# include # include # include # include # include using namespace std; # include "line_fekete_rule.hpp" # include "qr_solve.hpp" # include "r8lib.hpp" int main ( ); void test01 ( int m ); void test02 ( int m ); void test03 ( int m ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for LINE_FEKETE_RULE_PRB. // // Discussion: // // LINE_FEKETE_RULE_PRB tests the LINE_FEKETE_RULE library. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 April 2014 // // Author: // // John Burkardt // { # define TEST_NUM 3 int m; int m_test[TEST_NUM] = { 5, 11, 21 }; int test; int test_num = TEST_NUM; timestamp ( ); cout << "\n"; cout << "LINE_FEKETE_RULE_PRB\n"; cout << " C version\n"; cout << " Test the LINE_FEKETE_RULE library.\n"; for ( test = 0; test < test_num; test++ ) { m = m_test[test]; test01 ( m ); } for ( test = 0; test < test_num; test++ ) { m = m_test[test]; test02 ( m ); } for ( test = 0; test < test_num; test++ ) { m = m_test[test]; test03 ( m ); } // // Terminate. // cout << "\n"; cout << "LINE_FEKETE_RULE_PRB\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; # undef TEST_NUM } //****************************************************************************80 void test01 ( int m ) //****************************************************************************80 // // Purpose: // // TEST01 seeks Fekete points in [-1,+1]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 April 2014 // // Author: // // John Burkardt // // Reference: // // Alvise Sommariva, Marco Vianello, // Computing approximate Fekete points by QR factorizations of Vandermonde // matrices, // Computers and Mathematics with Applications, // Volume 57, 2009, pages 1324-1336. // // Parameters: // // Input, int M, the dimension of the polynomial space. // { # define N 5001 double a; double b; int n = N; int nf; double *wf; double wf_sum; double *x; double *xf; a = -1.0; b = +1.0; x = r8vec_linspace_new ( n, a, b ); cout << "\n"; cout << "TEST01:\n"; cout << " Seek Fekete points in [" << a << "," << b << "]\n"; cout << " using " << n << " equally spaced sample points\n"; cout << " for polynomials of degree M = " << m << "\n"; cout << " using the monomial basis and uniform weight.\n"; wf = new double[m]; xf = new double[m]; line_fekete_monomial ( m, a, b, n, x, nf, xf, wf ); cout << "\n"; cout << " NF = " << nf << "\n"; r8vec_print ( nf, xf, " Estimated Fekete points XF:" ); wf_sum = r8vec_sum ( nf, wf ); cout << "\n"; cout << " Sum(WF) = " << wf_sum << "\n"; delete [] wf; delete [] x; delete [] xf; return; # undef N } //****************************************************************************80 void test02 ( int m ) //****************************************************************************80 // // Purpose: // // TEST02 seeks Fekete points in [-1,+1]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 April 2014 // // Author: // // John Burkardt // // Reference: // // L Bos, N Levenberg, // On the calculation of approximate Fekete points: the univariate case, // Electronic Transactions on Numerical Analysis, // Volume 30, pages 377-397, 2008. // // Parameters: // // Input, int M, the dimension of the polynomial space. // { # define N 5001 double a; double b; int n = N; int nf; double *wf; double wf_sum; double *x; double *xf; a = -1.0; b = +1.0; x = r8vec_linspace_new ( n, a, b ); cout << "\n"; cout << "TEST02:\n"; cout << " Seek Fekete points in [" << a << "," << b << "]\n"; cout << " using " << n << " equally spaced sample points\n"; cout << " for polynomials of degree M = " << m << "\n"; cout << " with the Chebyshev basis.\n"; wf = new double[m]; xf = new double[m]; line_fekete_chebyshev ( m, a, b, n, x, nf, xf, wf ); cout << "\n"; cout << " NF = " << nf << "\n"; r8vec_print ( nf, xf, " Estimated Fekete points XF:" ); wf_sum = r8vec_sum ( nf, wf ); cout << "\n"; cout << " Sum(WF) = " << wf_sum << "\n"; delete [] wf; delete [] x; delete [] xf; return; # undef N } //****************************************************************************80 void test03 ( int m ) //****************************************************************************80 // // Purpose: // // TEST03 seeks Fekete points in [-1,+1]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 April 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the dimension of the polynomial space. // { # define N 5001 double a; double b; int n = N; int nf; double *wf; double wf_sum; double *x; double *xf; a = -1.0; b = +1.0; x = r8vec_linspace_new ( n, a, b ); cout << "\n"; cout << "TEST03:\n"; cout << " Seek Fekete points in [" << a << "," << b << "]\n"; cout << " using " << n << " equally spaced sample points\n"; cout << " for polynomials of degree M = " << m << "\n"; cout << " with the Legendre basis and uniform weight.\n"; wf = new double[m]; xf = new double[m]; line_fekete_legendre ( m, a, b, n, x, nf, xf, wf ); cout << "\n"; cout << " NF = " << nf << "\n"; r8vec_print ( nf, xf, " Estimated Fekete points XF:" ); wf_sum = r8vec_sum ( nf, wf ); cout << "\n"; cout << " Sum(WF) = " << wf_sum << "\n"; delete [] wf; delete [] x; delete [] xf; return; # undef N }