# include # include # include # include # include # include # include # include using namespace std; # include "matrix_exponential.hpp" # include "c8lib.hpp" # include "r8lib.hpp" //****************************************************************************80 complex *c8mat_expm1 ( int n, complex a[] ) //****************************************************************************80 // // Purpose: // // C8MAT_EXPM1 is essentially MATLAB's built-in matrix exponential algorithm. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 March 2013 // // Author: // // Cleve Moler, Charles Van Loan // // Reference: // // Cleve Moler, Charles VanLoan, // Nineteen Dubious Ways to Compute the Exponential of a Matrix, // Twenty-Five Years Later, // SIAM Review, // Volume 45, Number 1, March 2003, pages 3-49. // // Parameters: // // Input, int N, the dimension of the matrix. // // Input, complex A[N*N], the matrix. // // Output, complex C8MAT_EXPM1[N*N], the estimate for exp(A). // { complex *a2; double a_norm; double c; complex *d; complex *e; int ee; int k; const double one = 1.0; int p; const int q = 6; int s; double t; complex *x; a2 = c8mat_copy_new ( n, n, a ); a_norm = c8mat_norm_li ( n, n, a2 ); ee = ( int ) ( r8_log_2 ( a_norm ) ) + 1; s = i4_max ( 0, ee + 1 ); t = 1.0 / pow ( 2.0, s ); c8mat_scale_r8 ( n, n, t, a2 ); x = c8mat_copy_new ( n, n, a2 ); c = 0.5; e = c8mat_identity_new ( n ); c8mat_add_r8 ( n, n, one, e, c, a2, e ); d = c8mat_identity_new ( n ); c8mat_add_r8 ( n, n, one, d, -c, a2, d ); p = 1; for ( k = 2; k <= q; k++ ) { c = c * ( double ) ( q - k + 1 ) / ( double ) ( k * ( 2 * q - k + 1 ) ); c8mat_mm ( n, n, n, a2, x, x ); c8mat_add_r8 ( n, n, c, x, one, e, e ); if ( p ) { c8mat_add_r8 ( n, n, c, x, one, d, d ); } else { c8mat_add_r8 ( n, n, -c, x, one, d, d ); } p = !p; } // // E -> inverse(D) * E // c8mat_minvm ( n, n, d, e, e ); // // E -> E^(2*S) // for ( k = 1; k <= s; k++ ) { c8mat_mm ( n, n, n, e, e, e ); } delete [] a2; delete [] d; delete [] x; return e; } //****************************************************************************80 double *r8mat_expm1 ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8MAT_EXPM1 is essentially MATLAB's built-in matrix exponential algorithm. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 December 2011 // // Author: // // Cleve Moler, Charles Van Loan // // Reference: // // Cleve Moler, Charles VanLoan, // Nineteen Dubious Ways to Compute the Exponential of a Matrix, // Twenty-Five Years Later, // SIAM Review, // Volume 45, Number 1, March 2003, pages 3-49. // // Parameters: // // Input, int N, the dimension of the matrix. // // Input, double A[N*N], the matrix. // // Output, double R8MAT_EXPM1[N*N], the estimate for exp(A). // { double *a2; double a_norm; double c; double *d; double *e; int ee; int k; const double one = 1.0; int p; const int q = 6; int s; double t; double *x; a2 = r8mat_copy_new ( n, n, a ); a_norm = r8mat_norm_li ( n, n, a2 ); ee = ( int ) ( r8_log_2 ( a_norm ) ) + 1; s = i4_max ( 0, ee + 1 ); t = 1.0 / pow ( 2.0, s ); r8mat_scale ( n, n, t, a2 ); x = r8mat_copy_new ( n, n, a2 ); c = 0.5; e = r8mat_identity_new ( n ); r8mat_add ( n, n, one, e, c, a2, e ); d = r8mat_identity_new ( n ); r8mat_add ( n, n, one, d, -c, a2, d ); p = 1; for ( k = 2; k <= q; k++ ) { c = c * ( double ) ( q - k + 1 ) / ( double ) ( k * ( 2 * q - k + 1 ) ); r8mat_mm ( n, n, n, a2, x, x ); r8mat_add ( n, n, c, x, one, e, e ); if ( p ) { r8mat_add ( n, n, c, x, one, d, d ); } else { r8mat_add ( n, n, -c, x, one, d, d ); } p = !p; } // // E -> inverse(D) * E // r8mat_minvm ( n, n, d, e, e ); // // E -> E^(2*S) // for ( k = 1; k <= s; k++ ) { r8mat_mm ( n, n, n, e, e, e ); } delete [] a2; delete [] d; delete [] x; return e; } //****************************************************************************80 double *r8mat_expm2 ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8MAT_EXPM2 uses the Taylor series for the matrix exponential. // // Discussion: // // Formally, // // exp ( A ) = I + A + 1/2 A^2 + 1/3! A^3 + ... // // This function sums the series until a tolerance is satisfied. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 December 2011 // // Author: // // Cleve Moler, Charles Van Loan // // Reference: // // Cleve Moler, Charles VanLoan, // Nineteen Dubious Ways to Compute the Exponential of a Matrix, // Twenty-Five Years Later, // SIAM Review, // Volume 45, Number 1, March 2003, pages 3-49. // // Parameters: // // Input, int N, the dimension of the matrix. // // Input, double A[N*N], the matrix. // // Output, double R8MAT_EXPM2[N*N], the estimate for exp(A). // { double *e; double *f; int k; const double one = 1.0; double s; e = r8mat_zero_new ( n, n ); f = r8mat_identity_new ( n ); k = 1; while ( r8mat_significant ( n, n, e, f ) ) { r8mat_add ( n, n, one, e, one, f, e ); r8mat_mm ( n, n, n, a, f, f ); s = 1.0 / ( double ) ( k ); r8mat_scale ( n, n, s, f ); k = k + 1; } delete [] f; return e; } //****************************************************************************80 double *r8mat_expm3 ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8MAT_EXPM3 approximates the matrix exponential using an eigenvalue approach. // // Discussion: // // exp(A) = V * D * V // // where V is the matrix of eigenvectors of A, and D is the diagonal matrix // whose i-th diagonal entry is exp(lambda(i)), for lambda(i) an eigenvalue // of A. // // This function is accurate for matrices which are symmetric, orthogonal, // or normal. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 December 2011 // // Author: // // Cleve Moler, Charles Van Loan // // Reference: // // Cleve Moler, Charles VanLoan, // Nineteen Dubious Ways to Compute the Exponential of a Matrix, // Twenty-Five Years Later, // SIAM Review, // Volume 45, Number 1, March 2003, pages 3-49. // // Parameters: // // Input, int N, the dimension of the matrix. // // Input, double A[N*N], the matrix. // // Output, double R8MAT_EXPM3[N*N], the estimate for exp(A). // { double *e = NULL; // // [ V, D ] = eig ( A ); // E = V * diag ( exp ( diag ( D ) ) ) / V; // return e; }