; int j; int n; double *x_1d; double *xd; // // Compute the data points. // xd = new double[m*nd]; for ( j = 0; j < nd; j++ ) { for ( i = 0; i < m; i++ ) { xd[i+j*m] = 0.0; } } for ( i = 0; i < m; i++ ) { n = order_from_level_135 ( ind[i] ); x_1d = cc_compute_points ( n ); for ( j = 0; j < n; j++ ) { x_1d[j] = 0.5 * ( ( 1.0 - x_1d[j] ) * a[i] + ( 1.0 + x_1d[j] ) * b[i] ); } r8vec_direct_product ( i, n, x_1d, m, nd, xd ); delete [] x_1d; } return xd; } //****************************************************************************80 int lagrange_interp_nd_size ( int m, int n_1d[] ) //****************************************************************************80 // // Purpose: // // LAGRANGE_INTERP_ND_SIZE sizes an M-dimensional Lagrange interpolant. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 September 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N_1D[M], the order of the 1D rule to be used // in each dimension. // // Output, int LAGRANGE_INTERP_ND_SIZE, the number of points in the product grid. // { int nd; // // Determine the number of data points. // nd = i4vec_product ( m, n_1d ); return nd; } //****************************************************************************80 int lagrange_interp_nd_size2 ( int m, int ind[] ) //****************************************************************************80 // // Purpose: // // LAGRANGE_INTERP_ND_SIZE2 sizes an M-dimensional Lagrange interpolant. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 September 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int IND[M], the index or level of the 1D rule // to be used in each dimension. // // Output, int LAGRANGE_INTERP_ND_SIZE2, the number of points in the product grid. // { int i; int n; int nd; // // Determine the number of data points. // nd = 1; for ( i = 0; i < m; i++ ) { n = order_from_level_135 ( ind[i] ); nd = nd * n; } return nd; } //****************************************************************************80 double *lagrange_interp_nd_value ( int m, int n_1d[], double a[], double b[], int nd, double zd[], int ni, double xi[] ) //****************************************************************************80 // // Purpose: // // LAGRANGE_INTERP_ND_VALUE evaluates an ND Lagrange interpolant. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 September 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N_1D[M], the order of the 1D rule to be used // in each dimension. // // Input, double A[M], B[M], the lower and upper limits. // // Input, int ND, the number of points in the product grid. // // Input, double ZD[ND], the function evaluated at the points XD. // // Input, int NI, the number of points at which the // interpolant is to be evaluated. // // Input, double XI[M*NI], the points at which the interpolant is // to be evaluated. // // Output, double LAGRANGE_INTERP_ND_VALUE[NI], the interpolant evaluated // at the points XI. // { int i; int j; int k; int n; double *value; double *w; double *x_1d; double *zi; w = new double[nd]; zi = new double[ni]; for ( j = 0; j < ni; j++ ) { for ( i = 0; i < nd; i++ ) { w[i] = 1.0; } for ( i = 0; i < m; i++ ) { n = n_1d[i]; x_1d = cc_compute_points ( n ); for ( k = 0; k < n; k++ ) { x_1d[k] = 0.5 * ( ( 1.0 - x_1d[k] ) * a[i] + ( 1.0 + x_1d[k] ) * b[i] ); } value = lagrange_base_1d ( n, x_1d, 1, xi+i+j*m ); r8vec_direct_product2 ( i, n, value, m, nd, w ); delete [] value; delete [] x_1d; } zi[j] = r8vec_dot_product ( nd, w, zd ); } delete [] w; return zi; } //****************************************************************************80 double *lagrange_interp_nd_value2 ( int m, int ind[], double a[], double b[], int nd, double zd[], int ni, double xi[] ) //****************************************************************************80 // // Purpose: // // LAGRANGE_INTERP_ND_VALUE2 evaluates an ND Lagrange interpolant. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 September 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int IND[M], the index or level of the 1D rule // to be used in each dimension. // // Input, double A[M], B[M], the lower and upper limits. // // Input, int ND, the number of points in the product grid. // // Input, double ZD[ND], the function evaluated at the points XD. // // Input, int NI, the number of points at which the // interpolant is to be evaluated. // // Input, double XI[M*NI], the points at which the interpolant // is to be evaluated. // // Output, double ZI[NI], the interpolant evaluated at the // points XI. // { int i; int j; int k; int n; double *value; double *w; double *x_1d; double *zi; w = new double[nd]; zi = new double[ni]; for ( j = 0; j < ni; j++ ) { for ( i = 0; i < nd; i++ ) { w[i] = 1.0; } for ( i = 0; i < m; i++ ) { n = order_from_level_135 ( ind[i] ); x_1d = cc_compute_points ( n ); for ( k = 0; k < n; k++ ) { x_1d[k] = 0.5 * ( ( 1.0 - x_1d[k] ) * a[i] + ( 1.0 + x_1d[k] ) * b[i] ); } value = lagrange_base_1d ( n, x_1d, 1, xi+i+j*m ); r8vec_direct_product2 ( i, n, value, m, nd, w ); delete [] value; delete [] x_1d; } zi[j] = r8vec_dot_product ( nd, w, zd ); } delete [] w; return zi; } //****************************************************************************80 int order_from_level_135 ( int l ) //****************************************************************************80 // // Purpose: // // ORDER_FROM_LEVEL_135 evaluates the 135 level-to-order relationship. // // Discussion: // // Clenshaw Curtis rules, and some others, often use the following // scheme: // // L: 0 1 2 3 4 5 // N: 1 3 5 9 17 33 ... 2^L+1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 September 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int L, the level, which should be 0 or greater. // // Output, int ORDER_FROM_LEVEL_135, the order. // { int n; if ( l < 0 ) { cerr << "\n"; cerr << "ORDER_FROM_LEVEL_135 - Fatal error!\n"; cerr << " Illegal input value of L!\n"; exit ( 1 ); } else if ( l == 0 ) { n = 1; } else { n = i4_power ( 2, l ) + 1; } return n; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = + x; } else { value = - x; } return value; } //****************************************************************************80 double *r8mat_uniform_01_new ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8MAT_UNIFORM_01_NEW returns a unit pseudorandom R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8's, stored as a vector // in column-major order. // // This routine implements the recursion // // seed = 16807 * seed mod ( 2^31 - 1 ) // unif = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Philip Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, pages 136-143, 1969. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0, otherwise the output value of SEED // will still be 0, and R8_UNIFORM will be 0. On output, SEED has // been updated. // // Output, double R8MAT_UNIFORM_01_NEW[M*N], a matrix of pseudorandom values. // { int i; int j; int k; double *r; r = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + 2147483647; } r[i+j*m] = ( double ) ( seed ) * 4.656612875E-10; } } return r; } //****************************************************************************80 void r8vec_direct_product ( int factor_index, int factor_order, double factor_value[], int factor_num, int point_num, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DIRECT_PRODUCT creates a direct product of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // To explain what is going on here, suppose we had to construct // a multidimensional quadrature rule as the product of K rules // for 1D quadrature. // // The product rule will be represented as a list of points and weights. // // The J-th item in the product rule will be associated with // item J1 of 1D rule 1, // item J2 of 1D rule 2, // ..., // item JK of 1D rule K. // // In particular, // X(J) = ( X(1,J1), X(2,J2), ..., X(K,JK)) // and // W(J) = W(1,J1) * W(2,J2) * ... * W(K,JK) // // So we can construct the quadrature rule if we can properly // distribute the information in the 1D quadrature rules. // // This routine carries out that task. // // Another way to do this would be to compute, one by one, the // set of all possible indices (J1,J2,...,JK), and then index // the appropriate information. An advantage of the method shown // here is that you can process the K-th set of information and // then discard it. // // Example: // // Rule 1: // Order = 4 // X(1:4) = ( 1, 2, 3, 4 ) // // Rule 2: // Order = 3 // X(1:3) = ( 10, 20, 30 ) // // Rule 3: // Order = 2 // X(1:2) = ( 100, 200 ) // // Product Rule: // Order = 24 // X(1:24) = // ( 1, 10, 100 ) // ( 2, 10, 100 ) // ( 3, 10, 100 ) // ( 4, 10, 100 ) // ( 1, 20, 100 ) // ( 2, 20, 100 ) // ( 3, 20, 100 ) // ( 4, 20, 100 ) // ( 1, 30, 100 ) // ( 2, 30, 100 ) // ( 3, 30, 100 ) // ( 4, 30, 100 ) // ( 1, 10, 200 ) // ( 2, 10, 200 ) // ( 3, 10, 200 ) // ( 4, 10, 200 ) // ( 1, 20, 200 ) // ( 2, 20, 200 ) // ( 3, 20, 200 ) // ( 4, 20, 200 ) // ( 1, 30, 200 ) // ( 2, 30, 200 ) // ( 3, 30, 200 ) // ( 4, 30, 200 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 April 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int FACTOR_INDEX, the index of the factor being processed. // The first factor processed must be factor 0. // // Input, int FACTOR_ORDER, the order of the factor. // // Input, double FACTOR_VALUE[FACTOR_ORDER], the factor values // for factor FACTOR_INDEX. // // Input, int FACTOR_NUM, the number of factors. // // Input, int POINT_NUM, the number of elements in the direct product. // // Input/output, double X[FACTOR_NUM*POINT_NUM], the elements of the // direct product, which are built up gradually. // // Local Parameters: // // Local, int START, the first location of a block of values to set. // // Local, int CONTIG, the number of consecutive values to set. // // Local, int SKIP, the distance from the current value of START // to the next location of a block of values to set. // // Local, int REP, the number of blocks of values to set. // { static int contig = 0; int i; int j; int k; static int rep = 0; static int skip = 0; int start; if ( factor_index == 0 ) { contig = 1; skip = 1; rep = point_num; for ( j = 0; j < point_num; j++ ) { for ( i = 0; i < factor_num; i++ ) { x[i+j*factor_num] = 0.0; } } } rep = rep / factor_order; skip = skip * factor_order; for ( i = 0; i < factor_order; i++ ) { start = 0 + i * contig; for ( k = 1; k <= rep; k++ ) { for ( j = start; j < start + contig; j++ ) { x[factor_index+j*factor_num] = factor_value[i]; } start = start + skip; } } contig = contig * factor_order; return; } //****************************************************************************80 void r8vec_direct_product2 ( int factor_index, int factor_order, double factor_value[], int factor_num, int point_num, double w[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DIRECT_PRODUCT2 creates a direct product of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // To explain what is going on here, suppose we had to construct // a multidimensional quadrature rule as the product of K rules // for 1D quadrature. // // The product rule will be represented as a list of points and weights. // // The J-th item in the product rule will be associated with // item J1 of 1D rule 1, // item J2 of 1D rule 2, // ..., // item JK of 1D rule K. // // In particular, // X(J) = ( X(1,J1), X(2,J2), ..., X(K,JK)) // and // W(J) = W(1,J1) * W(2,J2) * ... * W(K,JK) // // So we can construct the quadrature rule if we can properly // distribute the information in the 1D quadrature rules. // // This routine carries out that task for the weights W. // // Another way to do this would be to compute, one by one, the // set of all possible indices (J1,J2,...,JK), and then index // the appropriate information. An advantage of the method shown // here is that you can process the K-th set of information and // then discard it. // // Example: // // Rule 1: // Order = 4 // W(1:4) = ( 2, 3, 5, 7 ) // // Rule 2: // Order = 3 // W(1:3) = ( 11, 13, 17 ) // // Rule 3: // Order = 2 // W(1:2) = ( 19, 23 ) // // Product Rule: // Order = 24 // W(1:24) = // ( 2 * 11 * 19 ) // ( 3 * 11 * 19 ) // ( 4 * 11 * 19 ) // ( 7 * 11 * 19 ) // ( 2 * 13 * 19 ) // ( 3 * 13 * 19 ) // ( 5 * 13 * 19 ) // ( 7 * 13 * 19 ) // ( 2 * 17 * 19 ) // ( 3 * 17 * 19 ) // ( 5 * 17 * 19 ) // ( 7 * 17 * 19 ) // ( 2 * 11 * 23 ) // ( 3 * 11 * 23 ) // ( 5 * 11 * 23 ) // ( 7 * 11 * 23 ) // ( 2 * 13 * 23 ) // ( 3 * 13 * 23 ) // ( 5 * 13 * 23 ) // ( 7 * 13 * 23 ) // ( 2 * 17 * 23 ) // ( 3 * 17 * 23 ) // ( 5 * 17 * 23 ) // ( 7 * 17 * 23 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 April 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int FACTOR_INDEX, the index of the factor being processed. // The first factor processed must be factor 0. // // Input, int FACTOR_ORDER, the order of the factor. // // Input, double FACTOR_VALUE[FACTOR_ORDER], the factor values for // factor FACTOR_INDEX. // // Input, int FACTOR_NUM, the number of factors. // // Input, int POINT_NUM, the number of elements in the direct product. // // Input/output, double W[POINT_NUM], the elements of the // direct product, which are built up gradually. // // Local Parameters: // // Local, integer START, the first location of a block of values to set. // // Local, integer CONTIG, the number of consecutive values to set. // // Local, integer SKIP, the distance from the current value of START // to the next location of a block of values to set. // // Local, integer REP, the number of blocks of values to set. // { static int contig = 0; int i; int j; int k; static int rep = 0; static int skip = 0; int start; if ( factor_index == 0 ) { contig = 1; skip = 1; rep = point_num; for ( i = 0; i < point_num; i++ ) { w[i] = 1.0; } } rep = rep / factor_order; skip = skip * factor_order; for ( j = 0; j < factor_order; j++ ) { start = 0 + j * contig; for ( k = 1; k <= rep; k++ ) { for ( i = start; i < start + contig; i++ ) { w[i] = w[i] * factor_value[j]; } start = start + skip; } } contig = contig * factor_order; return; } //****************************************************************************80 double r8vec_dot_product ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of a pair of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 double r8vec_norm_affine ( int n, double v0[], double v1[] ) //****************************************************************************80 // // Purpose: // // R8VEC_NORM_AFFINE returns the affine L2 norm of an R8VEC. // // Discussion: // // The affine vector L2 norm is defined as: // // R8VEC_NORM_AFFINE(V0,V1) // = sqrt ( sum ( 1 <= I <= N ) ( V1(I) - V0(I) )^2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 October 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of the vectors. // // Input, double V0[N], the base vector. // // Input, double V1[N], the vector. // // Output, double R8VEC_NORM_AFFINE, the affine L2 norm. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + ( v1[i] - v0[i] ) * ( v1[i] - v0[i] ); } value = sqrt ( value ); return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }