# include # include # include # include # include # include using namespace std; int main ( ); double *lorenz_rhs ( double t, int m, double x[] ); double *r8vec_linspace_new ( int n, double a, double b ); double *rk4vec ( double t0, int n, double u0[], double dt, double *f ( double t, int n, double u[] ) ); void timestamp ( ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for LORENZ_ODE. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 October 2013 // // Author: // // John Burkardt // { string command_filename = "lorenz_ode_commands.txt"; ofstream command_unit; string data_filename = "lorenz_ode_data.txt"; ofstream data_unit; double dt; int i; int j; int m = 3; int n = 200000; double *t; double t_final; double *x; double *xnew; timestamp ( ); cout << "\n"; cout << "LORENZ_ODE\n"; cout << " C++ version\n"; cout << " Compute solutions of the Lorenz system.\n"; cout << " Write data to a file for use by gnuplot.\n"; // // Data // t_final = 40.0; dt = t_final / ( double ) ( n ); // // Store the initial conditions in entry 0. // t = r8vec_linspace_new ( n + 1, 0.0, t_final ); x = new double[m*(n+1)]; x[0+0*m] = 8.0; x[0+1*m] = 1.0; x[0+2*m] = 1.0; // // Compute the approximate solution at equally spaced times. // for ( j = 0; j < n; j = j++ ) { xnew = rk4vec ( t[j], m, x+j*m, dt, lorenz_rhs ); for ( i = 0; i < m; i++ ) { x[i+(j+1)*m] = xnew[i]; } delete [] xnew; } // // Create the plot data file. // data_unit.open ( data_filename.c_str ( ) ); for ( j = 0; j <= n; j = j + 50 ) { data_unit << " " << setw(14) << t[j] << " " << setw(14) << x[0+j*m] << " " << setw(14) << x[1+j*m] << " " << setw(14) << x[2+j*m] << "\n"; } data_unit.close ( ); cout << " Created data file \"" << data_filename << "\".\n"; /* Create the plot command file. */ command_unit.open ( command_filename.c_str ( ) ); command_unit << "# " << command_filename << "\n"; command_unit << "#\n"; command_unit << "# Usage:\n"; command_unit << "# gnuplot < " << command_filename << "\n"; command_unit << "#\n"; command_unit << "set term png\n"; command_unit << "set output 'xyz_time.png'\n"; command_unit << "set xlabel '<--- T --->'\n"; command_unit << "set ylabel '<--- X(T), Y(T), Z(T) --->'\n"; command_unit << "set title 'X, Y and Z versus Time'\n"; command_unit << "set grid\n"; command_unit << "set style data lines\n"; command_unit << "plot '" << data_filename << "' using 1:2 lw 3 linecolor rgb 'blue',"; command_unit << "'' using 1:3 lw 3 linecolor rgb 'red',"; command_unit << "'' using 1:4 lw 3 linecolor rgb 'green'\n"; command_unit << "set output 'xyz_3d.png'\n"; command_unit << "set xlabel '<--- X(T) --->'\n"; command_unit << "set ylabel '<--- Y(T) --->'\n"; command_unit << "set zlabel '<--- Z(T) --->'\n"; command_unit << "set title '(X(T),Y(T),Z(T)) trajectory'\n"; command_unit << "set grid\n"; command_unit << "set style data lines\n"; command_unit << "splot '" << data_filename << "' using 2:3:4 lw 1 linecolor rgb 'blue'\n"; command_unit << "quit\n"; command_unit.close ( ); cout << " Created command file '" << command_filename << "'\n"; // // Terminate. // cout << "\n"; cout << "LORENZ_ODE:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 double *lorenz_rhs ( double t, int m, double x[] ) //****************************************************************************80 // // Purpose: // // LORENZ_RHS evaluates the right hand side of the Lorenz ODE. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 October 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double T, the value of the independent variable. // // Input, int M, the spatial dimension. // // Input, double X[M], the values of the dependent variables // at time T. // // Output, double DXDT[M], the values of the derivatives // of the dependent variables at time T. // { double beta = 8.0 / 3.0; double *dxdt; double rho = 28.0; double sigma = 10.0; dxdt = new double[m]; dxdt[0] = sigma * ( x[1] - x[0] ); dxdt[1] = x[0] * ( rho - x[2] ) - x[1]; dxdt[2] = x[0] * x[1] - beta * x[2]; return dxdt; } //****************************************************************************80 double *r8vec_linspace_new ( int n, double a_first, double a_last ) //****************************************************************************80 // // Purpose: // // R8VEC_LINSPACE_NEW creates a vector of linearly spaced values. // // Discussion: // // An R8VEC is a vector of R8's. // // 4 points evenly spaced between 0 and 12 will yield 0, 4, 8, 12. // // In other words, the interval is divided into N-1 even subintervals, // and the endpoints of intervals are used as the points. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A_FIRST, A_LAST, the first and last entries. // // Output, double R8VEC_LINSPACE_NEW[N], a vector of linearly spaced data. // { double *a; int i; a = new double[n]; if ( n == 1 ) { a[0] = ( a_first + a_last ) / 2.0; } else { for ( i = 0; i < n; i++ ) { a[i] = ( ( double ) ( n - 1 - i ) * a_first + ( double ) ( i ) * a_last ) / ( double ) ( n - 1 ); } } return a; } //****************************************************************************80 double *rk4vec ( double t0, int m, double u0[], double dt, double *f ( double t, int m, double u[] ) ) //****************************************************************************80 // // Purpose: // // RK4VEC takes one Runge-Kutta step for a vector ODE. // // Discussion: // // It is assumed that an initial value problem, of the form // // du/dt = f ( t, u ) // u(t0) = u0 // // is being solved. // // If the user can supply current values of t, u, a stepsize dt, and a // function to evaluate the derivative, this function can compute the // fourth-order Runge Kutta estimate to the solution at time t+dt. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 October 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double T0, the current time. // // Input, int M, the spatial dimension. // // Input, double U0[M], the solution estimate at the current time. // // Input, double DT, the time step. // // Input, double *F ( double T, int M, double U[] ), a function which evaluates // the derivative, or right hand side of the problem. // // Output, double RK4VEC[M], the fourth-order Runge-Kutta solution estimate // at time T0+DT. // { double *f0; double *f1; double *f2; double *f3; int i; double t1; double t2; double t3; double *u; double *u1; double *u2; double *u3; // // Get four sample values of the derivative. // f0 = f ( t0, m, u0 ); t1 = t0 + dt / 2.0; u1 = new double[m]; for ( i = 0; i < m; i++ ) { u1[i] = u0[i] + dt * f0[i] / 2.0; } f1 = f ( t1, m, u1 ); t2 = t0 + dt / 2.0; u2 = new double[m]; for ( i = 0; i < m; i++ ) { u2[i] = u0[i] + dt * f1[i] / 2.0; } f2 = f ( t2, m, u2 ); t3 = t0 + dt; u3 = new double[m]; for ( i = 0; i < m; i++ ) { u3[i] = u0[i] + dt * f2[i]; } f3 = f ( t3, m, u3 ); // // Combine them to estimate the solution. // u = new double[m]; for ( i = 0; i < m; i++ ) { u[i] = u0[i] + dt * ( f0[i] + 2.0 * f1[i] + 2.0 * f2[i] + f3[i] ) / 6.0; } // // Free memory. // delete [] f0; delete [] f1; delete [] f2; delete [] f3; delete [] u1; delete [] u2; delete [] u3; return u; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }