# include # include # include # include using namespace std; # include "machine.hpp" //****************************************************************************80 double d1mach ( int i ) //****************************************************************************80 // // Purpose: // // D1MACH returns double precision real machine constants. // // Discussion: // // Assuming that the internal representation of a double precision real // number is in base B, with T the number of base-B digits in the mantissa, // and EMIN the smallest possible exponent and EMAX the largest possible // exponent, then // // D1MACH(1) = B^(EMIN-1), the smallest positive magnitude. // D1MACH(2) = B^EMAX*(1-B^(-T)), the largest magnitude. // D1MACH(3) = B^(-T), the smallest relative spacing. // D1MACH(4) = B^(1-T), the largest relative spacing. // D1MACH(5) = log10(B). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2012 // // Author: // // Original FORTRAN77 version by Phyllis Fox, Andrew Hall, Norman Schryer. // C++ version by John Burkardt. // // Reference: // // Phyllis Fox, Andrew Hall, Norman Schryer, // Algorithm 528: // Framework for a Portable Library, // ACM Transactions on Mathematical Software, // Volume 4, Number 2, June 1978, page 176-188. // // Parameters: // // Input, int I, chooses the parameter to be returned. // 1 <= I <= 5. // // Output, double D1MACH, the value of the chosen parameter. // { double value; if ( i == 1 ) { value = 4.450147717014403E-308; } else if ( i == 2 ) { value = 8.988465674311579E+307; } else if ( i == 3 ) { value = 1.110223024625157E-016; } else if ( i == 4 ) { value = 2.220446049250313E-016; } else if ( i == 5 ) { value = 0.301029995663981E+000; } else if ( 5 < i ) { cerr << "\n"; cerr << "D1MACH - Fatal error!\n"; cerr << " The input argument I is out of bounds.\n"; cerr << " Legal values satisfy 1 <= I <= 5.\n"; cerr << " I = " << i << "\n"; value = 0.0; exit ( 1 ); } return value; } //****************************************************************************80 int i1mach ( int i ) //****************************************************************************80 // // Purpose: // // I1MACH returns integer machine constants. // // Discussion: // // Input/output unit numbers. // // I1MACH(1) = the standard input unit. // I1MACH(2) = the standard output unit. // I1MACH(3) = the standard punch unit. // I1MACH(4) = the standard error message unit. // // Words. // // I1MACH(5) = the number of bits per integer storage unit. // I1MACH(6) = the number of characters per integer storage unit. // // Integers. // // Assume integers are represented in the S digit base A form: // // Sign * (X(S-1)*A^(S-1) + ... + X(1)*A + X(0)) // // where 0 <= X(1:S-1) < A. // // I1MACH(7) = A, the base. // I1MACH(8) = S, the number of base A digits. // I1MACH(9) = A^S-1, the largest integer. // // Floating point numbers // // Assume floating point numbers are represented in the T digit // base B form: // // Sign * (B**E) * ((X(1)/B) + ... + (X(T)/B^T) ) // // where 0 <= X(I) < B for I=1 to T, 0 < X(1) and EMIN <= E <= EMAX. // // I1MACH(10) = B, the base. // // Single precision // // I1MACH(11) = T, the number of base B digits. // I1MACH(12) = EMIN, the smallest exponent E. // I1MACH(13) = EMAX, the largest exponent E. // // Double precision // // I1MACH(14) = T, the number of base B digits. // I1MACH(15) = EMIN, the smallest exponent E. // I1MACH(16) = EMAX, the largest exponent E. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2012 // // Author: // // Original FORTRAN77 version by Phyllis Fox, Andrew Hall, Norman Schryer. // C++ version by John Burkardt. // // Reference: // // Phyllis Fox, Andrew Hall, Norman Schryer, // Algorithm 528, // Framework for a Portable Library, // ACM Transactions on Mathematical Software, // Volume 4, Number 2, June 1978, page 176-188. // // Parameters: // // Input, int I, chooses the parameter to be returned. // 1 <= I <= 16. // // Output, int I1MACH, the value of the chosen parameter. // { int value; if ( i == 1 ) { value = 5; } else if ( i == 2 ) { value = 6; } else if ( i == 3 ) { value = 7; } else if ( i == 4 ) { value = 6; } else if ( i == 5 ) { value = 32; } else if ( i == 6 ) { value = 4; } else if ( i == 7 ) { value = 2; } else if ( i == 8 ) { value = 31; } else if ( i == 9 ) { value = 2147483647; } else if ( i == 10 ) { value = 2; } else if ( i == 11 ) { value = 24; } else if ( i == 12 ) { value = -125; } else if ( i == 13 ) { value = 128; } else if ( i == 14 ) { value = 53; } else if ( i == 15 ) { value = -1021; } else if ( i == 16 ) { value = 1024; } else { cerr << "\n"; cerr << "I1MACH - Fatal error!\n"; cerr << " The input argument I is out of bounds.\n"; cerr << " Legal values satisfy 1 <= I <= 16.\n"; cerr << " I = " << i << "\n"; value = 0; exit ( 1 ); } return value; } //****************************************************************************80 float r1mach ( int i ) //****************************************************************************80 // // Purpose: // // R1MACH returns single precision real machine constants. // // Discussion: // // Assume that single precision real numbers are stored with a mantissa // of T digits in base B, with an exponent whose value must lie // between EMIN and EMAX. Then for values of I between 1 and 5, // R1MACH will return the following values: // // R1MACH(1) = B^(EMIN-1), the smallest positive magnitude. // R1MACH(2) = B^EMAX*(1-B^(-T)), the largest magnitude. // R1MACH(3) = B^(-T), the smallest relative spacing. // R1MACH(4) = B^(1-T), the largest relative spacing. // R1MACH(5) = log10(B) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2012 // // Author: // // Original FORTRAN77 version by Phyllis Fox, Andrew Hall, Norman Schryer. // C++ version by John Burkardt. // // Reference: // // Phyllis Fox, Andrew Hall, Norman Schryer, // Algorithm 528, // Framework for a Portable Library, // ACM Transactions on Mathematical Software, // Volume 4, Number 2, June 1978, page 176-188. // // Parameters: // // Input, int I, chooses the parameter to be returned. // 1 <= I <= 5. // // Output, float R1MACH, the value of the chosen parameter. // { float value; if ( i == 1 ) { value = 1.1754944E-38; } else if ( i == 2 ) { value = 3.4028235E+38; } else if ( i == 3 ) { value = 5.9604645E-08; } else if ( i == 4 ) { value = 1.1920929E-07; } else if ( i == 5 ) { value = 0.3010300E+00; } else { cerr << "\n"; cerr << "R1MACH - Fatal error!\n"; cerr << " The input argument I is out of bounds.\n"; cerr << " Legal values satisfy 1 <= I <= 5.\n"; cerr << " I = " << i << "\n"; value = 0.0; exit ( 1 ); } return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }