# include # include # include # include # include using namespace std; # include "monomial.hpp" //****************************************************************************80 int i4_choose ( int n, int k ) //****************************************************************************80 // // Purpose: // // I4_CHOOSE computes the binomial coefficient C(N,K). // // Discussion: // // The value is calculated in such a way as to avoid overflow and // roundoff. The calculation is done in integer arithmetic. // // The formula used is: // // C(N,K) = N! / ( K! * (N-K)! ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 January 2013 // // Author: // // John Burkardt // // Reference: // // ML Wolfson, HV Wright, // Algorithm 160: // Combinatorial of M Things Taken N at a Time, // Communications of the ACM, // Volume 6, Number 4, April 1963, page 161. // // Parameters: // // Input, int N, K, the values of N and K. // // Output, int I4_CHOOSE, the number of combinations of N // things taken K at a time. // { int i; int mn; int mx; int value; mn = k; if ( n - k < mn ) { mn = n - k; } if ( mn < 0 ) { value = 0; } else if ( mn == 0 ) { value = 1; } else { mx = k; if ( mx < n - k ) { mx = n - k; } value = mx + 1; for ( i = 2; i <= mn; i++ ) { value = ( value * ( mx + i ) ) / i; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_uniform_ab ( int a, int b, int &seed ) //****************************************************************************80 // // Purpose: // // I4_UNIFORM_AB returns a scaled pseudorandom I4 between A and B. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 October 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int I4_UNIFORM, a number between A and B. // { int c; const int i4_huge = 2147483647; int k; float r; int value; if ( seed == 0 ) { cerr << "\n"; cerr << "I4_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } // // Guarantee A <= B. // if ( b < a ) { c = a; a = b; b = c; } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = round ( r ); // // Guarantee A <= VALUE <= B. // if ( value < a ) { value = a; } if ( b < value ) { value = b; } return value; } //****************************************************************************80 void i4vec_print ( int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4VEC_PRINT prints an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(8) << a[i] << "\n"; } return; } //****************************************************************************80 int i4vec_sum ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_SUM sums the entries of an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Example: // // Input: // // A = ( 1, 2, 3, 4 ) // // Output: // // I4VEC_SUM = 10 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, int A[N], the vector to be summed. // // Output, int I4VEC_SUM, the sum of the entries of A. // { int i; int sum; sum = 0; for ( i = 0; i < n; i++ ) { sum = sum + a[i]; } return sum; } //****************************************************************************80 int *i4vec_uniform_ab_new ( int n, int a, int b, int &seed ) //****************************************************************************80 // // Purpose: // // I4VEC_UNIFORM_AB_NEW returns a scaled pseudorandom I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // The pseudorandom numbers should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 May 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the dimension of the vector. // // Input, int A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int IVEC_UNIFORM_AB_NEW[N], a vector of random values // between A and B. // { int c; int i; const int i4_huge = 2147483647; int k; float r; int value; int *x; if ( seed == 0 ) { cerr << "\n"; cerr << "I4VEC_UNIFORM_AB_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } // // Guarantee A <= B. // if ( b < a ) { c = a; a = b; b = c; } x = new int[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = round ( r ); // // Guarantee A <= VALUE <= B. // if ( value < a ) { value = a; } if ( b < value ) { value = b; } x[i] = value; } return x; } //****************************************************************************80 int mono_between_enum ( int m, int n1, int n2 ) //****************************************************************************80 // // Purpose: // // MONO_BETWEEN_ENUM enumerates monomials in M dimensions of degrees in a range. // // Discussion: // // For D = 3, we have the following table: // // N2 0 1 2 3 4 5 6 7 8 // N1 +---------------------------- // 0 | 1 4 10 20 35 56 84 120 165 // 1 | 0 3 9 19 34 55 83 119 164 // 2 | 0 0 6 16 31 52 80 116 161 // 3 | 0 0 0 10 25 46 74 110 155 // 4 | 0 0 0 0 15 36 64 100 145 // 5 | 0 0 0 0 0 21 49 85 130 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 November 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N1, N2, the minimum and maximum degrees. // 0 <= N1 <= N2. // // Output, int MONO_BETWEEN_ENUM, the number of monomials // in D variables, of total degree between N1 and N2 inclusive. // { int n0; int n1_copy; int value; n1_copy = i4_max ( n1, 0 ); if ( n2 < n1_copy ) { value = 0; return value; } if ( n1_copy == 0 ) { value = i4_choose ( n2 + m, n2 ); } else if ( n1_copy == n2 ) { value = i4_choose ( n2 + m - 1, n2 ); } else { n0 = n1_copy - 1; value = i4_choose ( n2 + m, n2 ) - i4_choose ( n0 + m, n0 ); } return value; } //****************************************************************************80 void mono_between_next_grevlex ( int m, int n1, int n2, int x[] ) //****************************************************************************80 // // Purpose: // // MONO_BETWEEN_NEXT_GREVLEX: grevlex next monomial, degree between N1 and N2. // // Discussion: // // We consider all monomials in an M dimensional space, with total // degree N between N1 and N2, inclusive. // // For example: // // M = 3 // N1 = 2 // N2 = 3 // // # X(1) X(2) X(3) Degree // +------------------------ // 1 | 0 0 2 2 // 2 | 0 1 1 2 // 3 | 1 0 1 2 // 4 | 0 2 0 2 // 5 | 1 1 0 2 // 6 | 2 0 0 2 // | // 7 | 0 0 3 3 // 8 | 0 1 2 3 // 9 | 1 0 2 3 // 10 | 0 2 1 3 // 11 | 1 1 1 3 // 12 | 2 0 1 3 // 13 | 0 3 0 3 // 14 | 1 2 0 3 // 15 | 2 1 0 3 // 16 | 3 0 0 3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N1, N2, the minimum and maximum degrees. // 0 <= N1 <= N2. // // Input, int X[M], the current monomial. // To start the sequence, set X = [ N1, 0, 0, ... ]. // // Output, int X[M], the next monomial. // The last value in the sequence is X = [ 0, 0, ..., 0, N2 ]. // { int i; int j; int t; if ( n1 < 0 ) { cout << "\n"; cout << "MONO_BETWEEN_NEXT_GREVLEX - Fatal error!\n"; cout << " N1 < 0.\n"; exit ( 1 ); } if ( n2 < n1 ) { cout << "\n"; cout << "MONO_BETWEEN_NEXT_GREVLEX - Fatal error!\n"; cout << " N2 < N1.\n"; exit ( 1 ); } if ( i4vec_sum ( m, x ) < n1 ) { cout << "\n"; cout << "MONO_BETWEEN_NEXT_GREVLEX - Fatal error!\n"; cout << " Input X sums to less than N1.\n"; exit ( 1 ); } if ( n2 < i4vec_sum ( m, x ) ) { cout << "\n"; cout << "MONO_BETWEEN_NEXT_GREVLEX - Fatal error!\n"; cout << " Input X sums to more than N2.\n"; exit ( 1 ); } if ( n2 == 0 ) { return; } if ( x[0] == n2 ) { x[0] = 0; x[m-1] = n1; } else { mono_next_grevlex ( m, x ); } return; } //****************************************************************************80 void mono_between_next_grlex ( int m, int n1, int n2, int x[] ) //****************************************************************************80 // // Purpose: // // MONO_BETWEEN_NEXT_GRLEX: grlex next monomial, degree between N1 and N2. // // Discussion: // // We consider all monomials in an M dimensional space, with total // degree N between N1 and N2, inclusive. // // For example: // // M = 3 // N1 = 2 // N2 = 3 // // # X(1) X(2) X(3) Degree // +------------------------ // 1 | 0 0 2 2 // 2 | 0 1 1 2 // 3 | 0 2 0 2 // 4 | 1 0 1 2 // 5 | 1 1 0 2 // 6 | 2 0 0 2 // | // 7 | 0 0 3 3 // 8 | 0 1 2 3 // 9 | 0 2 1 3 // 10 | 0 3 0 3 // 11 | 1 0 2 3 // 12 | 1 1 1 3 // 13 | 1 2 0 3 // 14 | 2 0 1 3 // 15 | 2 1 0 3 // 16 | 3 0 0 3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N1, N2, the minimum and maximum degrees. // 0 <= N1 <= N2. // // Input/output, int X[M], the current monomial. // To start the sequence, set X = [ 0, 0, ..., 0, N1 ]. // The last value in the sequence is X = [ N2, 0, ..., 0, 0 ]. // { int i; int im1; int j; int t; if ( n1 < 0 ) { cerr << "\n"; cerr << "MONO_BETWEEN_NEXT_GRLEX - Fatal error!\n"; cerr << " N1 < 0.\n"; exit ( 1 ); } if ( n2 < n1 ) { cerr << "\n"; cerr << "MONO_BETWEEN_NEXT_GRLEX - Fatal error!\n"; cerr << " N2 < N1.\n"; exit ( 1 ); } if ( i4vec_sum ( m, x ) < n1 ) { cerr << "\n"; cerr << "MONO_BETWEEN_NEXT_GRLEX - Fatal error!\n"; cerr << " Input X sums to less than N1.\n"; exit ( 1 ); } if ( n2 < i4vec_sum ( m, x ) ) { cerr << "\n"; cerr << "MONO_BETWEEN_NEXT_GRLEX - Fatal error!\n"; cerr << " Input X sums to more than N2.\n"; exit ( 1 ); } if ( n2 == 0 ) { return; } if ( x[0] == n2 ) { x[0] = 0; x[m-1] = n1; } else { mono_next_grlex ( m, x ); } return; } //****************************************************************************80 int *mono_between_random ( int m, int n1, int n2, int &seed, int &rank ) //****************************************************************************80 // // Purpose: // // MONO_BETWEEN_RANDOM: random monomial with total degree between N1 and N2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 November 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N1, N2, the minimum and maximum degrees. // 0 <= N1 <= N2. // // Input/output, int *SEED, the random number seed. // // Output int *RANK, the rank of the monomial. // // Output int MONO_BETWEEN_RANDOM[M], the random monomial. // { int n1_copy; int rank_max; int rank_min; int *x; n1_copy = i4_max ( n1, 0 ); rank_min = mono_upto_enum ( m, n1_copy - 1 ) + 1; rank_max = mono_upto_enum ( m, n2 ); rank = i4_uniform_ab ( rank_min, rank_max, seed ); x = mono_unrank_grlex ( m, rank ); return x; } //****************************************************************************80 void mono_next_grevlex ( int m, int x[] ) //****************************************************************************80 // // Purpose: // // MONO_NEXT_GREVLEX: grevlex next monomial. // // Discussion: // // Example: // // M = 3 // // # X(1) X(2) X(3) Degree // +------------------------ // 1 | 0 0 0 0 // | // 2 | 0 0 1 1 // 3 | 0 1 0 1 // 4 | 1 0 0 1 // | // 5 | 0 0 2 2 // 6 | 0 1 1 2 // 7 | 1 0 1 2 // 8 | 0 2 0 2 // 9 | 1 1 0 2 // 10 | 2 0 0 2 // | // 11 | 0 0 3 3 // 12 | 0 1 2 3 // 13 | 1 0 2 3 // 14 | 0 2 1 3 // 15 | 1 1 1 3 // 16 | 2 0 1 3 // 17 | 0 3 0 3 // 18 | 1 2 0 3 // 19 | 2 1 0 3 // 20 | 3 0 0 3 // // Thanks to Stefan Klus for pointing out a discrepancy in a previous // version of this code, 05 February 2015. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input/output, int X[M], the current monomial. // The first item is X = [ 0, 0, ..., 0, 0 ]. // { int i; int j; int t; if ( i4vec_sum ( m, x ) < 0 ) { cout << "\n"; cout << "MONO_UPTO_NEXT_GREVLEX - Fatal error!\n"; cout << " Input X sums to less than 0.\n"; exit ( 1 ); } // // Seeking the first index 1 < I for which 0 < X(I). // j = 0; for ( i = 1; i < m; i++ ) { if ( 0 < x[i] ) { j = i; break; } } if ( j == 0 ) { t = x[0]; x[0] = 0; x[m-1] = t + 1; } else if ( j < m - 1 ) { x[j] = x[j] - 1; t = x[0] + 1; x[0] = 0; x[j-1] = x[j-1] + t; } else if ( j == m - 1 ) { t = x[0]; x[0] = 0; x[j-1] = t + 1; x[j] = x[j] - 1; } return; } //****************************************************************************80 void mono_next_grlex ( int m, int x[] ) //****************************************************************************80 // // Purpose: // // MONO_NEXT_GRLEX returns the next monomial in grlex order. // // Discussion: // // Example: // // M = 3 // // # X(1) X(2) X(3) Degree // +------------------------ // 1 | 0 0 0 0 // | // 2 | 0 0 1 1 // 3 | 0 1 0 1 // 4 | 1 0 0 1 // | // 5 | 0 0 2 2 // 6 | 0 1 1 2 // 7 | 0 2 0 2 // 8 | 1 0 1 2 // 9 | 1 1 0 2 // 10 | 2 0 0 2 // | // 11 | 0 0 3 3 // 12 | 0 1 2 3 // 13 | 0 2 1 3 // 14 | 0 3 0 3 // 15 | 1 0 2 3 // 16 | 1 1 1 3 // 17 | 1 2 0 3 // 18 | 2 0 1 3 // 19 | 2 1 0 3 // 20 | 3 0 0 3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input/output, int X[M], the current monomial. // The first element is X = [ 0, 0, ..., 0, 0 ]. // { int i; int im1; int j; int t; // // Ensure that 1 <= M. // if ( m < 1 ) { cerr << "\n"; cerr << "MONO_NEXT_GRLEX - Fatal error!\n"; cerr << " M < 1\n"; exit ( 1 ); } // // Ensure that 0 <= X(I). // for ( i = 0; i < m; i++ ) { if ( x[i] < 0 ) { cerr << "\n"; cerr << "MONO_NEXT_GRLEX - Fatal error!\n"; cerr << " X[I] < 0\n"; exit ( 1 ); } } // // Find I, the index of the rightmost nonzero entry of X. // i = 0; for ( j = m; 1 <= j; j-- ) { if ( 0 < x[j-1] ) { i = j; break; } } // // set T = X(I) // set X(I) to zero, // increase X(I-1) by 1, // increment X(D) by T-1. // if ( i == 0 ) { x[m-1] = 1; return; } else if ( i == 1 ) { t = x[0] + 1; im1 = m; } else if ( 1 < i ) { t = x[i-1]; im1 = i - 1; } x[i-1] = 0; x[im1-1] = x[im1-1] + 1; x[m-1] = x[m-1] + t - 1; return; } //****************************************************************************80 void mono_print ( int m, int f[], string title ) //****************************************************************************80 // // Purpose: // // MONO_PRINT prints a monomial. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int F[M], the exponents. // // Input, string TITLE, a title. // { int i; cout << title; cout << "x^("; for ( i = 0; i < m; i++ ) { cout << f[i]; if ( i < m - 1 ) { cout << ","; } else { cout << ").\n"; } } return; } //****************************************************************************80 int mono_rank_grlex ( int m, int x[] ) //****************************************************************************80 // // Purpose: // // MONO_RANK_GRLEX computes the graded lexicographic rank of a monomial. // // Discussion: // // The graded lexicographic ordering is used, over all monomials of // dimension M, for degree NM = 0, 1, 2, ... // // For example, if M = 3, the ranking begins: // // Rank Sum 1 2 3 // ---- --- -- -- -- // 1 0 0 0 0 // // 2 1 0 0 1 // 3 1 0 1 0 // 4 1 1 0 1 // // 5 2 0 0 2 // 6 2 0 1 1 // 7 2 0 2 0 // 8 2 1 0 1 // 9 2 1 1 0 // 10 2 2 0 0 // // 11 3 0 0 3 // 12 3 0 1 2 // 13 3 0 2 1 // 14 3 0 3 0 // 15 3 1 0 2 // 16 3 1 1 1 // 17 3 1 2 0 // 18 3 2 0 1 // 19 3 2 1 0 // 20 3 3 0 0 // // 21 4 0 0 4 // .. .. .. .. .. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // 1 <= D. // // Input, int XC[M], the monomial. // For each 1 <= I <= M, we have 0 <= XC(I). // // Output, int MONO_RANK_GRLEX, the rank. // { int i; int j; int ks; int n; int nm; int ns; int rank; int tim1; int *xs; // // Ensure that 1 <= M. // if ( m < 1 ) { cerr << "\n"; cerr << "MONO_RANK_GRLEX - Fatal error!\n"; cerr << " M < 1\n"; exit ( 1 ); } // // Ensure that 0 <= X(I). // for ( i = 0; i < m; i++ ) { if ( x[i] < 0 ) { cerr << "\n"; cerr << "MONO_RANK_GRLEX - Fatal error!\n"; cerr << " X[I] < 0\n"; exit ( 1 ); } } // // NM = sum ( X ) // nm = i4vec_sum ( m, x ); // // Convert to KSUBSET format. // ns = nm + m - 1; ks = m - 1; xs = new int[ks]; xs[0] = x[0] + 1; for ( i = 2; i < m; i++ ) { xs[i-1] = xs[i-2] + x[i-1] + 1; } // // Compute the rank. // rank = 1; for ( i = 1; i <= ks; i++ ) { if ( i == 1 ) { tim1 = 0; } else { tim1 = xs[i-2]; } if ( tim1 + 1 <= xs[i-1] - 1 ) { for ( j = tim1 + 1; j <= xs[i-1] - 1; j++ ) { rank = rank + i4_choose ( ns - j, ks - i ); } } } for ( n = 0; n < nm; n++ ) { rank = rank + i4_choose ( n + m - 1, n ); } delete [] xs; return rank; } //****************************************************************************80 int mono_total_enum ( int m, int n ) //****************************************************************************80 // // Purpose: // // MONO_TOTAL_ENUM enumerates monomials in M dimensions of degree equal to N. // // Discussion: // // For M = 3, we have the following values: // // N VALUE // // 0 1 // 1 3 // 2 6 // 3 10 // 4 15 // 5 21 // // In particular, VALUE(3,3) = 10 because we have the 10 monomials: // // x^3, x^2y, x^2z, xy^2, xyz, xz^3, y^3, y^2z, yz^2, z^3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 November 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the maximum degree. // // Output, int MONO_TOTAL_ENUM, the number of monomials in D variables, // of total degree N. // { int value; value = i4_choose ( n + m - 1, n ); return value; } //****************************************************************************80 void mono_total_next_grevlex ( int m, int n, int x[] ) //****************************************************************************80 // // Purpose: // // MONO_TOTAL_NEXT_GREVLEX: grevlex next monomial with total degree equal to N. // // Discussion: // // We consider all monomials in a M dimensional space, with total degree N. // // For example: // // M = 3 // N = 3 // // # X(1) X(2) X(3) Degree // +------------------------ // 1 | 0 0 3 3 // 2 | 0 1 2 3 // 3 | 1 0 2 3 // 4 | 0 2 1 3 // 5 | 1 1 1 3 // 6 | 2 0 1 3 // 7 | 0 3 0 3 // 8 | 1 2 0 3 // 9 | 2 1 0 3 // 10 | 3 0 0 3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the degree. // 0 <= N. // // Input, int X[M], the current monomial. // To start the sequence, set X = [ 0, 0, ..., 0, N ]. // // Output, int X[M], the next monomial. // The last value in the sequence is X = [ N, 0, ..., 0, 0 ]. // { int i; int j; int t; if ( n < 0 ) { cout << "\n"; cout << "MONO_TOTAL_NEXT_GREVLEX - Fatal error!\n"; cout << " N < 0.\n"; exit ( 1 ); } if ( i4vec_sum ( m, x ) != n ) { cout << "\n"; cout << "MONO_TOTAL_NEXT_GREVLEX - Fatal error!\n"; cout << " Input X does not sum to N.\n"; exit ( 1 ); } if ( n == 0 ) { return; } if ( x[0] == n ) { x[0] = 0; x[m-1] = n; } else { mono_next_grevlex ( m, x ); } return; } //****************************************************************************80 void mono_total_next_grlex ( int m, int n, int x[] ) //****************************************************************************80 // // Purpose: // // MONO_TOTAL_NEXT_GRLEX: grlex next monomial with total degree equal to N. // // Discussion: // // We consider all monomials in a M dimensional space, with total degree N. // // For example: // // M = 3 // N = 3 // // # X(1) X(2) X(3) Degree // +------------------------ // 1 | 0 0 3 3 // 2 | 0 1 2 3 // 3 | 0 2 1 3 // 4 | 0 3 0 3 // 5 | 1 0 2 3 // 6 | 1 1 1 3 // 7 | 1 2 0 3 // 8 | 2 0 1 3 // 9 | 2 1 0 3 // 10 | 3 0 0 3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the degree. // 0 <= N. // // Input/output, int X[M], the current monomial. // To start the sequence, set X = [ 0, 0, ..., 0, N ]. // The last value in the sequence is X = [ N, 0, ..., 0, 0 ]. // { int i; int im1; int j; int t; if ( n < 0 ) { cerr << "\n"; cerr << "MONO_TOTAL_NEXT_GRLEX - Fatal error!\n"; cerr << " N < 0.\n"; exit ( 1 ); } if ( i4vec_sum ( m, x ) != n ) { cerr << "\n"; cerr << "MONO_TOTAL_NEXT_GRLEX - Fatal error!\n"; cerr << " Input X does not sum to N.\n"; exit ( 1 ); } if ( n == 0 ) { return; } if ( x[0] == n ) { x[0] = 0; x[m-1] = n; } else { mono_next_grlex ( m, x ); } return; } //****************************************************************************80 int *mono_total_random ( int m, int n, int &seed, int &rank ) //****************************************************************************80 // // Purpose: // // MONO_TOTAL_RANDOM: random monomial with total degree equal to N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 November 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the degree. // 0 <= N. // // Input/output, int &SEED, the random number seed. // // Output, int &RANK, the rank of the monomial. // // Output, int MONO_TOTAL_RANDOM[M], the random monomial. // { int rank_max; int rank_min; int *x; rank_min = mono_upto_enum ( m, n - 1 ) + 1; rank_max = mono_upto_enum ( m, n ); rank = i4_uniform_ab ( rank_min, rank_max, seed ); x = mono_unrank_grlex ( m, rank ); return x; } //****************************************************************************80 int *mono_unrank_grlex ( int m, int rank ) //****************************************************************************80 // // Purpose: // // MONO_UNRANK_GRLEX computes the composition of given grlex rank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 January 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // 1 <= M. // // Input, int RANK, the rank. // 1 <= RANK. // // Output, int MONO_UNRANK_GRLEX[M], the monomial X of the given rank. // For each I, 0 <= XC[I] <= NM, and // sum ( 1 <= I <= M ) XC[I] = NM. // { int i; int j; int ks; int nksub; int nm; int ns; int r; int rank1; int rank2; int *x; int *xs; // // Ensure that 1 <= M. // if ( m < 1 ) { cerr << "\n"; cerr << "MONO_UNRANK_GRLEX - Fatal error!\n"; cerr << " M < 1\n"; exit ( 1 ); } // // Ensure that 1 <= RANK. // if ( rank < 1 ) { cerr << "\n"; cerr << "MONO_UNRANK_GRLEX - Fatal error!\n"; cerr << " RANK < 1\n"; exit ( 1 ); } // // Special case M == 1. // if ( m == 1 ) { x = new int[m]; x[0] = rank - 1; return x; } // // Determine the appropriate value of NM. // Do this by adding up the number of compositions of sum 0, 1, 2, // ..., without exceeding RANK. Moreover, RANK - this sum essentially // gives you the rank of the composition within the set of compositions // of sum NM. And that's the number you need in order to do the // unranking. // rank1 = 1; nm = -1; for ( ; ; ) { nm = nm + 1; r = i4_choose ( nm + m - 1, nm ); if ( rank < rank1 + r ) { break; } rank1 = rank1 + r; } rank2 = rank - rank1; // // Convert to KSUBSET format. // Apology: an unranking algorithm was available for KSUBSETS, // but not immediately for compositions. One day we will come back // and simplify all this. // ks = m - 1; ns = nm + m - 1; xs = new int[ks]; nksub = i4_choose ( ns, ks ); j = 1; for ( i = 1; i <= ks; i++ ) { r = i4_choose ( ns - j, ks - i ); while ( r <= rank2 && 0 < r ) { rank2 = rank2 - r; j = j + 1; r = i4_choose ( ns - j, ks - i ); } xs[i-1] = j; j = j + 1; } // // Convert from KSUBSET format to COMP format. // x = new int[m]; x[0] = xs[0] - 1; for ( i = 2; i < m; i++ ) { x[i-1] = xs[i-1] - xs[i-2] - 1; } x[m-1] = ns - xs[ks-1]; delete [] xs; return x; } //****************************************************************************80 int mono_upto_enum ( int m, int n ) //****************************************************************************80 // // Purpose: // // MONO_UPTO_ENUM enumerates monomials in M dimensions of degree up to N. // // Discussion: // // For M = 2, we have the following values: // // N VALUE // // 0 1 // 1 3 // 2 6 // 3 10 // 4 15 // 5 21 // // In particular, VALUE(2,3) = 10 because we have the 10 monomials: // // 1, x, y, x^2, xy, y^2, x^3, x^2y, xy^2, y^3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 November 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the maximum degree. // // Output, int MONO_UPTO_ENUM, the number of monomials in // M variables, of total degree N or less. // { int value; value = i4_choose ( n + m, n ); return value; } //****************************************************************************80 void mono_upto_next_grevlex ( int m, int n, int x[] ) //****************************************************************************80 // // Purpose: // // MONO_UPTO_NEXT_GREVLEX: grevlex next monomial with total degree up to N. // // Discussion: // // We consider all monomials in a M dimensional space, with total // degree up to N. // // For example: // // M = 3 // N = 3 // // # X(1) X(2) X(3) Degree // +------------------------ // 1 | 0 0 0 0 // | // 2 | 0 0 1 1 // 3 | 0 1 0 1 // 4 | 1 0 0 1 // | // 5 | 0 0 2 2 // 6 | 0 1 1 2 // 7 | 1 0 1 2 // 8 | 0 2 0 2 // 9 | 1 1 0 2 // 10 | 2 0 0 2 // | // 11 | 0 0 3 3 // 12 | 0 1 2 3 // 13 | 1 0 2 3 // 14 | 0 2 1 3 // 15 | 1 1 1 3 // 16 | 2 0 1 3 // 17 | 0 3 0 3 // 18 | 1 2 0 3 // 19 | 2 1 0 3 // 20 | 3 0 0 3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the maximum degree. // 0 <= N. // // Input, int X[M], the current monomial. // To start the sequence, set X = [ 0, 0, ..., 0, 0 ]. // // Output, int X[M], the next monomial. // The last value in the sequence is X = [ N, 0, ..., 0, 0 ]. // { int i; int j; int t; if ( n < 0 ) { cout << "\n"; cout << "MONO_UPTO_NEXT_GREVLEX - Fatal error!\n"; cout << " N < 0.\n"; exit ( 1 ); } if ( i4vec_sum ( m, x ) < 0 ) { cout << "\n"; cout << "MONO_UPTO_NEXT_GREVLEX - Fatal error!\n"; cout << " Input X sums to less than 0.\n"; exit ( 1 ); } if ( n < i4vec_sum ( m, x ) ) { cout << "\n"; cout << "MONO_UPTO_NEXT_GREVLEX - Fatal error!\n"; cout << " Input X sums to more than N.\n"; exit ( 1 ); } if ( n == 0 ) { return; } if ( x[0] == n ) { x[0] = 0; } else { mono_next_grevlex ( m, x ); } return; } //****************************************************************************80 void mono_upto_next_grlex ( int m, int n, int x[] ) //****************************************************************************80 // // Purpose: // // MONO_UPTO_NEXT_GRLEX: grlex next monomial with total degree up to N. // // Discussion: // // We consider all monomials in a M dimensional space, with total // degree up to N. // // For example: // // M = 3 // N = 3 // // # X(1) X(2) X(3) Degree // +------------------------ // 1 | 0 0 0 0 // | // 2 | 0 0 1 1 // 3 | 0 1 0 1 // 4 | 1 0 0 1 // | // 5 | 0 0 2 2 // 6 | 0 1 1 2 // 7 | 0 2 0 2 // 8 | 1 0 1 2 // 9 | 1 1 0 2 // 10 | 2 0 0 2 // | // 11 | 0 0 3 3 // 12 | 0 1 2 3 // 13 | 0 2 1 3 // 14 | 0 3 0 3 // 15 | 1 0 2 3 // 16 | 1 1 1 3 // 17 | 1 2 0 3 // 18 | 2 0 1 3 // 19 | 2 1 0 3 // 20 | 3 0 0 3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the maximum degree. // 0 <= N. // // Input/output, int X[M], the current monomial. // To start the sequence, set X = [ 0, 0, ..., 0, 0 ]. // The last value in the sequence is X = [ N, 0, ..., 0, 0 ]. // { int i; int im1; int j; int t; if ( n < 0 ) { cerr << "\n"; cerr << "MONO_UPTO_NEXT_GRLEX - Fatal error!\n"; cerr << " N < 0.\n"; exit ( 1 ); } if ( i4vec_sum ( m, x ) < 0 ) { cerr << "\n"; cerr << "MONO_UPTO_NEXT_GRLEX - Fatal error!\n"; cerr << " Input X sums to less than 0.\n"; exit ( 1 ); } if ( n < i4vec_sum ( m, x ) ) { cerr << "\n"; cerr << "MONO_UPTO_NEXT_GRLEX - Fatal error!\n"; cerr << " Input X sums to more than N.\n"; exit ( 1 ); } if ( n == 0 ) { return; } if ( x[0] == n ) { x[0] = 0; x[m-1] = n; } else { mono_next_grlex ( m, x ); } return; } //****************************************************************************80 int *mono_upto_random ( int m, int n, int &seed, int &rank ) //****************************************************************************80 // // Purpose: // // MONO_UPTO_RANDOM: random monomial with total degree less than or equal to N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 November 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the degree. // 0 <= N. // // Input/output, int &SEED, the random number seed. // // Output, int &RANK, the rank of the monomial. // // Output, int MONO_UPTO_RANDOM[M], the random monomial. // { int rank_max; int rank_min; int *x; rank_min = 1; rank_max = mono_upto_enum ( m, n ); rank = i4_uniform_ab ( rank_min, rank_max, seed ); x = mono_unrank_grlex ( m, rank ); return x; } //****************************************************************************80 double *mono_value ( int m, int n, int f[], double x[] ) //****************************************************************************80 // // Purpose: // // MONO_VALUE evaluates a monomial. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of evaluation points. // // Input, int F[M], the exponents of the monomial. // // Input, double X[M*N], the coordinates of the evaluation points. // // Output, double MONO_VALUE[N], the value of the monomial at X. // { int i; int j; double *v; v = new double[n]; for ( j = 0; j < n; j++ ) { v[j] = 1.0; for ( i = 0; i < m; i++ ) { v[j] = v[j] * pow ( x[i+j*m], f[i] ); } } return v; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }