# include # include # include # include # include # include using namespace std; # include "niederreiter.hpp" // // GLOBAL DATA "/FIELD/" // // The following GLOBAL data, used by many functions, // gives the order Q of a field, its characteristic P, and its // addition, multiplication, and subtraction tables. // // Global, int DEG_MAX, the maximum degree of the polynomials // to be considered. // // Global, int P, the characteristic of the field. // // Global, int Q, the order of the field. // // Global, int Q_MAX, the order of the largest field to // be handled. // // Global, int ADD[Q_MAX][Q_MAX], the field addition table. // // Global, int MUL[Q_MAX][Q_MAX], the field multiplication table. // // Global, int SUB[Q_MAX][Q_MAX], the field subtraction table. // const int DEG_MAX = 50; int P; int Q; const int Q_MAX = 50; int add[Q_MAX][Q_MAX]; int mul[Q_MAX][Q_MAX]; int sub[Q_MAX][Q_MAX]; // // GLOBAL DATA "/COMM/" // // Global, int DIM_MAX, the maximum dimension that will // be used. // // Global, int FIG_MAX, the maximum number of base-Q digits // we can handle. BASE^FIG_MAX - 1 must be representable in C++. // For base 2, this implies that FIG_MAX could be as high as 31. // In the original version of the program, FIG_MAX was set to 20. // // Global, int C[DIM_MAX,FIG_MAX,0:FIG_MAX-1], the values of // Niederreiter's C(I,J,R). // // Global, int COUNT[0:FIG_MAX-1], the index of the current item // in the sequence, expressed as an array of base-Q digits. COUNT(R) // is the same as Niederreiter's AR(N) (page 54) except that N is implicit. // // Global, int D[DIM_MAX][FIG_MAX]. // // Global, int DIMEN, the dimension of the sequence to be generated. // // Global, int NEXTQ[DIM_MAX], the numerators of the next item in // the series. These are like Niederreiter's XI(N) (page 54) except that // N is implicit, and the NEXTQ are integers. To obtain the values of // XI(N), multiply by RECIP. // // Global, int NFIGS, the number of base Q digits we are using. // // Global, int QPOW[FIG_MAX], to speed things up a bit. // QPOW(I) = Q ** (NFIGS-I). // // Global, double RECIP = 1.0 / Q^NFIGS. // const int DIM_MAX = 50; //const int FIG_MAX = 20; const int FIG_MAX = 31; int C[DIM_MAX][FIG_MAX][FIG_MAX]; int COUNT[FIG_MAX]; int D[DIM_MAX][FIG_MAX]; int DIMEN; int NEXTQ[DIM_MAX]; int NFIGS; int QPOW[FIG_MAX]; double RECIP; //****************************************************************************80 void calcc ( ) //****************************************************************************80 // // Purpose: // // CALCC calculates the value of the constants C(I,J,R). // // Discussion: // // This routine calculates the values of the constants C(I,J,R). // As far as possible, we use Niederreiter's notation. // We calculate the values of C for each I in turn. // When all the values of C have been calculated, we return // this array to the calling program. // // Irreducible polynomials are read from file "gfplys.txt" // This file should have been created earlier by running the // GFPLYS program. // // Polynomials stored as arrays have the coefficient of degree n // in POLY(N), and the degree of the polynomial in POLY(-1). // The parameter DEG is just to remind us of this last fact. // A polynomial which is identically 0 is given degree -1. // // Thanks to Michael Baudin for pointing out that MAXE should // be increased from 5 to 7, since one of the irreducible polynomials // that must be stored in PX has degree 7, 07 June 2010. // // In fact, the size of MAXE depends on the highest degree polynomial // computed by GFPLYS, which in turn depends in part on the // value NPOL in that program. To allow DIM_MAX = 50, we increased // NPOL to 50 in GFPLYS and here, and hence MAXE to 8, JVB, 07 June 2010. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 June 2010 // // Author: // // Original FORTRAN77 version by Paul Bratley, Bennett Fox, // Harald Niederreiter. // C++ version by John Burkardt. // // Reference: // // Paul Bratley, Bennett Fox, Harald Niederreiter, // Algorithm 738: // Programs to Generate NiederreiteSoftware, // Volume 20, Number 4, 1994, pages 494-495. // // Harald Niederreiter, // Low-discrepancy and low-dispersion sequences, // Journal of Number Theory, // Volume 30, 1988, pages 51-70. // // Local Parameters: // // Local, int MAXE; we need DIM_MAX irreducible polynomials over GF(Q). // MAXE is the highest degree among these. // // Local, int V_MAX, the maximum index used in V. // // Local, int NPOLS, the number of precalculated irreducible polynomials. // { //const int maxe = 5; const int maxe = 8; const int v_max = FIG_MAX + maxe; int b[DEG_MAX+2]; int e; ifstream input; char *input_filename = "gfplys.txt"; int i; int j; int k; //const int npols = 25; const int npols = 50; int px[maxe+2]; int r; int u; int v[v_max+1]; // // Read the irreducible polynomials. // input.open ( input_filename ); for ( ; ; ) { input >> i; if ( input.eof ( ) ) { cerr << "\n"; cerr << "CALCC - Fatal error!\n"; cerr << " Could not find tables for Q = " << Q << "\n"; exit ( 1 ); } if ( i == Q ) { break; } for ( j = 1; j <= npols; j++ ) { input >> e; for ( k = 0; k <= e; k++ ) { input >> px[k+1]; } } } for ( i = 0; i < DIMEN; i++ ) { // // For each dimension, we need to calculate powers of an // appropriate irreducible polynomial. See Niederreiter // page 65, just below equation (19). // // Read the appropriate irreducible polynomial into PX, // and its degree into E. Set polynomial B = PX^0 = 1. // M is the degree of B. Subsequently B will hold higher // powers of PX. // // The polynomial PX is stored in 'gfplys.txt' in the format // // n a0 a1 a2 ... an // // where n is the degree of the polynomial and the ai are // its coefficients. // input >> e; for ( k = 0; k <= e; k++ ) { input >> px[k+1]; } px[0] = e; b[0] = 0; b[1] = 1; // // Niederreiter (page 56, after equation (7), defines two variables // Q and U. We do not need Q explicitly, but we do need U. // u = 0; for ( j = 0; j < NFIGS; j++ ) { // // If U = 0, we need to set B to the next power of PX // and recalculate V. This is done by subroutine CALCV. // if ( u == 0 ) { calcv ( px, b, v, v_max ); } // // Now C is obtained from V. Neiderreiter obtains A from V // (page 65, near the bottom), and then gets C from A (page 56, // equation (7)). However this can be done in one step. // for ( r = 0; r < NFIGS; r++ ) { C[i][j][r] = v[r+u]; } // // Increment U. If U = E, then U = 0 and in Niederreiter's // paper Q = Q + 1. Here, however, Q is not used explicitly. // u = u + 1; if ( u == e ) { u = 0; } } } input.close ( ); return; } //****************************************************************************80 void calcv ( int px[], int b[], int v[], int v_max ) //****************************************************************************80 // // Purpose: // // CALCV calculates the constants V(J,R). // // Discussion: // // This program calculates the values of the constants V(J,R) as // described in Bratley, Fox and Niederreiter, section 3.3. It // is called from either CALCC or CALCC2. The values transmitted // through common /FIELD/ determine which field we are working in. // // Polynomials stored as arrays have the coefficient of degree n // in POLY(N), and the degree of the polynomial in POLY(-1). The // parameter DEG is just to remind us of this last fact. A polynomial // which is identically 0 is given degree -1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2007 // // Author: // // Orginal FORTRAN77 version by Paul Bratley, Bennett Fox, // Harald Niederreiter. // C++ version by John Burkardt. // // Reference: // // Paul Bratley, Bennett Fox, Harald Niederreiter, // Algorithm 738: // Programs to Generate Niederreiter's Low-Discrepancy Sequences, // ACM Transactions on Mathematical Software, // Volume 20, Number 4, 1994, pages 494-495. // // Parameters: // // Input, int PX[MAXDEG+2], the appropriate irreducible polynomial // for the dimension currently being considered. The degree of PX will // be called E. // // Input/output, int B[DEG_MAX+2]. On input, B is the polynomial // defined in section 2.3 of BFN. The degree of B implicitly defines // the parameter J of section 3.3, by degree(B) = E*(J-1). On output, // B has been multiplied by PX, so its degree is now E*J. // // Input, int V[V_MAX+1], contains the values required. // // Input, int V_MAX, the dimension of the array V. // // Local Parameters: // // Local, int ARBIT, indicates where the user can place // an arbitrary element of the field of order Q. For the code, // this means 0 <= ARBIT < Q. Within these limits, the user can // do what he likes. ARBIT could be declared as a function // that returned a different arbitrary value each time it is referenced. // // Local, int BIGM, is the M used in section 3.3. It differs from // the [little] m used in section 2.3, denoted here by M. // // Local, int NONZER shows where the user must put an arbitrary // non-zero element of the same field. For the code, this means // 0 < NONZER < Q. Within these limits, the user can do what he likes. // { int arbit = 1; int *b2; int bigm; int e; int h[DEG_MAX+2]; int i; int j; int kj; int m; int nonzer = 1; int r; int term; e = px[0]; // // The polynomial H is PX^(J-1), which is the value of B on arrival. // // In section 3.3, the values of Hi are defined with a minus sign: // don't forget this if you use them later// // for ( i = 0; i < DEG_MAX + 2; i++ ) { h[i] = b[i]; } bigm = h[0]; // // Now multiply B by PX so B becomes PX^J. // // In section 2.3, the values of Bi are defined with a minus sign: // don't forget this if you use them later! // b2 = plymul ( px, b ); for ( i = 0; i < DEG_MAX + 2; i++ ) { b[i] = b2[i]; } delete [] b2; m = b[0]; // // We don't use J explicitly anywhere, but here it is just in case. // j = m / e; // // Now choose a value of Kj as defined in section 3.3. // We must have 0 <= Kj < E*J = M. // The limit condition on Kj does not seem very relevant // in this program. // kj = bigm; // // Now choose values of V in accordance with the conditions in // section 3.3 // for ( i = 0; i < kj; i++ ) { v[i] = 0; } v[kj] = 1; if ( kj < bigm ) { term = sub [0] [ h[kj+1] ]; for ( r = kj + 1; r <= bigm - 1; r++ ) { v[r] = arbit; // // Check the condition of section 3.3, // remembering that the H's have the opposite sign. // term = sub [ term ] [ mul [ h[r+1] ] [ v[r] ] ]; } // // Now V(BIGM) is anything but TERM. // v[bigm] = add [ nonzer] [ term ]; for ( i = bigm + 1; i <= m - 1; i++ ) { v[i] = arbit; } } else { for ( i = kj + 1; i <= m - 1; i++ ) { v[i] = arbit; } } // // Calculate the remaining V's using the recursion of section 2.3, // remembering that the B's have the opposite sign. // for ( r = 0; r <= v_max - m; r++ ) { term = 0; for ( i = 0; i <= m - 1; i++ ) { term = sub [ term ] [ mul [ b[i+1] ] [ v[r+i] ] ]; } v[r+m] = term; } return; } //****************************************************************************80 void golo ( double quasi[] ) //****************************************************************************80 // // Purpose: // // GOLO generates a new quasi-random vector on each call. // // Discussion: // // Before the first call to this routine, a call must be made // to subroutine INLO to carry out some initializations. // // Polynomials stored as arrays have the coefficient of degree n // in POLY(N), and the degree of the polynomial in POLY(-1). // The parameter DEG is just to remind us of this last fact. // A polynomial which is identically 0 is given degree -1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 September 2007 // // Author: // // Orginal FORTRAN77 version by Paul Bratley, Bennett Fox, // Harald Niederreiter. // C++ version by John Burkardt. // // Reference: // // Paul Bratley, Bennett Fox, Harald Niederreiter, // Algorithm 738: // Programs to Generate Niederreiter's Low-Discrepancy Sequences, // ACM Transactions on Mathematical Software, // Volume 20, Number 4, 1994, pages 494-495. // // Harald Niederreiter, // Low-discrepancy and low-dispersion sequences, // Journal of Number Theory, // Volume 30, 1988, pages 51-70. // // Parameters: // // Output, double QUASI[], the next vector in the sequence. // { int diff; int i; int j; int nq; int oldcnt; int r; // // Multiply the numerators in NEXTQ by RECIP to get the next // quasi-random vector. // for ( i = 0; i < DIMEN; i++ ) { quasi[i] = ( double ) ( NEXTQ[i] ) * RECIP; } // // Update COUNT, treated as a base-Q integer. Instead of // recalculating the values of D from scratch, we update // them for each digit of COUNT which changes. In terms of // Niederreiter page 54, NEXTQ(I) corresponds to XI(N), with // N being implicit, and D(I,J) corresponds to XI(N,J), again // with N implicit. Finally COUNT(R) corresponds to AR(N). // r = 0; for ( ; ; ) { if ( NFIGS <= r ) { cerr << "\n"; cerr << "GOLO - Fatal error!\n"; cerr << " Too many calls!\n"; exit ( 1 ); } oldcnt = COUNT[r]; if ( COUNT[r] < Q - 1 ) { COUNT[r] = COUNT[r] + 1; } else { COUNT[r] = 0; } diff = sub [ COUNT[r] ] [ oldcnt ]; // // Digit R has just changed. DIFF says how much it changed // by. We use this to update the values of array D. // for ( i = 0; i < DIMEN; i++ ) { for ( j = 0; j < NFIGS; j++ ) { D[i][j] = add [ D[i][j] ] [ mul [ C[i][j][r] ] [ diff ] ]; } } // // If COUNT(R) is now zero, we must propagate the carry. // if ( COUNT[r] != 0 ) { break; } r = r + 1; } // // Now use the updated values of D to calculate NEXTQ. // Array QPOW helps to speed things up a little: // QPOW(J) is Q^(NFIGS-J). // for ( i = 0; i < DIMEN; i++ ) { nq = 0; for ( j = 0; j < NFIGS; j++ ) { nq = nq + D[i][j] * QPOW[j]; } NEXTQ[i] = nq; } return; } //****************************************************************************80 int i4_characteristic ( int q ) //****************************************************************************80 // // Purpose: // // I4_CHARACTERISTIC gives the characteristic for an integer. // // Discussion: // // For any positive integer Q, the characteristic is: // // Q, if Q is a prime; // P, if Q = P^N for some prime P and some integer N; // 0, otherwise, that is, if Q is negative, 0, 1, or the product // of more than one distinct prime. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 September 2007 // // Author: // // Orginal FORTRAN77 version by Paul Bratley, Bennet Fox, // Harald Niederreiter. // C++ version by John Burkardt. // // Reference: // // Paul Bratley, Bennett Fox, Harald Niederreiter, // Algorithm 738: // Programs to Generate Niederreiter's Low-Discrepancy Sequences, // ACM Transactions on Mathematical Software, // Volume 20, Number 4, 1994, pages 494-495. // // Parameters: // // Input, int Q, the value to be tested. // // Output, int I4_CHARACTERISTIC, the characteristic of Q. // { int i; int i_max; int q_copy; int value; if ( q <= 1 ) { value = 0; return value; } // // If Q is not prime, then there is at least one prime factor // of Q no greater than SQRT(Q)+1. // // A faster code would only consider prime values of I, // but that entails storing a table of primes and limiting the // size of Q. Simplicity and flexibility for now. // i_max = ( int ) ( sqrt ( ( double ) ( q ) ) ) + 1; q_copy = q; for ( i = 2; i <= i_max; i++ ) { if ( ( q_copy % i ) == 0 ) { while ( ( q_copy % i ) == 0 ) { q_copy = q_copy / i; } if ( q_copy == 1 ) { value = i; } else { value = 0; } return value; } } // // If no factor was found, then Q is prime. // value = q; return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 void inlo ( int dim, int base, int skip ) //****************************************************************************80 // // Purpose: // // INLO calculates the values of C(I,J,R). // // Discussion: // // This subroutine calculates the values of Niederreiter's // C(I,J,R) and performs other initialization necessary // before calling GOLO. // // Polynomials stored as arrays have the coefficient of degree n // in POLY(N), and the degree of the polynomial in POLY(-1). // The parameter DEG is just to remind us of this last fact. // A polynomial which is identically 0 is given degree -1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 September 2007 // // Author: // // Orginal FORTRAN77 version by Paul Bratley, Bennett Fox, // Harald Niederreiter. // C++ version by John Burkardt. // // Reference: // // Paul Bratley, Bennett Fox, Harald Niederreiter, // Algorithm 738: // Programs to Generate Niederreiter's Low-Discrepancy Sequences, // ACM Transactions on Mathematical Software, // Volume 20, Number 4, 1994, pages 494-495. // // Harald Niederreiter, // Low-discrepancy and low-dispersion sequences, // Journal of Number Theory, // Volume 30, 1988, pages 51-70. // // Parameters: // // Input, int DIM, the dimension of the sequence to be generated. // The value of DIM is copied into DIMEN in the common block. // // Input, int BASE, the prime or prime-power base to be used. // // Input, int SKIP, the number of values to throw away at the // beginning of the sequence. // // Local Parameters: // // Local, int NBITS, the number of bits in a fixed-point integer, not // counting the sign. // { int i; int j; int nbits = 31; int nq; int r; double temp; DIMEN = dim; if ( DIMEN <= 0 || DIM_MAX < DIMEN ) { cerr << "\n"; cerr << "INLO - Fatal error!\n"; cerr << " Bad spatial dimension.\n"; exit ( 1 ); } if ( i4_characteristic ( base ) == 0 ) { cerr << "\n"; cerr << "INLO - Fatal error!\n"; cerr << " Base not prime power or out of range.\n"; exit ( 1 ); } setfld ( base ); // // Calculate how many figures to use in base Q = BASE // temp = log ( pow ( 2.0, nbits ) - 1.0 ) / log ( ( double ) ( Q ) ); NFIGS = i4_min ( FIG_MAX, ( int ) temp ); // // Calculate the C array. // calcc ( ); // // Set RECIP. // RECIP = 1.0 / ( double ) ( i4_power ( Q, NFIGS ) ); // // Set QPOW(I) = Q^(NFIGS-I). // QPOW[NFIGS-1] = 1; for ( i = NFIGS - 1; 1 <= i; i-- ) { QPOW[i-1] = Q * QPOW[i]; } // // Initialize COUNT. // i = skip; for ( r = 0; r < NFIGS; r++ ) { COUNT[r] = ( i % Q ); i = i / Q; } if ( i != 0 ) { cerr << "\n"; cerr << "INLO - Fatal error!\n"; cerr << " SKIP is too long!\n"; exit ( 1 ); } // // Initialize D. // for ( i = 0; i < DIMEN; i++ ) { for ( j = 0; j < NFIGS; j++ ) { D[i][j] = 0; } } for ( r = 0; r < NFIGS; r++ ) { if ( COUNT[r] != 0 ) { for ( i = 0; i < DIMEN; i++ ) { for ( j = 0; j < NFIGS; j++ ) { D[i][j] = add [ D[i][j] ] [ mul [ C[i][j][r] ] [ COUNT[r] ] ]; } } } } // // Initialize NEXTQ. // for ( i = 0; i < DIMEN; i++ ) { nq = 0; for ( j = 0; j < NFIGS; j++ ) { nq = nq + D[i][j] * QPOW[j]; } NEXTQ[i] = nq; } return; } //****************************************************************************80 void niederreiter ( int dim_num, int base, int *seed, double r[] ) //****************************************************************************80 // // Purpose: // // NIEDERREITER returns an element of a Niederreiter sequence for base BASE. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int BASE, the base to use for the Niederreiter sequence. // The base should be a prime, or a power of a prime. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double R[DIM_NUM], the element of the sequence. // { static int dim_num_save = -1; int skip; if ( dim_num_save < 1 || dim_num != dim_num_save || *seed <= 0 ) { skip = 1; inlo ( dim_num, base, skip ); dim_num_save = dim_num; } golo ( r ); *seed = *seed + 1; return; } //****************************************************************************80 void niederreiter_generate ( int dim_num, int n, int base, int *seed, double r[] ) //****************************************************************************80 // // Purpose: // // NIEDERREITER_GENERATE generates a set of Niederreiter values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of points desired. // // Input, int BASE, the base to use for the Niederreiter sequence. // The base should be a prime, or a power of a prime. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double R[DIM_NUM*N], the points. // { int j; for ( j = 0; j < n; j++ ) { niederreiter ( dim_num, base, seed, r+j*dim_num ); } return; } //****************************************************************************80 void niederreiter_write ( int dim_num, int n, int base, int skip, double r[], char *output_filename ) //****************************************************************************80 // // Purpose: // // NIEDERREITER_WRITE writes a set of Niederreiter values to a file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 September 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of points desired. // // Input, int BASE, the base. // // Input, int SKIP, the number of initial points skipped. // // Input, double R[DIM_NUM*N], the points. // // Input, char *OUTPUT_FILENAME, the name of the // file to which the output should be written. // { int dim; int j; ofstream output; char *string; output.open ( output_filename ); output << "# " << output_filename << "\n"; output << "# created by NIEDERREITER.C.\n"; output << "#\n"; output << "# Spatial dimension DIM_NUM = " << dim_num << "\n"; output << "# Number of points N = " << n << "\n"; output << "# EPSILON (unit roundoff) = " << r8_epsilon ( ) << "\n"; output << "# Base: " << base << "\n"; output << "# Initial values skipped = " << skip << "\n"; output << "#\n"; delete [] string; for ( j = 0; j < n; j++ ) { for ( dim = 0; dim < dim_num; dim++ ) { output << " " << setw(10) << r[dim+j*dim_num]; } output << "\n"; } output.close ( ); return; } //****************************************************************************80 int *plymul ( int pa[], int pb[] ) //****************************************************************************80 // // Purpose: // // PLYMUL multiplies one polynomial by another. // // Discussion: // // Polynomial coefficients are elements of the field of order Q. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 September 2007 // // Author: // // Orginal FORTRAN77 version by Paul Bratley, Bennet Fox, // Harald Niederreiter. // C++ version by John Burkardt. // // Reference: // // Paul Bratley, Bennett Fox, Harald Niederreiter, // Algorithm 738: // Programs to Generate Niederreiter's Low-Discrepancy Sequences, // ACM Transactions on Mathematical Software, // Volume 20, Number 4, 1994, pages 494-495. // // Parameters: // // Input, int PA[DEG_MAX+2], the first polynomial. // // Input, int PB[DEG_MAX+2], the second polynomial. // // Output, int PLYMUL[DEG_MAX+2], the product polynomial. // { int dega; int degb; int degc; int i; int j; int p; int *pc; int term; pc = new int[DEG_MAX+2]; dega = pa[0]; degb = pb[0]; if ( dega == -1 || degb == -1 ) { degc = -1; } else { degc = dega + degb; } if ( DEG_MAX < degc ) { cerr << "\n"; cerr << "PLYMUL - Fatal error!\n"; cerr << " The degree of the product exceeds DEG_MAX.\n"; exit ( 1 ); } for ( i = 0; i <= degc; i++ ) { term = 0; for ( j = i4_max ( 0, i - dega ); j <= i4_min ( degb, i ); j++ ) { term = add [ term ] [ mul [ pa[i-j+1] ] [ pb[j+1] ] ]; } pc[i+1] = term; } pc[0] = degc; for ( i = degc + 1; i <= DEG_MAX; i++ ) { pc[i+1] = 0; } return pc; } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 void setfld ( int q_init ) //****************************************************************************80 // // Purpose: // // SETFLD sets up the arithmetic tables for a finite field. // // Discussion: // // This subroutine sets up addition, multiplication, and // subtraction tables for the finite field of order QIN. // // A polynomial with coefficients A(*) in the field of order Q // can also be stored in an integer I, with // // I = AN*Q^N + ... + A0. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 September 2007 // // Author: // // Orginal FORTRAN77 version by Paul Bratley, Bennet Fox, // Harald Niederreiter. // C++ version by John Burkardt. // // Reference: // // Paul Bratley, Bennett Fox, Harald Niederreiter, // Algorithm 738: // Programs to Generate Niederreiter's Low-Discrepancy Sequences, // ACM Transactions on Mathematical Software, // Volume 20, Number 4, 1994, pages 494-495. // // Parameters: // // Input, int Q_INIT, the order of the field. // { int i; ifstream input; char *input_filename = "gfarit.txt"; int j; int n; if ( q_init <= 1 || Q_MAX < q_init ) { cerr << "\n"; cerr << "SETFLD - Fatal error!\n"; cerr << " Bad value of Q = " << q_init << "\n"; exit ( 1 ); } Q = q_init; P = i4_characteristic ( Q ); if ( P == 0 ) { cerr << "\n"; cerr << "SETFLD - Fatal error!\n"; cerr << " There is no field of order Q = " << Q << "\n"; exit ( 1 ); } // // Set up to handle a field of prime or prime-power order. // Calculate the addition and multiplication tables. // for ( i = 0; i < Q; i++ ) { for ( j = 0; j < Q; j++ ) { add[i][j] = ( i + j ) % P; } } for ( i = 0; i < Q; i++ ) { for ( j = 0; j < Q; j++ ) { mul[i][j] = ( i * j ) % P; } } // // Use the addition table to set the subtraction table. // for ( i = 0; i < Q; i++ ) { for ( j = 0; j < Q; j++ ) { sub [ add[i][j] ] [i] = j; } } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }