# include # include # include # include # include using namespace std; # include "machar.hpp" //****************************************************************************80 float r4_abs ( float x ) //****************************************************************************80 // // Purpose: // // R4_ABS returns the absolute value of an R4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 April 2005 // // Author: // // John Burkardt // // Parameters: // // Input, float X, the quantity whose absolute value is desired. // // Output, float R4_ABS, the absolute value of X. // { if ( 0.0 <= x ) { return x; } else { return ( -x ); } } //****************************************************************************80 void r4_machar ( long int *ibeta, long int *it, long int *irnd, long int *ngrd, long int *machep, long int *negep, long int *iexp, long int *minexp, long int *maxexp, float *eps, float *epsneg, float *xmin, float *xmax ) //****************************************************************************80 // // Purpose: // // R4_MACHAR computes machine constants for R4 arithmetic. // // Discussion: // // This routine determines the parameters of the floating-point // arithmetic system specified below. The determination of the first // three uses an extension of an algorithm due to Malcolm, // incorporating some of the improvements suggested by Gentleman and // Marovich. // // A FORTRAN version of this routine appeared as ACM algorithm 665. // // This routine is a C translation of the FORTRAN code, and appeared // as part of ACM algorithm 722. // // An earlier version of this program was published in Cody and Waite. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 April 2006 // // Author: // // Original C version by William Cody. // C++ version by John Burkardt. // // Reference: // // William Cody, // ACM Algorithm 665, MACHAR, a subroutine to dynamically determine // machine parameters, // ACM Transactions on Mathematical Software, // Volume 14, Number 4, pages 303-311, 1988. // // William Cody and W Waite, // Software Manual for the Elementary Functions, // Prentice Hall, 1980. // // M Gentleman and S Marovich, // Communications of the ACM, // Volume 17, pages 276-277, 1974. // // M. Malcolm, // Communications of the ACM, // Volume 15, pages 949-951, 1972. // // Parameters: // // Output, long int* IBETA, the radix for the floating-point representation. // // Output, long int* IT, the number of base IBETA digits in the floating-point // significand. // // Output, long int* IRND: // 0, if floating-point addition chops. // 1, if floating-point addition rounds, but not in the IEEE style. // 2, if floating-point addition rounds in the IEEE style. // 3, if floating-point addition chops, and there is partial underflow. // 4, if floating-point addition rounds, but not in the IEEE style, and // there is partial underflow. // 5, if floating-point addition rounds in the IEEE style, and there is // partial underflow. // // Output, long int* NGRD, the number of guard digits for multiplication with // truncating arithmetic. It is // 0, if floating-point arithmetic rounds, or if it truncates and only // IT base IBETA digits participate in the post-normalization shift of the // floating-point significand in multiplication; // 1, if floating-point arithmetic truncates and more than IT base IBETA // digits participate in the post-normalization shift of the floating-point // significand in multiplication. // // Output, long int* MACHEP, the largest negative integer such that // 1.0 + ( float ) IBETA ^ MACHEP != 1.0, // except that MACHEP is bounded below by - ( IT + 3 ). // // Output, long int* NEGEPS, the largest negative integer such that // 1.0 - ( float ) IBETA ) ^ NEGEPS != 1.0, // except that NEGEPS is bounded below by - ( IT + 3 ). // // Output, long int* IEXP, the number of bits (decimal places if IBETA = 10) // reserved for the representation of the exponent (including the bias or // sign) of a floating-point number. // // Output, long int* MINEXP, the largest in magnitude negative integer such // that // ( float ) IBETA ^ MINEXP // is positive and normalized. // // Output, long int* MAXEXP, the smallest positive power of BETA that overflows. // // Output, float* EPS, the smallest positive floating-point number such // that // 1.0 + EPS != 1.0. // in particular, if either IBETA = 2 or IRND = 0, // EPS = ( float ) IBETA ^ MACHEP. // Otherwise, // EPS = ( ( float ) IBETA ^ MACHEP ) / 2. // // Output, float* EPSNEG, a small positive floating-point number such that // 1.0 - EPSNEG != 1.0. // In particular, if IBETA = 2 or IRND = 0, // EPSNEG = ( float ) IBETA ^ NEGEPS. // Otherwise, // EPSNEG = ( float ) IBETA ^ NEGEPS ) / 2. // Because NEGEPS is bounded below by - ( IT + 3 ), EPSNEG might not be the // smallest number that can alter 1.0 by subtraction. // // Output, float* XMIN, the smallest non-vanishing normalized floating-point // power of the radix: // XMIN = ( float ) IBETA ^ MINEXP // // Output, float* XMAX, the largest finite floating-point number. In // particular, // XMAX = ( 1.0 - EPSNEG ) * ( float ) IBETA ^ MAXEXP // On some machines, the computed value of XMAX will be only the second, // or perhaps third, largest number, being too small by 1 or 2 units in // the last digit of the significand. // { float a; float b; float beta; float betah; float betain; int i; int itmp; int iz; int j; int k; int mx; int nxres; float one; float t; float tmp; float tmp1; float tmpa; float two; float y; float z; float zero; (*irnd) = 1; one = (float) (*irnd); two = one + one; a = two; b = a; zero = 0.0e0; // // Determine IBETA and BETA ala Malcolm. // tmp = ( ( a + one ) - a ) - one; while ( tmp == zero ) { a = a + a; tmp = a + one; tmp1 = tmp - a; tmp = tmp1 - one; } tmp = a + b; itmp = ( int ) ( tmp - a ); while ( itmp == 0 ) { b = b + b; tmp = a + b; itmp = ( int ) ( tmp - a ); } *ibeta = itmp; beta = ( float ) ( *ibeta ); // // Determine IRND, IT. // ( *it ) = 0; b = one; tmp = ( ( b + one ) - b ) - one; while ( tmp == zero ) { *it = *it + 1; b = b * beta; tmp = b + one; tmp1 = tmp - b; tmp = tmp1 - one; } *irnd = 0; betah = beta / two; tmp = a + betah; tmp1 = tmp - a; if ( tmp1 != zero ) { *irnd = 1; } tmpa = a + beta; tmp = tmpa + betah; if ( ( *irnd == 0 ) && ( tmp - tmpa != zero ) ) { *irnd = 2; } // // Determine NEGEP, EPSNEG. // (*negep) = (*it) + 3; betain = one / beta; a = one; for ( i = 1; i <= (*negep); i++ ) { a = a * betain; } b = a; tmp = ( one - a ); tmp = tmp - one; while ( tmp == zero ) { a = a * beta; *negep = *negep - 1; tmp1 = one - a; tmp = tmp1 - one; } (*negep) = -(*negep); (*epsneg) = a; // // Determine MACHEP, EPS. // (*machep) = -(*it) - 3; a = b; tmp = one + a; while ( tmp - one == zero) { a = a * beta; *machep = *machep + 1; tmp = one + a; } *eps = a; // // Determine NGRD. // (*ngrd) = 0; tmp = one + *eps; tmp = tmp * one; if ( ( (*irnd) == 0 ) && ( tmp - one ) != zero ) { (*ngrd) = 1; } // // Determine IEXP, MINEXP and XMIN. // // Loop to determine largest I such that (1/BETA)^(2^I) // does not underflow. Exit from loop is signaled by an underflow. // i = 0; k = 1; z = betain; t = one + *eps; nxres = 0; for ( ; ; ) { y = z; z = y * y; // // Check for underflow // a = z * one; tmp = z * t; if ( ( a + a == zero ) || ( r4_abs ( z ) > y ) ) { break; } tmp1 = tmp * betain; if ( tmp1 * beta == z ) { break; } i = i + 1; k = k + k; } // // Determine K such that (1/BETA)^K does not underflow. // First set K = 2^I. // (*iexp) = i + 1; mx = k + k; if ( *ibeta == 10 ) { // // For decimal machines only // (*iexp) = 2; iz = *ibeta; while ( k >= iz ) { iz = iz * ( *ibeta ); (*iexp) = (*iexp) + 1; } mx = iz + iz - 1; } // // Loop to determine MINEXP, XMIN. // Exit from loop is signaled by an underflow. // for ( ; ; ) { (*xmin) = y; y = y * betain; a = y * one; tmp = y * t; tmp1 = a + a; if ( ( tmp1 == zero ) || ( r4_abs ( y ) >= ( *xmin ) ) ) { break; } k = k + 1; tmp1 = tmp * betain; tmp1 = tmp1 * beta; if ( ( tmp1 == y ) && ( tmp != y ) ) { nxres = 3; *xmin = y; break; } } (*minexp) = -k; // // Determine MAXEXP, XMAX. // if ( ( mx <= k + k - 3 ) && ( ( *ibeta ) != 10 ) ) { mx = mx + mx; (*iexp) = (*iexp) + 1; } (*maxexp) = mx + (*minexp); // // Adjust IRND to reflect partial underflow. // (*irnd) = (*irnd) + nxres; // // Adjust for IEEE style machines. // if ( ( *irnd) >= 2 ) { (*maxexp) = (*maxexp) - 2; } // // Adjust for machines with implicit leading bit in binary // significand and machines with radix point at extreme // right of significand. // i = (*maxexp) + (*minexp); if ( ( ( *ibeta ) == 2 ) && ( i == 0 ) ) { (*maxexp) = (*maxexp) - 1; } if ( i > 20 ) { (*maxexp) = (*maxexp) - 1; } if ( a != y ) { (*maxexp) = (*maxexp) - 2; } (*xmax) = one - (*epsneg); tmp = (*xmax) * one; if ( tmp != (*xmax) ) { (*xmax) = one - beta * (*epsneg); } (*xmax) = (*xmax) / ( beta * beta * beta * (*xmin) ); i = (*maxexp) + (*minexp) + 3; if ( i > 0 ) { for ( j = 1; j <= i; j++ ) { if ( (*ibeta) == 2 ) { (*xmax) = (*xmax) + (*xmax); } if ( (*ibeta) != 2 ) { (*xmax) = (*xmax) * beta; } } } return; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 April 2005 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { if ( 0.0 <= x ) { return x; } else { return ( -x ); } } //****************************************************************************80 void r8_machar ( long int *ibeta, long int *it, long int *irnd, long int *ngrd, long int *machep, long int *negep, long int *iexp, long int *minexp, long int *maxexp, double *eps, double *epsneg, double *xmin, double *xmax ) //****************************************************************************80 // // Purpose: // // R8_MACHAR computes machine constants for R8 arithmetic. // // Discussion: // // This routine determines the parameters of the floating-point // arithmetic system specified below. The determination of the first // three uses an extension of an algorithm due to Malcolm, // incorporating some of the improvements suggested by Gentleman and // Marovich. // // A FORTRAN version of this routine appeared as ACM algorithm 665. // // This routine is a C translation of the FORTRAN code, and appeared // as part of ACM algorithm 722. // // An earlier version of this program was published in Cody and Waite. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 April 2006 // // Author: // // Original C version by William Cody. // C++ version by John Burkardt. // // Reference: // // William Cody, // ACM Algorithm 665, MACHAR, a subroutine to dynamically determine // machine parameters, // ACM Transactions on Mathematical Software, // Volume 14, Number 4, pages 303-311, 1988. // // William Cody and W Waite, // Software Manual for the Elementary Functions, // Prentice Hall, 1980. // // M Gentleman and S Marovich, // Communications of the ACM, // Volume 17, pages 276-277, 1974. // // M. Malcolm, // Communications of the ACM, // Volume 15, pages 949-951, 1972. // // Parameters: // // Output, long int* IBETA, the radix for the floating-point representation. // // Output, long int* IT, the number of base IBETA digits in the floating-point // significand. // // Output, long int* IRND: // 0, if floating-point addition chops. // 1, if floating-point addition rounds, but not in the IEEE style. // 2, if floating-point addition rounds in the IEEE style. // 3, if floating-point addition chops, and there is partial underflow. // 4, if floating-point addition rounds, but not in the IEEE style, and // there is partial underflow. // 5, if floating-point addition rounds in the IEEE style, and there is // partial underflow. // // Output, long int* NGRD, the number of guard digits for multiplication with // truncating arithmetic. It is // 0, if floating-point arithmetic rounds, or if it truncates and only // IT base IBETA digits participate in the post-normalization shift of the // floating-point significand in multiplication; // 1, if floating-point arithmetic truncates and more than IT base IBETA // digits participate in the post-normalization shift of the floating-point // significand in multiplication. // // Output, long int* MACHEP, the largest negative integer such that // 1.0 + ( double ) IBETA ^ MACHEP != 1.0, // except that MACHEP is bounded below by - ( IT + 3 ). // // Output, long int* NEGEPS, the largest negative integer such that // 1.0 - ( double ) IBETA ) ^ NEGEPS != 1.0, // except that NEGEPS is bounded below by - ( IT + 3 ). // // Output, long int* IEXP, the number of bits (decimal places if IBETA = 10) // reserved for the representation of the exponent (including the bias or // sign) of a floating-point number. // // Output, long int* MINEXP, the largest in magnitude negative integer such // that // ( double ) IBETA ^ MINEXP // is positive and normalized. // // Output, long int* MAXEXP, the smallest positive power of BETA that overflows. // // Output, double* EPS, the smallest positive floating-point number such // that // 1.0 + EPS != 1.0. // in particular, if either IBETA = 2 or IRND = 0, // EPS = ( double ) IBETA ^ MACHEP. // Otherwise, // EPS = ( ( double ) IBETA ^ MACHEP ) / 2. // // Output, double* EPSNEG, a small positive floating-point number such that // 1.0 - EPSNEG != 1.0. // In particular, if IBETA = 2 or IRND = 0, // EPSNEG = ( double ) IBETA ^ NEGEPS. // Otherwise, // EPSNEG = ( double ) IBETA ^ NEGEPS ) / 2. // Because NEGEPS is bounded below by - ( IT + 3 ), EPSNEG might not be the // smallest number that can alter 1.0 by subtraction. // // Output, double* XMIN, the smallest non-vanishing normalized floating-point // power of the radix: // XMIN = ( double ) IBETA ^ MINEXP // // Output, float* XMAX, the largest finite floating-point number. In // particular, // XMAX = ( 1.0 - EPSNEG ) * ( double ) IBETA ^ MAXEXP // On some machines, the computed value of XMAX will be only the second, // or perhaps third, largest number, being too small by 1 or 2 units in // the last digit of the significand. // { double a; double b; double beta; double betah; double betain; int i; int itmp; int iz; int j; int k; int mx; int nxres; double one; double t; double tmp; double tmp1; double tmpa; double two; double y; double z; double zero; (*irnd) = 1; one = (double) (*irnd); two = one + one; a = two; b = a; zero = 0.0e0; // // Determine IBETA and BETA ala Malcolm. // tmp = ( ( a + one ) - a ) - one; while ( tmp == zero ) { a = a + a; tmp = a + one; tmp1 = tmp - a; tmp = tmp1 - one; } tmp = a + b; itmp = ( int ) ( tmp - a ); while ( itmp == 0 ) { b = b + b; tmp = a + b; itmp = ( int ) ( tmp - a ); } *ibeta = itmp; beta = ( double ) ( *ibeta ); // // Determine IRND, IT. // ( *it ) = 0; b = one; tmp = ( ( b + one ) - b ) - one; while ( tmp == zero ) { *it = *it + 1; b = b * beta; tmp = b + one; tmp1 = tmp - b; tmp = tmp1 - one; } *irnd = 0; betah = beta / two; tmp = a + betah; tmp1 = tmp - a; if ( tmp1 != zero ) { *irnd = 1; } tmpa = a + beta; tmp = tmpa + betah; if ( ( *irnd == 0 ) && ( tmp - tmpa != zero ) ) { *irnd = 2; } // // Determine NEGEP, EPSNEG. // (*negep) = (*it) + 3; betain = one / beta; a = one; for ( i = 1; i <= (*negep); i++ ) { a = a * betain; } b = a; tmp = ( one - a ); tmp = tmp - one; while ( tmp == zero ) { a = a * beta; *negep = *negep - 1; tmp1 = one - a; tmp = tmp1 - one; } (*negep) = -(*negep); (*epsneg) = a; // // Determine MACHEP, EPS. // (*machep) = -(*it) - 3; a = b; tmp = one + a; while ( tmp - one == zero) { a = a * beta; *machep = *machep + 1; tmp = one + a; } *eps = a; // // Determine NGRD. // (*ngrd) = 0; tmp = one + *eps; tmp = tmp * one; if ( ( (*irnd) == 0 ) && ( tmp - one ) != zero ) { (*ngrd) = 1; } // // Determine IEXP, MINEXP and XMIN. // // Loop to determine largest I such that (1/BETA)^(2^I) // does not underflow. Exit from loop is signaled by an underflow. // i = 0; k = 1; z = betain; t = one + *eps; nxres = 0; for ( ; ; ) { y = z; z = y * y; // // Check for underflow // a = z * one; tmp = z * t; if ( ( a + a == zero ) || ( r8_abs ( z ) > y ) ) { break; } tmp1 = tmp * betain; if ( tmp1 * beta == z ) { break; } i = i + 1; k = k + k; } // // Determine K such that (1/BETA)^K does not underflow. // First set K = 2^I. // (*iexp) = i + 1; mx = k + k; // // For decimal machines only // if ( *ibeta == 10 ) { (*iexp) = 2; iz = *ibeta; while ( iz <= k ) { iz = iz * ( *ibeta ); (*iexp) = (*iexp) + 1; } mx = iz + iz - 1; } // // Loop to determine MINEXP, XMIN. // Exit from loop is signaled by an underflow. // for ( ; ; ) { (*xmin) = y; y = y * betain; a = y * one; tmp = y * t; tmp1 = a + a; if ( ( tmp1 == zero ) || ( r8_abs ( y ) >= ( *xmin ) ) ) { break; } k = k + 1; tmp1 = tmp * betain; tmp1 = tmp1 * beta; if ( ( tmp1 == y ) && ( tmp != y ) ) { nxres = 3; *xmin = y; break; } } (*minexp) = -k; // // Determine MAXEXP, XMAX. // if ( ( mx <= k + k - 3 ) && ( ( *ibeta ) != 10 ) ) { mx = mx + mx; (*iexp) = (*iexp) + 1; } (*maxexp) = mx + (*minexp); // // Adjust IRND to reflect partial underflow. // (*irnd) = (*irnd) + nxres; // // Adjust for IEEE style machines. // if ( ( *irnd) >= 2 ) { (*maxexp) = (*maxexp) - 2; } // // Adjust for machines with implicit leading bit in binary // significand and machines with radix point at extreme // right of significand. // i = (*maxexp) + (*minexp); if ( ( ( *ibeta ) == 2 ) && ( i == 0 ) ) { (*maxexp) = (*maxexp) - 1; } if ( i > 20 ) { (*maxexp) = (*maxexp) - 1; } if ( a != y ) { (*maxexp) = (*maxexp) - 2; } (*xmax) = one - (*epsneg); tmp = (*xmax) * one; if ( tmp != (*xmax) ) { (*xmax) = one - beta * (*epsneg); } (*xmax) = (*xmax) / ( beta * beta * beta * (*xmin) ); i = (*maxexp) + (*minexp) + 3; if ( i > 0 ) { for ( j = 1; j <= i; j++ ) { if ( (*ibeta) == 2 ) { (*xmax) = (*xmax) + (*xmax); } if ( (*ibeta) != 2 ) { (*xmax) = (*xmax) * beta; } } } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }