# include # include # include # include # include using namespace std; int main ( void ); double cpu_time ( void ); void daxpy ( int n, double da, double dx[], int incx, double dy[], int incy ); double ddot ( int n, double dx[], int incx, double dy[], int incy ); int dgefa ( double a[], int lda, int n, int ipvt[] ); void dgesl ( double a[], int lda, int n, int ipvt[], double b[], int job ); void dscal ( int n, double sa, double x[], int incx ); int idamax ( int n, double dx[], int incx ); double r8_abs ( double x ); double r8_epsilon ( ); double r8_max ( double x, double y ); double r8_random ( int iseed[4] ); double *r8mat_gen ( int lda, int n ); void timestamp ( void ); //****************************************************************************80 int main ( void ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for LINPACK_BENCH_D. // // Discussion: // // LINPACK_BENCH_D drives the double precision LINPACK benchmark program. // // Modified: // // 30 November 2006 // // Parameters: // // N is the problem size. // { # define N 1000 # define LDA ( N + 1 ) double *a; double a_max; double *b; double b_max; double cray = 0.056; double eps; int i; int info; int *ipvt; int j; int job; double ops; double *resid; double resid_max; double residn; double *rhs; double t1; double t2; double time[6]; double total; double *x; timestamp ( ); cout << "\n"; cout << "LINPACK_BENCH_D\n"; cout << " C++ version\n"; cout << "\n"; cout << " The LINPACK benchmark.\n"; cout << " Language: C++\n"; cout << " Datatype: Double precision\n"; cout << " Matrix order N = " << N << "\n"; cout << " Leading matrix dimension LDA = " << LDA << "\n"; ops = ( double ) ( 2 * N * N * N ) / 3.0 + 2.0 * ( double ) ( N * N ); // // Allocate space for arrays. // a = r8mat_gen ( LDA, N ); b = new double[N]; ipvt = new int[N]; resid = new double[N]; rhs = new double[N]; x = new double[N]; a_max = 0.0; for ( j = 0; j < N; j++ ) { for ( i = 0; i < N; i++ ) { a_max = r8_max ( a_max, a[i+j*LDA] ); } } for ( i = 0; i < N; i++ ) { x[i] = 1.0; } for ( i = 0; i < N; i++ ) { b[i] = 0.0; for ( j = 0; j < N; j++ ) { b[i] = b[i] + a[i+j*LDA] * x[j]; } } t1 = cpu_time ( ); info = dgefa ( a, LDA, N, ipvt ); if ( info != 0 ) { cout << "\n"; cout << "LINPACK_BENCH_D - Fatal error!\n"; cout << " The matrix A is apparently singular.\n"; cout << " Abnormal end of execution.\n"; return 1; } t2 = cpu_time ( ); time[0] = t2 - t1; t1 = cpu_time ( ); job = 0; dgesl ( a, LDA, N, ipvt, b, job ); t2 = cpu_time ( ); time[1] = t2 - t1; total = time[0] + time[1]; delete [] a; // // Compute a residual to verify results. // a = r8mat_gen ( LDA, N ); for ( i = 0; i < N; i++ ) { x[i] = 1.0; } for ( i = 0; i < N; i++ ) { rhs[i] = 0.0; for ( j = 0; j < N; j++ ) { rhs[i] = rhs[i] + a[i+j*LDA] * x[j]; } } for ( i = 0; i < N; i++ ) { resid[i] = -rhs[i]; for ( j = 0; j < N; j++ ) { resid[i] = resid[i] + a[i+j*LDA] * b[j]; } } resid_max = 0.0; for ( i = 0; i < N; i++ ) { resid_max = r8_max ( resid_max, r8_abs ( resid[i] ) ); } b_max = 0.0; for ( i = 0; i < N; i++ ) { b_max = r8_max ( b_max, r8_abs ( b[i] ) ); } eps = r8_epsilon ( ); residn = resid_max / ( ( double ) N * a_max * b_max * eps ); time[2] = total; if ( 0.0 < total ) { time[3] = ops / ( 1.0E+06 * total ); } else { time[3] = -1.0; } time[4] = 2.0 / time[3]; time[5] = total / cray; cout << "\n"; cout << " Norm. Resid Resid MACHEP X[1] X[N]\n"; cout << "\n"; cout << setw(14) << residn << " " << setw(14) << resid_max << " " << setw(14) << eps << " " << setw(14) << b[0] << " " << setw(14) << b[N-1] << "\n"; cout << "\n"; cout << " Factor Solve Total MFLOPS Unit Cray-Ratio\n"; cout << "\n"; cout << setw(9) << time[0] << " " << setw(9) << time[1] << " " << setw(9) << time[2] << " " << setw(9) << time[3] << " " << setw(9) << time[4] << " " << setw(9) << time[5] << "\n"; delete [] a; delete [] b; delete [] ipvt; delete [] resid; delete [] rhs; delete [] x; cout << "\n"; cout << "LINPACK_BENCH_D\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; # undef LDA # undef N } //****************************************************************************80 double cpu_time ( ) //****************************************************************************80 // // Purpose: // // CPU_TIME reports the elapsed CPU time. // // Discussion: // // The data available to this routine through "CLOCK" is not very reliable, // and hence the values of CPU_TIME returned should not be taken too // seriously, especially when short intervals are being timed. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2008 // // Author: // // John Burkardt // // Parameters: // // Output, double CPU_TIME, the current total elapsed CPU time in second. // { double value; value = ( double ) clock ( ) / ( double ) CLOCKS_PER_SEC; return value; } //****************************************************************************80 void daxpy ( int n, double da, double dx[], int incx, double dy[], int incy ) //****************************************************************************80 // // Purpose: // // DAXPY computes constant times a vector plus a vector. // // Discussion: // // This routine uses unrolled loops for increments equal to one. // // Modified: // // 02 May 2005 // // Author: // // Jack Dongarra // // Reference: // // Dongarra, Moler, Bunch, Stewart, // LINPACK User's Guide, // SIAM, 1979. // // Lawson, Hanson, Kincaid, Krogh, // Basic Linear Algebra Subprograms for Fortran Usage, // Algorithm 539, // ACM Transactions on Mathematical Software, // Volume 5, Number 3, September 1979, pages 308-323. // // Parameters: // // Input, int N, the number of elements in DX and DY. // // Input, double DA, the multiplier of DX. // // Input, double DX[*], the first vector. // // Input, int INCX, the increment between successive entries of DX. // // Input/output, double DY[*], the second vector. // On output, DY[*] has been replaced by DY[*] + DA * DX[*]. // // Input, int INCY, the increment between successive entries of DY. // { int i; int ix; int iy; int m; if ( n <= 0 ) { return; } if ( da == 0.0 ) { return; } // // Code for unequal increments or equal increments // not equal to 1. // if ( incx != 1 || incy != 1 ) { if ( 0 <= incx ) { ix = 0; } else { ix = ( - n + 1 ) * incx; } if ( 0 <= incy ) { iy = 0; } else { iy = ( - n + 1 ) * incy; } for ( i = 0; i < n; i++ ) { dy[iy] = dy[iy] + da * dx[ix]; ix = ix + incx; iy = iy + incy; } } // // Code for both increments equal to 1. // else { m = n % 4; for ( i = 0; i < m; i++ ) { dy[i] = dy[i] + da * dx[i]; } for ( i = m; i < n; i = i + 4 ) { dy[i ] = dy[i ] + da * dx[i ]; dy[i+1] = dy[i+1] + da * dx[i+1]; dy[i+2] = dy[i+2] + da * dx[i+2]; dy[i+3] = dy[i+3] + da * dx[i+3]; } } return; } //****************************************************************************80 double ddot ( int n, double dx[], int incx, double dy[], int incy ) //****************************************************************************80 // // Purpose: // // DDOT forms the dot product of two vectors. // // Discussion: // // This routine uses unrolled loops for increments equal to one. // // Modified: // // 02 May 2005 // // Author: // // Jack Dongarra // // Reference: // // Dongarra, Moler, Bunch, Stewart, // LINPACK User's Guide, // SIAM, 1979. // // Lawson, Hanson, Kincaid, Krogh, // Basic Linear Algebra Subprograms for Fortran Usage, // Algorithm 539, // ACM Transactions on Mathematical Software, // Volume 5, Number 3, September 1979, pages 308-323. // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double DX[*], the first vector. // // Input, int INCX, the increment between successive entries in DX. // // Input, double DY[*], the second vector. // // Input, int INCY, the increment between successive entries in DY. // // Output, double DDOT, the sum of the product of the corresponding // entries of DX and DY. // { double dtemp; int i; int ix; int iy; int m; dtemp = 0.0; if ( n <= 0 ) { return dtemp; } // // Code for unequal increments or equal increments // not equal to 1. // if ( incx != 1 || incy != 1 ) { if ( 0 <= incx ) { ix = 0; } else { ix = ( - n + 1 ) * incx; } if ( 0 <= incy ) { iy = 0; } else { iy = ( - n + 1 ) * incy; } for ( i = 0; i < n; i++ ) { dtemp = dtemp + dx[ix] * dy[iy]; ix = ix + incx; iy = iy + incy; } } // // Code for both increments equal to 1. // else { m = n % 5; for ( i = 0; i < m; i++ ) { dtemp = dtemp + dx[i] * dy[i]; } for ( i = m; i < n; i = i + 5 ) { dtemp = dtemp + dx[i ] * dy[i ] + dx[i+1] * dy[i+1] + dx[i+2] * dy[i+2] + dx[i+3] * dy[i+3] + dx[i+4] * dy[i+4]; } } return dtemp; } //****************************************************************************80 int dgefa ( double a[], int lda, int n, int ipvt[] ) //****************************************************************************80 // // Purpose: // // DGEFA factors a real general matrix. // // Modified: // // 16 May 2005 // // Author: // // C++ translation by John Burkardt. // // Reference: // // Dongarra, Moler, Bunch and Stewart, // LINPACK User's Guide, // SIAM, (Society for Industrial and Applied Mathematics), // 3600 University City Science Center, // Philadelphia, PA, 19104-2688. // ISBN 0-89871-172-X // // Parameters: // // Input/output, double A[LDA*N]. // On intput, the matrix to be factored. // On output, an upper triangular matrix and the multipliers used to obtain // it. The factorization can be written A=L*U, where L is a product of // permutation and unit lower triangular matrices, and U is upper triangular. // // Input, int LDA, the leading dimension of A. // // Input, int N, the order of the matrix A. // // Output, int IPVT[N], the pivot indices. // // Output, int DGEFA, singularity indicator. // 0, normal value. // K, if U(K,K) == 0. This is not an error condition for this subroutine, // but it does indicate that DGESL or DGEDI will divide by zero if called. // Use RCOND in DGECO for a reliable indication of singularity. // { int info; int j; int k; int l; double t; // // Gaussian elimination with partial pivoting. // info = 0; for ( k = 1; k <= n-1; k++ ) { // // Find L = pivot index. // l = idamax ( n-k+1, a+(k-1)+(k-1)*lda, 1 ) + k - 1; ipvt[k-1] = l; // // Zero pivot implies this column already triangularized. // if ( a[l-1+(k-1)*lda] == 0.0 ) { info = k; continue; } // // Interchange if necessary. // if ( l != k ) { t = a[l-1+(k-1)*lda]; a[l-1+(k-1)*lda] = a[k-1+(k-1)*lda]; a[k-1+(k-1)*lda] = t; } // // Compute multipliers. // t = -1.0 / a[k-1+(k-1)*lda]; dscal ( n-k, t, a+k+(k-1)*lda, 1 ); // // Row elimination with column indexing. // for ( j = k+1; j <= n; j++ ) { t = a[l-1+(j-1)*lda]; if ( l != k ) { a[l-1+(j-1)*lda] = a[k-1+(j-1)*lda]; a[k-1+(j-1)*lda] = t; } daxpy ( n-k, t, a+k+(k-1)*lda, 1, a+k+(j-1)*lda, 1 ); } } ipvt[n-1] = n; if ( a[n-1+(n-1)*lda] == 0.0 ) { info = n; } return info; } //****************************************************************************80 void dgesl ( double a[], int lda, int n, int ipvt[], double b[], int job ) //****************************************************************************80 // // Purpose: // // DGESL solves a real general linear system A * X = B. // // Discussion: // // DGESL can solve either of the systems A * X = B or A' * X = B. // // The system matrix must have been factored by DGECO or DGEFA. // // A division by zero will occur if the input factor contains a // zero on the diagonal. Technically this indicates singularity // but it is often caused by improper arguments or improper // setting of LDA. It will not occur if the subroutines are // called correctly and if DGECO has set 0.0 < RCOND // or DGEFA has set INFO == 0. // // Modified: // // 16 May 2005 // // Author: // // C++ translation by John Burkardt. // // Reference: // // Dongarra, Moler, Bunch and Stewart, // LINPACK User's Guide, // SIAM, (Society for Industrial and Applied Mathematics), // 3600 University City Science Center, // Philadelphia, PA, 19104-2688. // ISBN 0-89871-172-X // // Parameters: // // Input, double A[LDA*N], the output from DGECO or DGEFA. // // Input, int LDA, the leading dimension of A. // // Input, int N, the order of the matrix A. // // Input, int IPVT[N], the pivot vector from DGECO or DGEFA. // // Input/output, double B[N]. // On input, the right hand side vector. // On output, the solution vector. // // Input, int JOB. // 0, solve A * X = B; // nonzero, solve A' * X = B. // { int k; int l; double t; // // Solve A * X = B. // if ( job == 0 ) { for ( k = 1; k <= n-1; k++ ) { l = ipvt[k-1]; t = b[l-1]; if ( l != k ) { b[l-1] = b[k-1]; b[k-1] = t; } daxpy ( n-k, t, a+k+(k-1)*lda, 1, b+k, 1 ); } for ( k = n; 1 <= k; k-- ) { b[k-1] = b[k-1] / a[k-1+(k-1)*lda]; t = -b[k-1]; daxpy ( k-1, t, a+0+(k-1)*lda, 1, b, 1 ); } } // // Solve A' * X = B. // else { for ( k = 1; k <= n; k++ ) { t = ddot ( k-1, a+0+(k-1)*lda, 1, b, 1 ); b[k-1] = ( b[k-1] - t ) / a[k-1+(k-1)*lda]; } for ( k = n-1; 1 <= k; k-- ) { b[k-1] = b[k-1] + ddot ( n-k, a+k+(k-1)*lda, 1, b+k, 1 ); l = ipvt[k-1]; if ( l != k ) { t = b[l-1]; b[l-1] = b[k-1]; b[k-1] = t; } } } return; } //****************************************************************************80 void dscal ( int n, double sa, double x[], int incx ) //****************************************************************************80 // // Purpose: // // DSCAL scales a vector by a constant. // // Modified: // // 02 May 2005 // // Author: // // Jack Dongarra // // Reference: // // Dongarra, Moler, Bunch, Stewart, // LINPACK User's Guide, // SIAM, 1979. // // Lawson, Hanson, Kincaid, Krogh, // Basic Linear Algebra Subprograms for Fortran Usage, // Algorithm 539, // ACM Transactions on Mathematical Software, // Volume 5, Number 3, September 1979, pages 308-323. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double SA, the multiplier. // // Input/output, double X[*], the vector to be scaled. // // Input, int INCX, the increment between successive entries of X. // { int i; int ix; int m; if ( n <= 0 ) { } else if ( incx == 1 ) { m = n % 5; for ( i = 0; i < m; i++ ) { x[i] = sa * x[i]; } for ( i = m; i < n; i = i + 5 ) { x[i] = sa * x[i]; x[i+1] = sa * x[i+1]; x[i+2] = sa * x[i+2]; x[i+3] = sa * x[i+3]; x[i+4] = sa * x[i+4]; } } else { if ( 0 <= incx ) { ix = 0; } else { ix = ( - n + 1 ) * incx; } for ( i = 0; i < n; i++ ) { x[ix] = sa * x[ix]; ix = ix + incx; } } return; } //****************************************************************************80 int idamax ( int n, double dx[], int incx ) //****************************************************************************80 // // Purpose: // // IDAMAX finds the index of the vector element of maximum absolute value. // // Modified: // // 02 May 2005 // // Reference: // // Dongarra, Moler, Bunch, Stewart, // LINPACK User's Guide, // SIAM, 1979. // // Lawson, Hanson, Kincaid, Krogh, // Basic Linear Algebra Subprograms for Fortran Usage, // Algorithm 539, // ACM Transactions on Mathematical Software, // Volume 5, Number 3, September 1979, pages 308-323. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double X[*], the vector to be examined. // // Input, int INCX, the increment between successive entries of SX. // // Output, int IDAMAX, the index of the element of maximum // absolute value. // { double dmax; int i; int ix; int value; value = 0; if ( n < 1 || incx <= 0 ) { return value; } value = 1; if ( n == 1 ) { return value; } if ( incx == 1 ) { dmax = r8_abs ( dx[0] ); for ( i = 1; i < n; i++ ) { if ( dmax < r8_abs ( dx[i] ) ) { value = i + 1; dmax = r8_abs ( dx[i] ); } } } else { ix = 0; dmax = r8_abs ( dx[0] ); ix = ix + incx; for ( i = 1; i < n; i++ ) { if ( dmax < r8_abs ( dx[ix] ) ) { value = i + 1; dmax = r8_abs ( dx[ix] ); } ix = ix + incx; } } return value; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Modified: // // 02 April 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { if ( 0.0 <= x ) { return x; } else { return ( -x ); } } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { if ( y < x ) { return x; } else { return y; } } //****************************************************************************80 double r8_random ( int iseed[4] ) //****************************************************************************80 // // Purpose: // // R8_RANDOM returns a uniformly distributed random number between 0 and 1. // // Discussion: // // This routine uses a multiplicative congruential method with modulus // 2**48 and multiplier 33952834046453 (see G.S.Fishman, // 'Multiplicative congruential random number generators with modulus // 2**b: an exhaustive analysis for b = 32 and a partial analysis for // b = 48', Math. Comp. 189, pp 331-344, 1990). // // 48-bit integers are stored in 4 integer array elements with 12 bits // per element. Hence the routine is portable across machines with // integers of 32 bits or more. // // Parameters: // // Input/output, integer ISEED(4). // On entry, the seed of the random number generator; the array // elements must be between 0 and 4095, and ISEED(4) must be odd. // On exit, the seed is updated. // // Output, double R8_RANDOM, the next pseudorandom number. // { int ipw2 = 4096; int it1; int it2; int it3; int it4; int m1 = 494; int m2 = 322; int m3 = 2508; int m4 = 2549; double one = 1.0; double r = 1.0 / 4096.0; double value; // // Multiply the seed by the multiplier modulo 2**48. // it4 = iseed[3] * m4; it3 = it4 / ipw2; it4 = it4 - ipw2 * it3; it3 = it3 + iseed[2] * m4 + iseed[3] * m3; it2 = it3 / ipw2; it3 = it3 - ipw2 * it2; it2 = it2 + iseed[1] * m4 + iseed[2] * m3 + iseed[3] * m2; it1 = it2 / ipw2; it2 = it2 - ipw2 * it1; it1 = it1 + iseed[0] * m4 + iseed[1] * m3 + iseed[2] * m2 + iseed[3] * m1; it1 = ( it1 % ipw2 ); // // Return updated seed // iseed[0] = it1; iseed[1] = it2; iseed[2] = it3; iseed[3] = it4; // // Convert 48-bit integer to a real number in the interval (0,1) // value = r * ( ( double ) ( it1 ) + r * ( ( double ) ( it2 ) + r * ( ( double ) ( it3 ) + r * ( ( double ) ( it4 ) ) ) ) ); return value; } //****************************************************************************80 double *r8mat_gen ( int lda, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_GEN generates a random R8MAT.. // // Modified: // // 06 June 2005 // // Parameters: // // Input, integer LDA, the leading dimension of the matrix. // // Input, integer N, the order of the matrix. // // Output, double R8MAT_GEN[LDA*N], the N by N matrix. // { double *a; int i; int init[4] = { 1, 2, 3, 1325 }; int j; a = new double[lda*n]; for ( j = 1; j <= n; j++ ) { for ( i = 1; i <= n; i++ ) { a[i-1+(j-1)*lda] = r8_random ( init ) - 0.5; } } return a; } //****************************************************************************80 void timestamp ( void ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }