# include # include # include # include # include # include using namespace std; # include "legendre_polynomial.hpp" //****************************************************************************80 char digit_to_ch ( int i ) //****************************************************************************80 // // Purpose: // // DIGIT_TO_CH returns the base 10 digit character corresponding to a digit. // // Example: // // I C // ----- --- // 0 '0' // 1 '1' // ... ... // 9 '9' // 10 '*' // -83 '*' // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the digit, which should be between 0 and 9. // // Output, char DIGIT_TO_CH, the appropriate character '0' // through '9' or '*'. // { char c; if ( 0 <= i && i <= 9 ) { c = '0' + i; } else { c = '*'; } return c; } //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the whole part of the logarithm base 10 of an I4. // // Discussion: // // It should be the case that 10^I4_LOG_10(I) <= |I| < 10^(I4_LOG_10(I)+1). // (except for I = 0). // // The number of decimal digits in I is I4_LOG_10(I) + 1. // // Example: // // I I4_LOG_10(I) // // 0 0 // 1 0 // 2 0 // // 9 0 // 10 1 // 11 1 // // 99 1 // 100 2 // 101 2 // // 999 2 // 1000 3 // 1001 3 // // 9999 3 // 10000 4 // 10001 4 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the integer. // // Output, int I4_LOG_10, the whole part of the logarithm of abs ( I ). // { int ten_pow; int value; i = abs ( i ); ten_pow = 10; value = 0; while ( ten_pow <= i ) { ten_pow = ten_pow * 10; value = value + 1; } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 string i4_to_s ( int i ) //****************************************************************************80 // // Purpose: // // I4_TO_S converts an I4 to a string. // // Example: // // INTVAL S // // 1 1 // -1 -1 // 0 0 // 1952 1952 // 123456 123456 // 1234567 1234567 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 May 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int I, an integer to be converted. // // Output, string I4_TO_S, the representation of the integer. // { int digit; int j; int length; int ten_power; string s; char s_char[80]; static double ten = 10.0; length = i4_log_10 ( i ); ten_power = ( int ) ( pow ( ten, length ) ); if ( i < 0 ) { length = length + 1; } // // Add one position for the trailing null. // length = length + 1; if ( i == 0 ) { s_char[0] = '0'; s_char[1] = '\0'; s = string ( s_char ); return s; } // // Now take care of the sign. // j = 0; if ( i < 0 ) { s_char[j] = '-'; j = j + 1; i = abs ( i ); } // // Find the leading digit of I, strip it off, and stick it into the string. // while ( 0 < ten_power ) { digit = i / ten_power; s_char[j] = digit_to_ch ( digit ); j = j + 1; i = i - digit * ten_power; ten_power = ten_power / 10; } // // Tack on the trailing NULL. // s_char[j] = '\0'; j = j + 1; s = string ( s_char ); return s; } //****************************************************************************80 void imtqlx ( int n, double d[], double e[], double z[] ) //****************************************************************************80 // // Purpose: // // IMTQLX diagonalizes a symmetric tridiagonal matrix. // // Discussion: // // This routine is a slightly modified version of the EISPACK routine to // perform the implicit QL algorithm on a symmetric tridiagonal matrix. // // The authors thank the authors of EISPACK for permission to use this // routine. // // It has been modified to produce the product Q' * Z, where Z is an input // vector and Q is the orthogonal matrix diagonalizing the input matrix. // The changes consist (essentialy) of applying the orthogonal transformations // directly to Z as they are generated. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Roger Martin, James Wilkinson, // The Implicit QL Algorithm, // Numerische Mathematik, // Volume 12, Number 5, December 1968, pages 377-383. // // Parameters: // // Input, int N, the order of the matrix. // // Input/output, double D(N), the diagonal entries of the matrix. // On output, the information in D has been overwritten. // // Input/output, double E(N), the subdiagonal entries of the // matrix, in entries E(1) through E(N-1). On output, the information in // E has been overwritten. // // Input/output, double Z(N). On input, a vector. On output, // the value of Q' * Z, where Q is the matrix that diagonalizes the // input symmetric tridiagonal matrix. // { double b; double c; double f; double g; int i; int ii; int itn = 30; int j; int k; int l; int m; int mml; double p; double prec; double r; double s; prec = r8_epsilon ( ); if ( n == 1 ) { return; } e[n-1] = 0.0; for ( l = 1; l <= n; l++ ) { j = 0; for ( ; ; ) { for ( m = l; m <= n; m++ ) { if ( m == n ) { break; } if ( fabs ( e[m-1] ) <= prec * ( fabs ( d[m-1] ) + fabs ( d[m] ) ) ) { break; } } p = d[l-1]; if ( m == l ) { break; } if ( itn <= j ) { cout << "\n"; cout << "IMTQLX - Fatal error!\n"; cout << " Iteration limit exceeded\n"; exit ( 1 ); } j = j + 1; g = ( d[l] - p ) / ( 2.0 * e[l-1] ); r = sqrt ( g * g + 1.0 ); g = d[m-1] - p + e[l-1] / ( g + fabs ( r ) * r8_sign ( g ) ); s = 1.0; c = 1.0; p = 0.0; mml = m - l; for ( ii = 1; ii <= mml; ii++ ) { i = m - ii; f = s * e[i-1]; b = c * e[i-1]; if ( fabs ( g ) <= fabs ( f ) ) { c = g / f; r = sqrt ( c * c + 1.0 ); e[i] = f * r; s = 1.0 / r; c = c * s; } else { s = f / g; r = sqrt ( s * s + 1.0 ); e[i] = g * r; c = 1.0 / r; s = s * c; } g = d[i] - p; r = ( d[i-1] - g ) * s + 2.0 * c * b; p = s * r; d[i] = g + p; g = c * r - b; f = z[i]; z[i] = s * z[i-1] + c * f; z[i-1] = c * z[i-1] - s * f; } d[l-1] = d[l-1] - p; e[l-1] = g; e[m-1] = 0.0; } } // // Sorting. // for ( ii = 2; ii <= m; ii++ ) { i = ii - 1; k = i; p = d[i-1]; for ( j = ii; j <= n; j++ ) { if ( d[j-1] < p ) { k = j; p = d[j-1]; } } if ( k != i ) { d[k-1] = d[i-1]; d[i-1] = p; p = z[i-1]; z[i-1] = z[k-1]; z[k-1] = p; } } return; } //****************************************************************************80 double *p_exponential_product ( int p, double b ) //****************************************************************************80 // // Purpose: // // P_EXPONENTIAL_PRODUCT: exponential products for P(n,x). // // Discussion: // // Let P(n,x) represent the Legendre polynomial of degree n. // // For polynomial chaos applications, it is of interest to know the // value of the integrals of products of exp(B*X) with every possible pair // of basis functions. That is, we'd like to form // // Tij = Integral ( -1.0 <= X <= +1.0 ) exp(B*X) * P(I,X) * P(J,X) dx // // We will estimate these integrals using Gauss-Legendre quadrature. // Because of the exponential factor exp(B*X), the quadrature will not // be exact. // // However, when B = 0, the quadrature is exact, and moreoever, the // table will be the identity matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int P, the maximum degree of the polyonomial // factors. 0 <= P. // // Input, double B, the coefficient of X in the exponential factor. // // Output, double P_EXPONENTIAL_PRODUCT[(P+1)*(P+1)], the table of integrals. // { double *h_table; int i; int j; int k; int order; double *table; double *w_table; double x; double *x_table; table = new double[(p+1)*(p+1)]; for ( j = 0; j <= p; j++ ) { for ( i = 0; i <= p; i++ ) { table[i+j*(p+1)] = 0.0; } } order = ( 3 * p + 4 ) / 2; x_table = new double[order]; w_table = new double[order]; p_quadrature_rule ( order, x_table, w_table ); for ( k = 0; k < order; k++ ) { x = x_table[k]; h_table = p_polynomial_value ( 1, p, x_table + k ); // // The following formula is an outer product in H_TABLE. // for ( j = 0; j <= p; j++ ) { for ( i = 0; i <= p; i++ ) { table[i+j*(p+1)] = table[i+j*(p+1)] + w_table[k] * exp ( b * x ) * h_table[i] * h_table[j]; } } delete [] h_table; } delete [] w_table; delete [] x_table; return table; } //****************************************************************************80 double p_integral ( int n ) //****************************************************************************80 // // Purpose: // // P_INTEGRAL evaluates a monomial integral associated with P(n,x). // // Discussion: // // The integral: // // integral ( -1 <= x < +1 ) x^n dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the exponent. // 0 <= N. // // Output, double P_INTEGRAL, the value of the integral. // { double value; if ( ( n % 2 ) == 1 ) { value = 0.0; } else { value = 2.0 / ( double ) ( n + 1 ); } return value; } //****************************************************************************80 double *p_polynomial_coefficients ( int n ) //****************************************************************************80 // // Purpose: // // P_POLYNOMIAL_COEFFICIENTS: coefficients of Legendre polynomial P(n,x). // // Discussion: // // 1 // 0 1 // -1/2 0 3/2 // 0 -3/2 0 5/2 // 3/8 0 -30/8 0 35/8 // 0 15/8 0 -70/8 0 63/8 // -5/16 0 105/16 0 -315/16 0 231/16 // 0 -35/16 0 315/16 0 -693/16 0 429/16 // // 1.00000 // 0.00000 1.00000 // -0.50000 0.00000 1.50000 // 0.00000 -1.50000 0.00000 2.5000 // 0.37500 0.00000 -3.75000 0.00000 4.37500 // 0.00000 1.87500 0.00000 -8.75000 0.00000 7.87500 // -0.31250 0.00000 6.56250 0.00000 -19.6875 0.00000 14.4375 // 0.00000 -2.1875 0.00000 19.6875 0.00000 -43.3215 0.00000 26.8125 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2014 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996. // // Parameters: // // Input, int N, the highest order polynomial to evaluate. // Note that polynomials 0 through N will be evaluated. // // Output, double P_POLYNOMIAL_COEFFICIENTS[(N+1)*(N+1)], the coefficients of // the Legendre polynomials of degree 0 through N. // { double *c; int i; int j; double t; if ( n < 0 ) { return NULL; } c = new double[(n+1)*(n+1)]; for ( i = 0; i <= n; i++ ) { for ( j = 0; j <= n; j++ ) { c[i+j*(n+1)] = 0.0; } } c[0+0*(n+1)] = 1.0; if ( 0 < n ) { c[1+1*(n+1)] = 1.0; } for ( i = 2; i <= n; i++ ) { for ( j = 0; j <= i-2; j++ ) { c[i+j*(n+1)] = ( double ) ( - i + 1 ) * c[i-2+j*(n+1)] / ( double ) i; } for ( j = 1; j <= i; j++ ) { c[i+j*(n+1)] = c[i+j*(n+1)] + ( double ) ( i + i - 1 ) * c[i-1+(j-1)*(n+1)] / ( double ) i; } } return c; } //****************************************************************************80 double *p_polynomial_prime ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // P_POLYNOMIAL_PRIME evaluates the derivative of Legendre polynomials P(n,x). // // Discussion: // // P(0,X) = 1 // P(1,X) = X // P(N,X) = ( (2*N-1)*X*P(N-1,X)-(N-1)*P(N-2,X) ) / N // // P'(0,X) = 0 // P'(1,X) = 1 // P'(N,X) = ( (2*N-1)*(P(N-1,X)+X*P'(N-1,X)-(N-1)*P'(N-2,X) ) / N // // Thanks to Dimitriy Morozov for pointing out a memory leak caused by // not deleting the work array V before return, 19 March 2013. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 March 2013 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996. // // Parameters: // // Input, int M, the number of evaluation points. // // Input, int N, the highest order polynomial to evaluate. // Note that polynomials 0 through N will be evaluated. // // Input, double X[M], the evaluation points. // // Output, double P_POLYNOMIAL_PRIME[M*(N+1)], the values of the derivatives // of the Legendre polynomials of order 0 through N at the points. // { int i; int j; double *v; double *vp; if ( n < 0 ) { return NULL; } vp = new double[m*(n+1)]; for ( i = 0; i < m; i++ ) { vp[i+0*m] = 0.0; } if ( n < 1 ) { return vp; } v = new double[m*(n+1)]; for ( i = 0; i < m; i++ ) { v[i+0*m] = 1.0; } for ( i = 0; i < m; i++ ) { v[i+1*m] = x[i]; vp[i+1*m] = 1.0; } for ( j = 2; j <= n; j++ ) { for ( i = 0; i < m; i++ ) { v[i+j*m] = ( ( double ) ( 2 * j - 1 ) * x[i] * v[i+(j-1)*m] - ( double ) ( j - 1 ) * v[i+(j-2)*m] ) / ( double ) ( j ); vp[i+j*m] = ( ( double ) ( 2 * j - 1 ) * ( v[i+(j-1)*m] + x[i] * vp[i+(j-1)*m] ) - ( double ) ( j - 1 ) * vp[i+(j-2)*m] ) / ( double ) ( j ); } } delete [] v; return vp; } //****************************************************************************80 double *p_polynomial_prime2 ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // P_POLYNOMIAL_PRIME2: second derivative of Legendre polynomials P(n,x). // // Discussion: // // P(0,X) = 1 // P(1,X) = X // P(N,X) = ( (2*N-1)*X*P(N-1,X)-(N-1)*P(N-2,X) ) / N // // P'(0,X) = 0 // P'(1,X) = 1 // P'(N,X) = ( (2*N-1)*(P(N-1,X)+X*P'(N-1,X)-(N-1)*P'(N-2,X) ) / N // // P"(0,X) = 0 // P"(1,X) = 0 // P"(N,X) = ( (2*N-1)*(2*P'(N-1,X)+X*P"(N-1,X)-(N-1)*P"(N-2,X) ) / N // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 May 2013 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996. // // Parameters: // // Input, int M, the number of evaluation points. // // Input, int N, the highest order polynomial to evaluate. // Note that polynomials 0 through N will be evaluated. // // Input, double X[M], the evaluation points. // // Output, double P_POLYNOMIAL_PRIME2[M*(N+1)], the second derivative // of the Legendre polynomials of order 0 through N at the points. // { int i; int j; double *v; double *vp; double *vpp; if ( n < 0 ) { return NULL; } vpp = new double[m*(n+1)]; for ( i = 0; i < m; i++ ) { vpp[i+0*m] = 0.0; } if ( n < 1 ) { return vpp; } v = new double[m*(n+1)]; vp = new double[m*(n+1)]; for ( i = 0; i < m; i++ ) { v[i+0*m] = 1.0; vp[i+0*m] = 0.0; } for ( i = 0; i < m; i++ ) { v[i+1*m] = x[i]; vp[i+1*m] = 1.0; vpp[i+1*m] = 0.0; } for ( j = 2; j <= n; j++ ) { for ( i = 0; i < m; i++ ) { v[i+j*m] = ( ( double ) ( 2 * j - 1 ) * x[i] * v[i+(j-1)*m] - ( double ) ( j - 1 ) * v[i+(j-2)*m] ) / ( double ) ( j ); vp[i+j*m] = ( ( double ) ( 2 * j - 1 ) * ( v[i+(j-1)*m] + x[i] * vp[i+(j-1)*m] ) - ( double ) ( j - 1 ) * vp[i+(j-2)*m] ) / ( double ) ( j ); vpp[i+j*m] = ( ( double ) ( 2 * j - 1 ) * ( 2.0 * vp[i+(j-1)*m] + x[i] * vpp[i+(j-1)*m] ) - ( double ) ( j - 1 ) * vpp[i+(j-2)*m] ) / ( double ) ( j ); } } delete [] v; delete [] vp; return vpp; } //****************************************************************************80 double *p_polynomial_value ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // P_POLYNOMIAL_VALUE evaluates the Legendre polynomials P(n,x). // // Discussion: // // P(n,1) = 1. // P(n,-1) = (-1)^N. // | P(n,x) | <= 1 in [-1,1]. // // The N zeroes of P(n,x) are the abscissas used for Gauss-Legendre // quadrature of the integral of a function F(X) with weight function 1 // over the interval [-1,1]. // // The Legendre polynomials are orthogonal under the inner product defined // as integration from -1 to 1: // // Integral ( -1 <= X <= 1 ) P(I,X) * P(J,X) dX // = 0 if I =/= J // = 2 / ( 2*I+1 ) if I = J. // // Except for P(0,X), the integral of P(I,X) from -1 to 1 is 0. // // A function F(X) defined on [-1,1] may be approximated by the series // C0*P(0,x) + C1*P(1,x) + ... + CN*P(n,x) // where // C(I) = (2*I+1)/(2) * Integral ( -1 <= X <= 1 ) F(X) P(I,x) dx. // // The formula is: // // P(n,x) = (1/2^N) * sum ( 0 <= M <= N/2 ) C(N,M) C(2N-2M,N) X^(N-2*M) // // Differential equation: // // (1-X*X) * P(n,x)'' - 2 * X * P(n,x)' + N * (N+1) = 0 // // First terms: // // P( 0,x) = 1 // P( 1,x) = 1 X // P( 2,x) = ( 3 X^2 - 1)/2 // P( 3,x) = ( 5 X^3 - 3 X)/2 // P( 4,x) = ( 35 X^4 - 30 X^2 + 3)/8 // P( 5,x) = ( 63 X^5 - 70 X^3 + 15 X)/8 // P( 6,x) = ( 231 X^6 - 315 X^4 + 105 X^2 - 5)/16 // P( 7,x) = ( 429 X^7 - 693 X^5 + 315 X^3 - 35 X)/16 // P( 8,x) = ( 6435 X^8 - 12012 X^6 + 6930 X^4 - 1260 X^2 + 35)/128 // P( 9,x) = (12155 X^9 - 25740 X^7 + 18018 X^5 - 4620 X^3 + 315 X)/128 // P(10,x) = (46189 X^10-109395 X^8 + 90090 X^6 - 30030 X^4 + 3465 X^2-63)/256 // // Recursion: // // P(0,x) = 1 // P(1,x) = x // P(n,x) = ( (2*n-1)*x*P(n-1,x)-(n-1)*P(n-2,x) ) / n // // P'(0,x) = 0 // P'(1,x) = 1 // P'(N,x) = ( (2*N-1)*(P(N-1,x)+X*P'(N-1,x)-(N-1)*P'(N-2,x) ) / N // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 March 2012 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996. // // Parameters: // // Input, int M, the number of evaluation points. // // Input, int N, the highest order polynomial to evaluate. // Note that polynomials 0 through N will be evaluated. // // Input, double X[M], the evaluation points. // // Output, double P_POLYNOMIAL_VALUE[M*(N+1)], the values of the Legendre // polynomials of order 0 through N. // { int i; int j; double *v; if ( n < 0 ) { return NULL; } v = new double[m*(n+1)]; for ( i = 0; i < m; i++ ) { v[i+0*m] = 1.0; } if ( n < 1 ) { return v; } for ( i = 0; i < m; i++ ) { v[i+1*m] = x[i]; } for ( j = 2; j <= n; j++ ) { for ( i = 0; i < m; i++ ) { v[i+j*m] = ( ( double ) ( 2 * j - 1 ) * x[i] * v[i+(j-1)*m] - ( double ) ( j - 1 ) * v[i+(j-2)*m] ) / ( double ) ( j ); } } return v; } //****************************************************************************80 void p_polynomial_values ( int &n_data, int &n, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // P_POLYNOMIAL_VALUES returns values of the Legendre polynomials P(n,x). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2012 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, the order of the function. // // Output, double &X, the point where the function is evaluated. // // Output, double &FX, the value of the function. // { # define N_MAX 22 static double fx_vec[N_MAX] = { 0.1000000000000000E+01, 0.2500000000000000E+00, -0.4062500000000000E+00, -0.3359375000000000E+00, 0.1577148437500000E+00, 0.3397216796875000E+00, 0.2427673339843750E-01, -0.2799186706542969E+00, -0.1524540185928345E+00, 0.1768244206905365E+00, 0.2212002165615559E+00, 0.0000000000000000E+00, -0.1475000000000000E+00, -0.2800000000000000E+00, -0.3825000000000000E+00, -0.4400000000000000E+00, -0.4375000000000000E+00, -0.3600000000000000E+00, -0.1925000000000000E+00, 0.8000000000000000E-01, 0.4725000000000000E+00, 0.1000000000000000E+01 }; static int n_vec[N_MAX] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }; static double x_vec[N_MAX] = { 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.00E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.90E+00, 1.00E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double *p_polynomial_zeros ( int nt ) //****************************************************************************80 // // Purpose: // // P_POLYNOMIAL_ZEROS: zeros of Legendre function P(n,x). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int NT, the order of the rule. // // Output, double P_POLYNOMIAL_ZEROS[NT], the zeros. // { double *bj; int i; double *t; double *wts; t = new double[nt]; for ( i = 0; i < nt; i++ ) { t[i] = 0.0; } bj = new double[nt]; for ( i = 0; i < nt; i++ ) { bj[i] = ( double ) ( ( i + 1 ) * ( i + 1 ) ) / ( double ) ( 4 * ( i + 1 ) * ( i + 1 ) - 1 ); bj[i] = sqrt ( bj[i] ); } wts = new double[nt]; wts[0] = sqrt ( 2.0 ); for ( i = 1; i < nt; i++ ) { wts[i] = 0.0; } imtqlx ( nt, t, bj, wts ); delete [] bj; delete [] wts; return t; } //****************************************************************************80 double *p_power_product ( int p, int e ) //****************************************************************************80 // // Purpose: // // P_POWER_PRODUCT: power products for Legendre polynomial P(n,x). // // Discussion: // // Let P(n,x) represent the Legendre polynomial of degree n. // // For polynomial chaos applications, it is of interest to know the // value of the integrals of products of X with every possible pair // of basis functions. That is, we'd like to form // // Tij = Integral ( -1.0 <= X <= +1.0 ) X^E * P(I,x) * P(J,x) dx // // We will estimate these integrals using Gauss-Legendre quadrature. // // When E is 0, the computed table should be the identity matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int P, the maximum degree of the polyonomial // factors. 0 <= P. // // Input, int E, the exponent of X in the integrand. // 0 <= E. // // Output, double P_POWER_PRODUCT[(P+1)*(P+1)], the table of integrals. // { double *h_table; int i; int j; int k; int order; double *table; double *w_table; double x; double *x_table; table = new double[(p+1)*(p+1)]; for ( j = 0; j <= p; j++ ) { for ( i = 0; i <= p; i++ ) { table[i+j*(p+1)] = 0.0; } } order = p + 1 + ( ( e + 1 ) / 2 ); x_table = new double[order]; w_table = new double[order]; p_quadrature_rule ( order, x_table, w_table ); for ( k = 0; k < order; k++ ) { x = x_table[k]; h_table = p_polynomial_value ( 1, p, x_table + k ); // // The following formula is an outer product in H_TABLE. // if ( e == 0 ) { for ( i = 0; i <= p; i++ ) { for ( j = 0; j <= p; j++ ) { table[i+j*(p+1)] = table[i+j*(p+1)] + w_table[k] * h_table[i] * h_table[j]; } } } else { for ( i = 0; i <= p; i++ ) { for ( j = 0; j <= p; j++ ) { table[i+j*(p+1)] = table[i+j*(p+1)] + w_table[k] * pow ( x, e ) * h_table[i] * h_table[j]; } } } delete [] h_table; } delete [] w_table; delete [] x_table; return table; } //****************************************************************************80 void p_quadrature_rule ( int nt, double t[], double wts[] ) //****************************************************************************80 // // Purpose: // // P_QUADRATURE_RULE: quadrature for Legendre function P(n,x). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int NT, the order of the rule. // // Output, double T[NT], WTS[NT], the points and weights // of the rule. // { double *bj; int i; for ( i = 0; i < nt; i++ ) { t[i] = 0.0; } bj = new double[nt]; for ( i = 0; i < nt; i++ ) { bj[i] = ( double ) ( ( i + 1 ) * ( i + 1 ) ) / ( double ) ( 4 * ( i + 1 ) * ( i + 1 ) - 1 ); bj[i] = sqrt ( bj[i] ); } wts[0] = sqrt ( 2.0 ); for ( i = 1; i < nt; i++ ) { wts[i] = 0.0; } imtqlx ( nt, t, bj, wts ); for ( i = 0; i < nt; i++ ) { wts[i] = pow ( wts[i], 2 ); } delete [] bj; return; } //****************************************************************************80 double *pm_polynomial_value ( int mm, int n, int m, double x[] ) //****************************************************************************80 // // Purpose: // // PM_POLYNOMIAL_VALUE evaluates the Legendre polynomials Pm(n,m,x). // // Differential equation: // // (1-X*X) * Y'' - 2 * X * Y + ( N (N+1) - (M*M/(1-X*X)) * Y = 0 // // First terms: // // M = 0 ( = Legendre polynomials of first kind P(N,X) ) // // Pm(0,0,x) = 1 // Pm(1,0,x) = 1 X // Pm(2,0,x) = ( 3 X^2 - 1)/2 // Pm(3,0,x) = ( 5 X^3 - 3 X)/2 // Pm(4,0,x) = ( 35 X^4 - 30 X^2 + 3)/8 // Pm(5,0,x) = ( 63 X^5 - 70 X^3 + 15 X)/8 // Pm(6,0,x) = (231 X^6 - 315 X^4 + 105 X^2 - 5)/16 // Pm(7,0,x) = (429 X^7 - 693 X^5 + 315 X^3 - 35 X)/16 // // M = 1 // // Pm(0,1,x) = 0 // Pm(1,1,x) = 1 * SQRT(1-X^2) // Pm(2,1,x) = 3 * SQRT(1-X^2) * X // Pm(3,1,x) = 1.5 * SQRT(1-X^2) * (5*X^2-1) // Pm(4,1,x) = 2.5 * SQRT(1-X^2) * (7*X^3-3*X) // // M = 2 // // Pm(0,2,x) = 0 // Pm(1,2,x) = 0 // Pm(2,2,x) = 3 * (1-X^2) // Pm(3,2,x) = 15 * (1-X^2) * X // Pm(4,2,x) = 7.5 * (1-X^2) * (7*X^2-1) // // M = 3 // // Pm(0,3,x) = 0 // Pm(1,3,x) = 0 // Pm(2,3,x) = 0 // Pm(3,3,x) = 15 * (1-X^2)^1.5 // Pm(4,3,x) = 105 * (1-X^2)^1.5 * X // // M = 4 // // Pm(0,4,x) = 0 // Pm(1,4,x) = 0 // Pm(2,4,x) = 0 // Pm(3,4,x) = 0 // Pm(4,4,x) = 105 * (1-X^2)^2 // // Recursion: // // if N < M: // Pm(N,M,x) = 0 // if N = M: // Pm(N,M,x) = (2*M-1)!! * (1-X*X)^(M/2) where N!! means the product of // all the odd integers less than or equal to N. // if N = M+1: // Pm(N,M,x) = X*(2*M+1)*Pm(M,M,x) // if M+1 < N: // Pm(N,M,x) = ( X*(2*N-1)*Pm(N-1,M,x) - (N+M-1)*Pm(N-2,M,x) )/(N-M) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2012 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Parameters: // // Input, int MM, the number of evaluation points. // // Input, int N, the maximum first index of the Legendre // function, which must be at least 0. // // Input, int M, the second index of the Legendre function, // which must be at least 0, and no greater than N. // // Input, double X[MM], the point at which the function is to be // evaluated. // // Output, double PM_POLYNOMIAL_VALUE[MM*(N+1)], the function values. // { double fact; int i; int j; int k; double *v; v = new double[mm*(n+1)]; for ( j = 0; j < n + 1; j++ ) { for ( i = 0; i < mm; i++ ) { v[i+j*mm] = 0.0; } } // // J = M is the first nonzero function. // if ( m <= n ) { for ( i = 0; i < mm; i++ ) { v[i+m*mm] = 1.0; } fact = 1.0; for ( k = 0; k < m; k++ ) { for ( i = 0; i < mm; i++ ) { v[i+m*mm] = - v[i+m*mm] * fact * sqrt ( 1.0 - x[i] * x[i] ); } fact = fact + 2.0; } } // // J = M + 1 is the second nonzero function. // if ( m + 1 <= n ) { for ( i = 0; i < mm; i++ ) { v[i+(m+1)*mm] = x[i] * ( double ) ( 2 * m + 1 ) * v[i+m*mm]; } } // // Now we use a three term recurrence. // for ( j = m + 2; j <= n; j++ ) { for ( i = 0; i < mm; i++ ) { v[i+j*mm] = ( ( double ) ( 2 * j - 1 ) * x[i] * v[i+(j-1)*mm] + ( double ) ( - j - m + 1 ) * v[i+(j-2)*mm] ) / ( double ) ( j - m ); } } return v; } //****************************************************************************80 void pm_polynomial_values ( int &n_data, int &n, int &m, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // PM_POLYNOMIAL_VALUES returns values of Legendre polynomials Pm(n,m,x). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2012 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, int &M, double &X, // the arguments of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 static double fx_vec[N_MAX] = { 0.0000000000000000E+00, -0.5000000000000000E+00, 0.0000000000000000E+00, 0.3750000000000000E+00, 0.0000000000000000E+00, -0.8660254037844386E+00, -0.1299038105676658E+01, -0.3247595264191645E+00, 0.1353164693413185E+01, -0.2800000000000000E+00, 0.1175755076535925E+01, 0.2880000000000000E+01, -0.1410906091843111E+02, -0.3955078125000000E+01, -0.9997558593750000E+01, 0.8265311444100484E+02, 0.2024442836815152E+02, -0.4237997531890869E+03, 0.1638320624828339E+04, -0.2025687389227225E+05 }; static int m_vec[N_MAX] = { 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 2, 3, 2, 2, 3, 3, 4, 4, 5 }; static int n_vec[N_MAX] = { 1, 2, 3, 4, 5, 1, 2, 3, 4, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10 }; static double x_vec[N_MAX] = { 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.00E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; m = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; m = m_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double *pmn_polynomial_value ( int mm, int n, int m, double x[] ) //****************************************************************************80 // // Purpose: // // PMN_POLYNOMIAL_VALUE: normalized Legendre polynomial Pmn(n,m,x). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2012 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Parameters: // // Input, int MM, the number of evaluation points. // // Input, int N, the maximum first index of the Legendre // function, which must be at least 0. // // Input, int M, the second index of the Legendre function, // which must be at least 0, and no greater than N. // // Input, double X[MM], the evaluation points. // // Output, double PMN_POLYNOMIAL_VALUE[MM*(N+1)], the function values. // { double factor; int i; int j; double *v; v = pm_polynomial_value ( mm, n, m, x ); // // Normalization. // for ( j = m; j <= n; j++ ) { factor = sqrt ( ( ( double ) ( 2 * j + 1 ) * r8_factorial ( j - m ) ) / ( 2.0 * r8_factorial ( j + m ) ) ); for ( i = 0; i < mm; i++ ) { v[i+j*mm] = v[i+j*mm] * factor; } } return v; } //****************************************************************************80 void pmn_polynomial_values ( int &n_data, int &n, int &m, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // PMN_POLYNOMIAL_VALUES: normalized Legendre polynomial Pmn(n,m,x). // // Discussion: // // In Mathematica, the unnormalized function can be evaluated by: // // LegendreP [ n, m, x ] // // The function is normalized by dividing by // // sqrt ( 2 * ( n + m )! / ( 2 * n + 1 ) / ( n - m )! ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 March 2012 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, int &M, double &X, // the arguments of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { 0.7071067811865475E+00, 0.6123724356957945E+00, -0.7500000000000000E+00, -0.1976423537605237E+00, -0.8385254915624211E+00, 0.7261843774138907E+00, -0.8184875533567997E+00, -0.1753901900050285E+00, 0.9606516343087123E+00, -0.6792832849776299E+00, -0.6131941618102092E+00, 0.6418623720763665E+00, 0.4716705890038619E+00, -0.1018924927466445E+01, 0.6239615396237876E+00, 0.2107022704608181E+00, 0.8256314721961969E+00, -0.3982651281554632E+00, -0.7040399320721435E+00, 0.1034723155272289E+01, -0.5667412129155530E+00 }; static int m_vec[N_MAX] = { 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5 }; static int n_vec[N_MAX] = { 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5 }; static double x_vec[N_MAX] = { 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; m = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; m = m_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double *pmns_polynomial_value ( int mm, int n, int m, double x[] ) //****************************************************************************80 // // Purpose: // // PMNS_POLYNOMIAL_VALUE: sphere-normalized Legendre polynomial Pmn(n,m,x). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2012 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Parameters: // // Input, int MM, the number of evaluation points. // // Input, int N, the maximum first index of the Legendre // function, which must be at least 0. // // Input, int M, the second index of the Legendre function, // which must be at least 0, and no greater than N. // // Input, double X[MM], the evaluation points. // // Output, double PMNS_POLYNOMIAL_VALUE[MM*(N+1)], the function values. // { double factor; int i; int j; const double pi = 3.141592653589793; double *v; v = pm_polynomial_value ( mm, n, m, x ); // // Normalization. // for ( j = m; j <= n; j++ ) { factor = sqrt ( ( ( double ) ( 2 * j + 1 ) * r8_factorial ( j - m ) ) / ( 4.0 * pi * r8_factorial ( j + m ) ) ); for ( i = 0; i < mm; i++ ) { v[i+j*mm] = v[i+j*mm] * factor; } } return v; } //****************************************************************************80 void pmns_polynomial_values ( int &n_data, int &n, int &m, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // PMNS_POLYNOMIAL_VALUES: sphere-normalized Legendre polynomial Pmns(n,m,x). // // Discussion: // // In Mathematica, the unnormalized function can be evaluated by: // // LegendreP [ n, m, x ] // // The function is normalized for the sphere by dividing by // // sqrt ( 4 * pi * ( n + m )! / ( 2 * n + 1 ) / ( n - m )! ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2010 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int &N, int &M, double &X, // the arguments of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 21 static double fx_vec[N_MAX] = { 0.2820947917738781, 0.2443012559514600, -0.2992067103010745, -0.07884789131313000, -0.3345232717786446, 0.2897056515173922, -0.3265292910163510, -0.06997056236064664, 0.3832445536624809, -0.2709948227475519, -0.2446290772414100, 0.2560660384200185, 0.1881693403754876, -0.4064922341213279, 0.2489246395003027, 0.08405804426339821, 0.3293793022891428, -0.1588847984307093, -0.2808712959945307, 0.4127948151484925, -0.2260970318780046 }; static int m_vec[N_MAX] = { 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5 }; static int n_vec[N_MAX] = { 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5 }; static double x_vec[N_MAX] = { 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; n = 0; m = 0; x = 0.0; fx = 0.0; } else { n = n_vec[n_data-1]; m = m_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double *pn_pair_product ( int p ) //****************************************************************************80 // // Purpose: // // PN_PAIR_PRODUCT: pair products for normalized Legendre polynomial Pn(n,x). // // Discussion: // // Let P(n,x) represent the Legendre polynomial of degree n. // // To check orthonormality, we compute // // Tij = Integral ( -1.0 <= X <= +1.0 ) Pn(i,x) * Pn(j,x) dx // // We will estimate these integrals using Gauss-Legendre quadrature. // // The computed table should be the identity matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int P, the maximum degree of the polyonomial // factors. 0 <= P. // // Input, int E, the exponent of X in the integrand. // 0 <= E. // // Output, double PN_PAIR_PRODUCT[(P+1)*(P+1)], the table of integrals. // { double *h_table; int i; int j; int k; int order; double *table; double *w_table; double x; double *x_table; table = new double[(p+1)*(p+1)]; for ( j = 0; j <= p; j++ ) { for ( i = 0; i <= p; i++ ) { table[i+j*(p+1)] = 0.0; } } order = p + 1; x_table = new double[order]; w_table = new double[order]; p_quadrature_rule ( order, x_table, w_table ); for ( k = 0; k < order; k++ ) { x = x_table[k]; h_table = pn_polynomial_value ( 1, p, x_table + k ); for ( i = 0; i <= p; i++ ) { for ( j = 0; j <= p; j++ ) { table[i+j*(p+1)] = table[i+j*(p+1)] + w_table[k] * h_table[i] * h_table[j]; } } delete [] h_table; } delete [] w_table; delete [] x_table; return table; } //****************************************************************************80 double *pn_polynomial_coefficients ( int n ) //****************************************************************************80 // // Purpose: // // PN_POLYNOMIAL_COEFFICIENTS: coefficients of normalized Legendre Pn(n,x). // // Discussion: // // Pn(n,x) = P(n,x) * sqrt ( (2n+1)/2 ) // // 1 x x^2 x^3 x^4 x^5 x^6 x^7 // // 0 0.707 // 1 0.000 1.224 // 2 -0.790 0.000 2.371 // 3 0.000 -2.806 0.000 4.677 // 4 0.795 0.000 -7.954 0.000 9.280 // 5 0.000 4.397 0.000 -20.520 0.000 18.468 // 6 -0.796 0.000 16.731 0.000 -50.193 0.000 36.808 // 7 0.000 -5.990 0.000 53.916 0.000 -118.616 0.000 73.429 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2014 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996. // // Parameters: // // Input, int N, the highest order polynomial to evaluate. // Note that polynomials 0 through N will be evaluated. // // Output, double PN_POLYNOMIAL_COEFFICIENTS[(N+1)*(N+1)], the coefficients of // the normalized Legendre polynomials of degree 0 through N. // { double *c; int i; int j; double t; if ( n < 0 ) { return NULL; } // // Compute P(i,x) coefficients. // c = new double[(n+1)*(n+1)]; for ( i = 0; i <= n; i++ ) { for ( j = 0; j <= n; j++ ) { c[i+j*(n+1)] = 0.0; } } c[0+0*(n+1)] = 1.0; if ( 0 < n ) { c[1+1*(n+1)] = 1.0; } for ( i = 2; i <= n; i++ ) { for ( j = 0; j <= i-2; j++ ) { c[i+j*(n+1)] = ( double ) ( - i + 1 ) * c[i-2+j*(n+1)] / ( double ) i; } for ( j = 1; j <= i; j++ ) { c[i+j*(n+1)] = c[i+j*(n+1)] + ( double ) ( i + i - 1 ) * c[i-1+(j-1)*(n+1)] / ( double ) i; } } // // Normalize them. // for ( i = 0; i <= n; i++ ) { t = sqrt ( ( double ) ( 2 * i + 1 ) / 2.0 ); for ( j = 0; j <= i; j++ ) { c[i+j*(n+1)] = c[i+j*(n+1)] * t; } } return c; } //****************************************************************************80 double *pn_polynomial_value ( int m, int n, double x[] ) //****************************************************************************80 // // Purpose: // // PN_POLYNOMIAL_VALUE evaluates the normalized Legendre polynomials Pn(n,x). // // Discussion: // // The normalized Legendre polynomials are orthonormal under the inner product // defined as integration from -1 to 1: // // Integral ( -1 <= x <= +1 ) Pn(i,x) * Pn(j,x) dx = delta(i,j) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2012 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Daniel Zwillinger, editor, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996. // // Parameters: // // Input, int M, the number of evaluation points. // // Input, int N, the highest order polynomial to evaluate. // Note that polynomials 0 through N will be evaluated. // // Input, double X[M], the evaluation points. // // Output, double PN_POLYNOMIAL_VALUE[M*(N+1)], the values of the Legendre // polynomials of order 0 through N. // { int i; int j; double norm; double *v; v = p_polynomial_value ( m, n, x ); for ( j = 0; j <= n; j++ ) { norm = sqrt ( 2 / ( double ) ( 2 * j + 1 ) ); for ( i = 0; i < m; i++ ) { v[i+j*m] = v[i+j*m] / norm; } } return v; } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 double r8_factorial ( int n ) //****************************************************************************80 // // Purpose: // // R8_FACTORIAL computes the factorial of N. // // Discussion: // // factorial ( N ) = product ( 1 <= I <= N ) I // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 January 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the argument of the factorial function. // If N is less than 1, the function value is returned as 1. // // Output, double R8_FACTORIAL, the factorial of N. // { int i; double value; value = 1.0; for ( i = 1; i <= n; i++ ) { value = value * ( double ) ( i ); } return value; } //****************************************************************************80 double r8_sign ( double x ) //****************************************************************************80 // // Purpose: // // R8_SIGN returns the sign of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the number whose sign is desired. // // Output, double R8_SIGN, the sign of X. // { double value; if ( x < 0.0 ) { value = -1.0; } else { value = 1.0; } return value; } //****************************************************************************80 void r8mat_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT prints an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Entry A(I,J) is stored as A[I+J*M] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { r8mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT_SOME prints some of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j - 1 << " "; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i - 1 << ": "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double r8vec_dot_product ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of a pair of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 double *r8vec_linspace_new ( int n, double a_first, double a_last ) //****************************************************************************80 // // Purpose: // // R8VEC_LINSPACE_NEW creates a vector of linearly spaced values. // // Discussion: // // An R8VEC is a vector of R8's. // // 4 points evenly spaced between 0 and 12 will yield 0, 4, 8, 12. // // In other words, the interval is divided into N-1 even subintervals, // and the endpoints of intervals are used as the points. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A_FIRST, A_LAST, the first and last entries. // // Output, double R8VEC_LINSPACE_NEW[N], a vector of linearly spaced data. // { double *a; int i; a = new double[n]; if ( n == 1 ) { a[0] = ( a_first + a_last ) / 2.0; } else { for ( i = 0; i < n; i++ ) { a[i] = ( ( double ) ( n - 1 - i ) * a_first + ( double ) ( i ) * a_last ) / ( double ) ( n - 1 ); } } return a; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 void r8vec2_print ( int n, double a1[], double a2[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC2_PRINT prints an R8VEC2. // // Discussion: // // An R8VEC2 is a dataset consisting of N pairs of real values, stored // as two separate vectors A1 and A2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 November 2002 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A1[N], double A2[N], the vectors to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i <= n - 1; i++ ) { cout << setw(6) << i << ": " << setw(14) << a1[i] << " " << setw(14) << a2[i] << "\n"; } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }