# include # include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); char ch_cap ( char ch ); bool ch_eqi ( char ch1, char ch2 ); int ch_to_digit ( char ch ); void comp_next ( int n, int k, int a[], bool *more, int *h, int *t ); int file_column_count ( string input_filename ); int file_row_count ( string input_filename ); double monomial_integral_generalized_hermite ( int expon, double alpha ); double monomial_integral_generalized_laguerre ( int expon, double alpha ); double monomial_integral_hermite ( int expon ); double monomial_integral_jacobi ( int expon, double alpha, double beta ); double monomial_integral_laguerre ( int expon ); double monomial_integral_legendre ( int expon ); double monomial_integral_mixed ( int dim_num, int rule[], double alpha[], double beta[], int expon[] ); double monomial_quadrature ( int dim_num, int point_num, int rule[], double alpha[], double beta[], int expon[], double weight[], double x[] ); double *monomial_value ( int dim_num, int point_num, int expon[], double x[] ); double r8_abs ( double x ); double r8_factorial ( int n ); double r8_factorial2 ( int n ); double r8_gamma ( double x ); double r8_huge ( ); double r8_hyper_2f1 ( double a, double b, double c, double x ); double r8_psi ( double xx ); double *r8mat_data_read ( string input_filename, int m, int n ); void r8mat_header_read ( string input_filename, int *m, int *n ); double r8vec_dot ( int n, double a1[], double a2[] ); int s_len_trim (string s ); int s_to_i4 ( string s, int *last, bool *error ); double s_to_r8 ( string s, int *lchar, bool *error ); bool s_to_r8vec ( string s, int n, double rvec[] ); int s_word_count ( string s ); void timestamp ( ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for NINT_EXACTNESS_MIXED. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 January 2010 // // Author: // // John Burkardt // { double *alpha; double *beta; int degree; int degree_max; int dim; int dim_num; int dim_num2; bool error; int *expon; int h; int last; bool more; int point; int point_num; int point_num2; double quad_error; string quad_exact_filename; string quad_filename; string quad_a_filename; string quad_b_filename; string quad_r_filename; string quad_w_filename; string quad_x_filename; int *rule; int t; double *weight; double *x; double *x_range; timestamp ( ); cout << "\n"; cout << "NINT_EXACTNESS_MIXED\n"; cout << " C++ version\n"; cout << "\n"; cout << " Compiled on " << __DATE__ << " at " << __TIME__ << ".\n"; cout << "\n"; cout << " Investigate the polynomial exactness of\n"; cout << " a multidimensional quadrature rule\n"; cout << " for a region R = R1 x R2 x ... x RM.\n"; cout << "\n"; cout << " Individual rules may be for:\n"; cout << "\n"; cout << " Legendre:\n"; cout << " region: [-1,+1]\n"; cout << " weight: w(x)=1\n"; cout << " rules: Gauss-Legendre, Clenshaw-Curtis, Fejer2, Gauss-Patterson\n"; cout << "\n"; cout << " Jacobi:\n"; cout << " region: [-1,+1]\n"; cout << " weight: w(x)=(1-x)^alpha (1+x)^beta\n"; cout << " rules: Gauss-Jacobi\n"; cout << "\n"; cout << " Laguerre:\n"; cout << " region: [0,+oo)\n"; cout << " weight: w(x)=exp(-x)\n"; cout << " rules: Gauss-Laguerre\n"; cout << "\n"; cout << " Generalized Laguerre:\n"; cout << " region: [0,+oo)\n"; cout << " weight: w(x)=x^alpha exp(-x)\n"; cout << " rules: Generalized Gauss-Laguerre\n"; cout << "\n"; cout << " Hermite:\n"; cout << " region: (-oo,+o)\n"; cout << " weight: w(x)=exp(-x*x)\n"; cout << " rules: Gauss-Hermite\n"; cout << "\n"; cout << " Generalized Hermite:\n"; cout << " region: (-oo,+oo)\n"; cout << " weight: w(x)=|x|^alpha exp(-x*x)\n"; cout << " rules: generalized Gauss-Hermite\n"; // // Get the quadrature file root name: // if ( 1 < argc ) { quad_filename = argv[1]; } else { cout << "\n"; cout << "NINT_EXACTNESS_MIXED:\n"; cout << " Enter the \"root\" name of the quadrature files.\n"; cin >> quad_filename; } // // Create the names of: // the quadrature X file; // the quadrature W file; // the quadrature R file; // the output "exactness" file. // quad_a_filename = quad_filename + "_a.txt"; quad_b_filename = quad_filename + "_b.txt"; quad_r_filename = quad_filename + "_r.txt"; quad_w_filename = quad_filename + "_w.txt"; quad_x_filename = quad_filename + "_x.txt"; quad_exact_filename = quad_filename + "_exact.txt"; // // The second command line argument is the maximum degree. // if ( 2 < argc ) { degree_max = s_to_i4 ( argv[2], &last, &error ); } else { cout << "\n"; cout << "NINT_EXACTNESS_MIXED:\n"; cout << " Please enter the maximum total degree to check.\n"; cin >> degree_max; } // // Summarize the input. // cout << "\n"; cout << "NINT_EXACTNESS: User input:\n"; cout << " Quadrature rule A file = \"" << quad_a_filename << "\".\n"; cout << " Quadrature rule B file = \"" << quad_b_filename << "\".\n"; cout << " Quadrature rule R file = \"" << quad_r_filename << "\".\n"; cout << " Quadrature rule W file = \"" << quad_w_filename << "\".\n"; cout << " Quadrature rule X file = \"" << quad_x_filename << "\".\n"; cout << " Maximum total degree to check = " << degree_max << "\n"; // // Read the X file. // r8mat_header_read ( quad_x_filename, &dim_num, &point_num ); cout << "\n"; cout << " Spatial dimension = " << dim_num << "\n"; cout << " Number of points = " << point_num << "\n"; x = r8mat_data_read ( quad_x_filename, dim_num, point_num ); // // Read the W file. // r8mat_header_read ( quad_w_filename, &dim_num2, &point_num2 ); if ( dim_num2 != 1 ) { cout << "\n"; cout << "NINT_EXACTNESS_MIXED - Fatal error!\n"; cout << " The quadrature weight file should have exactly\n"; cout << " one value on each line.\n"; exit ( 1 ); } if ( point_num2 != point_num ) { cout << "\n"; cout << "NINT_EXACTNESS_MIXED - Fatal error!\n"; cout << " The quadrature weight file should have exactly\n"; cout << " the same number of lines as the abscissa file.\n"; exit ( 1 ); } weight = r8mat_data_read ( quad_w_filename, 1, point_num ); // // Read the R file. // r8mat_header_read ( quad_r_filename, &dim_num2, &point_num2 ); if ( dim_num2 != dim_num ) { cout << "\n"; cout << "NINT_EXACTNESS_MIXED - Fatal error!\n"; cout << " The quadrature region file should have the same\n"; cout << " number of values on each line as the abscissa file.\n"; exit ( 1 ); } if ( point_num2 != 2 ) { cout << "\n"; cout << "NINT_EXACTNESS_MIXED - Fatal error!\n"; cout << " The quadrature region file should have two lines.\n"; exit ( 1 ); } x_range = r8mat_data_read ( quad_r_filename, dim_num, 2 ); // // Read the A file. // r8mat_header_read ( quad_a_filename, &dim_num2, &point_num2 ); if ( dim_num2 != dim_num ) { cout << "\n"; cout << "NINT_EXACTNESS_MIXED - Fatal error!\n"; cout << " The quadrature A file should have the same\n"; cout << " number of values on each line as the abscissa file.\n"; exit ( 1 ); } if ( point_num2 != 1 ) { cout << "\n"; cout << "NINT_EXACTNESS_MIXED - Fatal error!\n"; cout << " The quadrature A file should have 1 line.\n"; exit ( 1 ); } alpha = r8mat_data_read ( quad_a_filename, dim_num, 1 ); // // Read the B file. // r8mat_header_read ( quad_b_filename, &dim_num2, &point_num2 ); if ( dim_num2 != dim_num ) { cout << "\n"; cout << "NINT_EXACTNESS_MIXED - Fatal error!\n"; cout << " The quadrature B file should have the same\n"; cout << " number of values on each line as the abscissa file,\n"; exit ( 1 ); } if ( point_num2 != 1 ) { cout << "\n"; cout << "NINT_EXACTNESS_MIXED - Fatal error!\n"; cout << " The quadrature B file should have 1 line.\n"; exit ( 1 ); } beta = r8mat_data_read ( quad_b_filename, dim_num, 1 ); // // Try to determine the rule types. // rule = new int[dim_num]; cout << "\n"; cout << " Analysis of integration region:\n"; cout << "\n"; for ( dim = 0; dim < dim_num; dim++ ) { if ( x_range[dim+0*dim_num] == -1.0 && x_range[dim+1*dim_num] == +1.0 ) { if ( alpha[dim] == 0.0 && beta[dim] == 0.0 ) { rule[dim] = 1; cout << " " << setw(4) << dim << " Gauss Legendre.\n"; } else { rule[dim] = 2; cout << " " << setw(4) << dim << " Gauss Jacobi" << ", ALPHA = " << alpha[dim] << ", BETA = " << beta[dim] << "\n"; } } else if ( x_range[dim+0*dim_num] == 0.0 && x_range[dim+1*dim_num] == r8_huge ( ) ) { if ( alpha[dim] == 0.0 ) { rule[dim] = 3; cout << " " << setw(4) << dim << " Gauss Laguerre.\n"; } else { rule[dim] = 4; cout << " " << setw(4) << dim << " Generalized Gauss Laguerre" << ", ALPHA = " << alpha[dim] << "\n"; } } else if ( x_range[dim+0*dim_num] == - r8_huge ( ) && x_range[dim+1*dim_num] == + r8_huge ( ) ) { if ( alpha[dim] == 0.0 ) { rule[dim] = 5; cout << " " << setw(4) << dim << " Gauss Hermite dimension.\n"; } else { rule[dim] = 6; cout << " " << setw(4) << dim << " Generalized Gauss Hermite" << ", ALPHA = " << alpha[dim] << "\n"; } } else { cout << "\n"; cout << "NINT_EXACTNESS_MIXED - Fatal error!\n"; cout << " Did not recognize region component.\n"; cout << " Dimension DIM = " << dim << "\n"; cout << " A = " << x_range[dim+0*dim_num] << "\n"; cout << " B = " << x_range[dim+1*dim_num] << "\n"; exit ( 1 ); } } // // Explore the monomials. // expon = new int[dim_num]; cout << "\n"; cout << " Error Degree Exponents\n"; cout << "\n"; for ( degree = 0; degree <= degree_max; degree++ ) { more = false; h = 0; t = 0; for ( ; ; ) { comp_next ( degree, dim_num, expon, &more, &h, &t ); quad_error = monomial_quadrature ( dim_num, point_num, rule, alpha, beta, expon, weight, x ); cout << " " << setw(12) << quad_error << " " << setw(2) << degree << " "; for ( dim = 0; dim < dim_num; dim++ ) { cout << setw(3) << expon[dim]; } cout << "\n"; if ( !more ) { break; } } cout << "\n"; } // // Terminate. // delete [] alpha; delete [] beta; delete [] expon; delete [] rule; delete [] weight; delete [] x; delete [] x_range; cout << "\n"; cout << "NINT_EXACTNESS_MIXED:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 char ch_cap ( char ch ) //****************************************************************************80 // // Purpose: // // CH_CAP capitalizes a single character. // // Discussion: // // This routine should be equivalent to the library "toupper" function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 July 1998 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the character to capitalize. // // Output, char CH_CAP, the capitalized character. // { if ( 97 <= ch && ch <= 122 ) { ch = ch - 32; } return ch; } //****************************************************************************80 bool ch_eqi ( char ch1, char ch2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH1, CH2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { if ( 97 <= ch1 && ch1 <= 122 ) { ch1 = ch1 - 32; } if ( 97 <= ch2 && ch2 <= 122 ) { ch2 = ch2 - 32; } return ( ch1 == ch2 ); } //****************************************************************************80 int ch_to_digit ( char ch ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // CH DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char CH, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If the character was // 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= ch && ch <= '9' ) { digit = ch - '0'; } else if ( ch == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 void comp_next ( int n, int k, int a[], bool *more, int *h, int *t ) //****************************************************************************80 // // Purpose: // // COMP_NEXT computes the compositions of the integer N into K parts. // // Discussion: // // A composition of the integer N into K parts is an ordered sequence // of K nonnegative integers which sum to N. The compositions (1,2,1) // and (1,1,2) are considered to be distinct. // // The routine computes one composition on each call until there are no more. // For instance, one composition of 6 into 3 parts is // 3+2+1, another would be 6+0+0. // // On the first call to this routine, set MORE = FALSE. The routine // will compute the first element in the sequence of compositions, and // return it, as well as setting MORE = TRUE. If more compositions // are desired, call again, and again. Each time, the routine will // return with a new composition. // // However, when the LAST composition in the sequence is computed // and returned, the routine will reset MORE to FALSE, signaling that // the end of the sequence has been reached. // // This routine originally used a SAVE statement to maintain the // variables H and T. I have decided that it is safer // to pass these variables as arguments, even though the user should // never alter them. This allows this routine to safely shuffle // between several ongoing calculations. // // // There are 28 compositions of 6 into three parts. This routine will // produce those compositions in the following order: // // I A // - --------- // 1 6 0 0 // 2 5 1 0 // 3 4 2 0 // 4 3 3 0 // 5 2 4 0 // 6 1 5 0 // 7 0 6 0 // 8 5 0 1 // 9 4 1 1 // 10 3 2 1 // 11 2 3 1 // 12 1 4 1 // 13 0 5 1 // 14 4 0 2 // 15 3 1 2 // 16 2 2 2 // 17 1 3 2 // 18 0 4 2 // 19 3 0 3 // 20 2 1 3 // 21 1 2 3 // 22 0 3 3 // 23 2 0 4 // 24 1 1 4 // 25 0 2 4 // 26 1 0 5 // 27 0 1 5 // 28 0 0 6 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 July 2008 // // Author: // // Original FORTRAN77 version by Albert Nijenhuis, Herbert Wilf. // C++ version by John Burkardt. // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms for Computers and Calculators, // Second Edition, // Academic Press, 1978, // ISBN: 0-12-519260-6, // LC: QA164.N54. // // Parameters: // // Input, int N, the integer whose compositions are desired. // // Input, int K, the number of parts in the composition. // // Input/output, int A[K], the parts of the composition. // // Input/output, bool *MORE. // Set MORE = FALSE on first call. It will be reset to TRUE on return // with a new composition. Each new call returns another composition until // MORE is set to FALSE when the last composition has been computed // and returned. // // Input/output, int *H, *T, two internal parameters needed for the // computation. The user should allocate space for these in the calling // program, include them in the calling sequence, but never alter them! // { int i; if ( !( *more ) ) { *t = n; *h = 0; a[0] = n; for ( i = 1; i < k; i++ ) { a[i] = 0; } } else { if ( 1 < *t ) { *h = 0; } *h = *h + 1; *t = a[*h-1]; a[*h-1] = 0; a[0] = *t - 1; a[*h] = a[*h] + 1; } *more = ( a[k-1] != n ); return; } //****************************************************************************80 int file_column_count ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_COLUMN_COUNT counts the columns in the first line of a file. // // Discussion: // // The file is assumed to be a simple text file. // // Most lines of the file are presumed to consist of COLUMN_NUM words, // separated by spaces. There may also be some blank lines, and some // comment lines, which have a "#" in column 1. // // The routine tries to find the first non-comment non-blank line and // counts the number of words in that line. // // If all lines are blanks or comments, it goes back and tries to analyze // a comment line. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the file. // // Output, int FILE_COLUMN_COUNT, the number of columns assumed // to be in the file. // { int column_num; ifstream input; bool got_one; string text; // // Open the file. // input.open ( filename.c_str ( ) ); if ( !input ) { column_num = -1; cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Fatal error!\n"; cerr << " Could not open the file:\n"; cerr << " \"" << filename << "\"\n"; return column_num; } // // Read one line, but skip blank lines and comment lines. // got_one = false; for ( ; ; ) { getline ( input, text ); if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) <= 0 ) { continue; } if ( text[0] == '#' ) { continue; } got_one = true; break; } if ( !got_one ) { input.close ( ); input.open ( filename.c_str ( ) ); for ( ; ; ) { input >> text; if ( input.eof ( ) ) { break; } if ( s_len_trim ( text ) == 0 ) { continue; } got_one = true; break; } } input.close ( ); if ( !got_one ) { cerr << "\n"; cerr << "FILE_COLUMN_COUNT - Warning!\n"; cerr << " The file does not seem to contain any data.\n"; return -1; } column_num = s_word_count ( text ); return column_num; } //****************************************************************************80 int file_row_count ( string filename ) //****************************************************************************80 // // Purpose: // // FILE_ROW_COUNT counts the number of row records in a file. // // Discussion: // // It does not count lines that are blank, or that begin with a // comment symbol '#'. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string FILENAME, the name of the input file. // // Output, int FILE_ROW_COUNT, the number of rows found. // { int bad_num; int comment_num; ifstream input; int record_num; int row_num; string text; row_num = 0; comment_num = 0; record_num = 0; bad_num = 0; input.open ( filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "FILE_ROW_COUNT - Fatal error!\n"; cerr << " Could not open the file: \"" << filename << "\"\n"; exit ( 1 ); } for ( ; ; ) { getline ( input, text ); if ( input.eof ( ) ) { break; } record_num = record_num + 1; if ( text[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( text ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } input.close ( ); return row_num; } //****************************************************************************80 double monomial_integral_generalized_hermite ( int expon, double alpha ) //****************************************************************************80 // // Purpose: // // MONOMIAL_INTEGRAL_GENERALIZED_HERMITE evaluates a 1D monomial generalized Hermite integral. // // Discussion: // // The integral being computed is // // integral ( -oo < x < +oo ) x^n |x|^alpha exp(-x*x) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 October 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent of the monomial. // 0 <= EXPON. // // Input, double ALPHA, the exponent of |x| in the weight. // -1.0 < ALPHA. // // Output, double MONOMIAL_INTEGRAL_GENERALIZED_HERMITE, // the value of the integral. // { double arg; double value; if ( ( expon % 2 ) == 1 ) { value = 0.0; } else { arg = alpha + ( double ) ( expon ); if ( arg <= - 1.0 ) { value = - r8_huge ( ); } else { arg = ( arg + 1.0 ) / 2.0; value = r8_gamma ( arg ); } } return value; } //****************************************************************************80 double monomial_integral_generalized_laguerre ( int expon, double alpha ) //****************************************************************************80 // // Purpose: // // MONOMIAL_INTEGRAL_GENERALIZED_LAGUERRE evaluates a 1D monomial generalized Laguerre integral. // // Discussion: // // The integral being computed is // // integral ( 0 <= x < +oo ) x^n x^alpha exp(-x) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 October 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent of the monomial. // 0 <= EXPON. // // Input, double ALPHA, the exponent of x in the weight. // -1.0 < ALPHA. // // Output, double MONOMIAL_INTEGRAL_GENERALIZED_LAGUERRE, // the value of the integral. // { double arg; double value; arg = alpha + ( double ) ( expon + 1 ); value = r8_gamma ( arg ); return value; } //****************************************************************************80 double monomial_integral_hermite ( int expon ) //****************************************************************************80 // // Purpose: // // MONOMIAL_INTEGRAL_HERMITE evaluates a 1D monomial Hermite integral. // // Discussion: // // H(n) = Integral ( -oo < x < +oo ) x^n exp(-x*x) dx // // H(n) is 0 for n odd. // // H(n) = (n-1)!! * sqrt(pi) / 2^(n/2) for n even. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent. // 0 <= EXPON. // // Output, double MONOMIAL_INTEGRAL_HERMITE, // the value of the integral. // { double pi = 3.141592653589793; double value; if ( expon < 0 ) { value = - r8_huge ( ); } else if ( ( expon % 2 ) == 1 ) { value = 0.0; } else { value = r8_factorial2 ( expon - 1 ) * sqrt ( pi ) / pow ( 2.0, expon / 2 ); } return value; } //****************************************************************************80 double monomial_integral_jacobi ( int expon, double alpha, double beta ) //****************************************************************************80 // // Purpose: // // MONOMIAL_INTEGRAL_JACOBI evaluates the integral of a monomial with Jacobi weight. // // Discussion: // // VALUE = Integral ( -1 <= X <= +1 ) x^EXPON (1-x)^ALPHA (1+x)^BETA dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 October 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent. // // Input, double ALPHA, the exponent of (1-X) in the weight factor. // // Input, double BETA, the exponent of (1+X) in the weight factor. // // Output, double MONOMIAL_INTEGRAL_JACOBI, the value of the integral. // { double arg1; double arg2; double arg3; double arg4; double c; double s; double value; double value1; double value2; c = ( double ) ( expon ); if ( ( expon % 2 ) == 0 ) { s = +1.0; } else { s = -1.0; } arg1 = - alpha; arg2 = 1.0 + c; arg3 = 2.0 + beta + c; arg4 = - 1.0; value1 = r8_hyper_2f1 ( arg1, arg2, arg3, arg4 ); arg1 = - beta; arg2 = 1.0 + c; arg3 = 2.0 + alpha + c; arg4 = - 1.0; value2 = r8_hyper_2f1 ( arg1, arg2, arg3, arg4 ); value = r8_gamma ( 1.0 + c ) * ( s * r8_gamma ( 1.0 + beta ) * value1 / r8_gamma ( 2.0 + beta + c ) + r8_gamma ( 1.0 + alpha ) * value2 / r8_gamma ( 2.0 + alpha + c ) ); return value; } //****************************************************************************80 double monomial_integral_laguerre ( int expon ) //****************************************************************************80 // // Purpose: // // MONOMIAL_INTEGRAL_LAGUERRE evaluates a 1D monomial Laguerre integral. // // Discussion: // // The integral being computed is // // integral ( 0 <= x < +oo ) x^n * exp ( -x ) dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent. // 0 <= EXPON. // // Output, double MONOMIAL_INTEGRAL_LAGUERRE, // the value of the integral. // { double value; value = r8_factorial ( expon ); return value; } //****************************************************************************80 double monomial_integral_legendre ( int expon ) //****************************************************************************80 // // Purpose: // // MONOMIAL_INTEGRAL_LEGENDRE evaluates a 1D monomial Legendre integral. // // Discussion: // // The integral being computed is // // integral ( -1 <= x < +1 ) x^n dx // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int EXPON, the exponent. // 0 <= EXPON. // // Output, double MONOMIAL_INTEGRAL_LEGENDRE, // the value of the integral. // { double value; if ( ( expon % 2 ) == 1 ) { value = 0.0; } else if ( ( expon % 2 ) == 0 ) { value = 2.0 / ( double ) ( expon + 1 ); } return value; } //****************************************************************************80 double monomial_integral_mixed ( int dim_num, int rule[], double alpha[], double beta[], int expon[] ) //****************************************************************************80 // // Purpose: // // MONOMIAL_INTEGRAL_MIXED evaluates a multi-D monomial mixed integral. // // Discussion: // // This routine evaluates a monomial of the form // // product ( 1 <= dim <= dim_num ) x(dim)^expon(dim) // // where the exponents are nonnegative integers. Note that // if the combination 0^0 is encountered, it should be treated // as 1. // // The integration is carried out in a region that is a direct product // of 1D factors that may be of Legendre, Laguerre or Hermite type, // and the integration includes the weight functions associated with // the 1D factors. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int RULE[DIM_NUM], the component rules. // 1, Gauss-Legendre rule on [-1,+1]; // 2, Gauss-Jacobi rule on [-1,+1]; // 3, Gauss-Laguerre rule on [0,+oo); // 4, Generalized Gauss-Laguerre rule on [0,+oo); // 5, Gauss-Hermite rule on (-oo,+oo); // 6, Generalized Gauss-Hermite rule on (-oo,+oo). // // Input, double ALPHA[DIM_NUM], BETA[DIM_NUM], parameters that // may be needed for Jacobi, Generalized-Laguerre, or Generalized Hermite rules. // // Input, int EXPON[DIM_NUM], the exponents. // // Output, double MONOMIAL_INTEGRAL_MIXED, // the value of the integral. // { int dim; double value; value = 1.0; for ( dim = 0; dim < dim_num; dim++ ) { if ( rule[dim] == 1 ) { value = value * monomial_integral_legendre ( expon[dim] ); } else if ( rule[dim] == 2 ) { value = value * monomial_integral_jacobi ( expon[dim], alpha[dim], beta[dim] ); } else if ( rule[dim] == 3 ) { value = value * monomial_integral_laguerre ( expon[dim] ); } else if ( rule[dim] == 4 ) { value = value * monomial_integral_generalized_laguerre ( expon[dim], alpha[dim] ); } else if ( rule[dim] == 5 ) { value = value * monomial_integral_hermite ( expon[dim] ); } else if ( rule[dim] == 6 ) { value = value * monomial_integral_generalized_hermite ( expon[dim], alpha[dim] ); } } return value; } //****************************************************************************80 double monomial_quadrature ( int dim_num, int point_num, int rule[], double alpha[], double beta[], int expon[], double weight[], double x[] ) //****************************************************************************80 // // Purpose: // // MONOMIAL_QUADRATURE applies a quadrature rule to a monomial. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 October 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int POINT_NUM, the number of points in the rule. // // Input, int RULE[DIM_NUM], the component rules. // 1, Gauss-Legendre rule on [-1,+1]; // 2, Gauss-Jacobi rule on [-1,+1]; // 3, Gauss-Laguerre rule on [0,+oo); // 4, Generalized Gauss-Laguerre rule on [0,+oo); // 5, Gauss-Hermite rule on (-oo,+oo); // 6, Generalized Gauss-Hermite rule on (-oo,+oo). // // Input, double ALPHA[DIM_NUM], BETA[DIM_NUM], parameters that // may be needed for Jacobi, Generalized-Laguerre, or Generalized Hermite rules. // // Input, int EXPON[DIM_NUM], the exponents. // // Input, double WEIGHT[POINT_NUM], the quadrature weights. // // Input, double X[DIM_NUM*POINT_NUM], the quadrature points. // // Output, double MONOMIAL_QUADRATURE, the quadrature error. // { double exact; double quad; double quad_error; double *value; // // Get the exact value of the integral of the unscaled monomial. // exact = monomial_integral_mixed ( dim_num, rule, alpha, beta, expon ); // // Evaluate the monomial at the quadrature points. // value = monomial_value ( dim_num, point_num, expon, x ); // // Compute the weighted sum and divide by the exact value. // quad = r8vec_dot ( point_num, weight, value ); // // Error: // if ( exact == 0.0 ) { quad_error = r8_abs ( quad - exact ); } else { quad_error = r8_abs ( quad - exact ) / r8_abs ( exact ); } delete [] value; return quad_error; } //****************************************************************************80 double *monomial_value ( int dim_num, int point_num, int expon[], double x[] ) //****************************************************************************80 // // Purpose: // // MONOMIAL_VALUE evaluates a monomial. // // Discussion: // // This routine evaluates a multidimensional monomial which is a product // of 1D factors of the form x(dim)^expon(dim). // // The exponents are nonnegative integers. // // Note that if the combination 0^0 is encountered, it should be treated // as 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 October 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int POINT_NUM, the number of points at which the // monomial is to be evaluated. // // Input, int EXPON[DIM_NUM], the exponents. // // Input, double X[DIM_NUM*POINT_NUM], the point coordinates. // // Output, double MONOMIAL_VALUE[POINT_NUM], the value of the monomial. // { int dim; int point; double *value; value = new double[point_num]; for ( point = 0; point < point_num; point++ ) { value[point] = 1.0; } for ( dim = 0; dim < dim_num; dim++ ) { if ( 0 != expon[dim] ) { for ( point = 0; point < point_num; point++ ) { value[point] = value[point] * pow ( x[dim+point*dim_num], expon[dim] ); } } } return value; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = x; } else { value = - x; } return value; } //****************************************************************************80 double r8_factorial ( int n ) //****************************************************************************80 // // Purpose: // // R8_FACTORIAL computes the factorial of N. // // Discussion: // // factorial ( N ) = product ( 1 <= I <= N ) I // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 January 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the argument of the factorial function. // If N is less than 1, the function value is returned as 1. // // Output, double R8_FACTORIAL, the factorial of N. // { int i; double value; value = 1.0; for ( i = 1; i <= n; i++ ) { value = value * ( double ) ( i ); } return value; } //****************************************************************************80 double r8_factorial2 ( int n ) //****************************************************************************80 // // Purpose: // // R8_FACTORIAL2 computes the double factorial function. // // Discussion: // // FACTORIAL2( N ) = Product ( N * (N-2) * (N-4) * ... * 2 ) (N even) // = Product ( N * (N-2) * (N-4) * ... * 1 ) (N odd) // // Example: // // N Factorial2(N) // // 0 1 // 1 1 // 2 2 // 3 3 // 4 8 // 5 15 // 6 48 // 7 105 // 8 384 // 9 945 // 10 3840 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 January 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the argument of the double factorial // function. If N is less than 1, R8_FACTORIAL2 is returned as 1.0. // // Output, double R8_FACTORIAL2, the value of Factorial2(N). // { int n_copy; double value; value = 1.0; if ( n < 1 ) { return value; } n_copy = n; while ( 1 < n_copy ) { value = value * ( double ) n_copy; n_copy = n_copy - 2; } return value; } //****************************************************************************80 double r8_gamma ( double x ) //****************************************************************************80 // // Purpose: // // R8_GAMMA evaluates Gamma(X) for a real argument. // // Discussion: // // This routine calculates the gamma function for a real argument X. // // Computation is based on an algorithm outlined in reference 1. // The program uses rational functions that approximate the gamma // function to at least 20 significant decimal digits. Coefficients // for the approximation over the interval (1,2) are unpublished. // Those for the approximation for 12 <= X are from reference 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2008 // // Author: // // Original FORTRAN77 version by William Cody, Laura Stoltz. // C++ version by John Burkardt. // // Reference: // // William Cody, // An Overview of Software Development for Special Functions, // in Numerical Analysis Dundee, 1975, // edited by GA Watson, // Lecture Notes in Mathematics 506, // Springer, 1976. // // John Hart, Ward Cheney, Charles Lawson, Hans Maehly, // Charles Mesztenyi, John Rice, Henry Thatcher, // Christoph Witzgall, // Computer Approximations, // Wiley, 1968, // LC: QA297.C64. // // Parameters: // // Input, double X, the argument of the function. // // Output, double R8_GAMMA, the value of the function. // { // // Coefficients for minimax approximation over (12, INF). // double c[7] = { -1.910444077728E-03, 8.4171387781295E-04, -5.952379913043012E-04, 7.93650793500350248E-04, -2.777777777777681622553E-03, 8.333333333333333331554247E-02, 5.7083835261E-03 }; double eps = 2.22E-16; double fact; double half = 0.5; int i; int n; double one = 1.0; double p[8] = { -1.71618513886549492533811E+00, 2.47656508055759199108314E+01, -3.79804256470945635097577E+02, 6.29331155312818442661052E+02, 8.66966202790413211295064E+02, -3.14512729688483675254357E+04, -3.61444134186911729807069E+04, 6.64561438202405440627855E+04 }; bool parity; double pi = 3.1415926535897932384626434; double q[8] = { -3.08402300119738975254353E+01, 3.15350626979604161529144E+02, -1.01515636749021914166146E+03, -3.10777167157231109440444E+03, 2.25381184209801510330112E+04, 4.75584627752788110767815E+03, -1.34659959864969306392456E+05, -1.15132259675553483497211E+05 }; double res; double sqrtpi = 0.9189385332046727417803297; double sum; double twelve = 12.0; double two = 2.0; double value; double xbig = 171.624; double xden; double xinf = 1.79E+308; double xminin = 2.23E-308; double xnum; double y; double y1; double ysq; double z; double zero = 0.0;; parity = false; fact = one; n = 0; y = x; // // Argument is negative. // if ( y <= zero ) { y = - x; y1 = ( double ) ( int ) ( y ); res = y - y1; if ( res != zero ) { if ( y1 != ( double ) ( int ) ( y1 * half ) * two ) { parity = true; } fact = - pi / sin ( pi * res ); y = y + one; } else { res = xinf; value = res; return value; } } // // Argument is positive. // if ( y < eps ) { // // Argument < EPS. // if ( xminin <= y ) { res = one / y; } else { res = xinf; value = res; return value; } } else if ( y < twelve ) { y1 = y; // // 0.0 < argument < 1.0. // if ( y < one ) { z = y; y = y + one; } // // 1.0 < argument < 12.0. // Reduce argument if necessary. // else { n = ( int ) ( y ) - 1; y = y - ( double ) ( n ); z = y - one; } // // Evaluate approximation for 1.0 < argument < 2.0. // xnum = zero; xden = one; for ( i = 0; i < 8; i++ ) { xnum = ( xnum + p[i] ) * z; xden = xden * z + q[i]; } res = xnum / xden + one; // // Adjust result for case 0.0 < argument < 1.0. // if ( y1 < y ) { res = res / y1; } // // Adjust result for case 2.0 < argument < 12.0. // else if ( y < y1 ) { for ( i = 1; i <= n; i++ ) { res = res * y; y = y + one; } } } else { // // Evaluate for 12.0 <= argument. // if ( y <= xbig ) { ysq = y * y; sum = c[6]; for ( i = 0; i < 6; i++ ) { sum = sum / ysq + c[i]; } sum = sum / y - y + sqrtpi; sum = sum + ( y - half ) * log ( y ); res = exp ( sum ); } else { res = xinf; value = res; return value; } } // // Final adjustments and return. // if ( parity ) { res = - res; } if ( fact != one ) { res = fact / res; } value = res; return value; } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // The value returned by this function is NOT required to be the // maximum representable R8. This value varies from machine to machine, // from compiler to compiler, and may cause problems when being printed. // We simply want a "very large" but non-infinite number. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 October 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8 value. // { double value; value = 1.0E+30; return value; } //****************************************************************************80 double r8_hyper_2f1 ( double a, double b, double c, double x ) //****************************************************************************80 // // Purpose: // // R8_HYPER_2F1 evaluates the hypergeometric function F(A,B,C,X). // // Discussion: // // A minor bug was corrected. The HW variable, used in several places as // the "old" value of a quantity being iteratively improved, was not // being initialized. JVB, 11 February 2008. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // Original FORTRAN77 version by Shanjie Zhang, Jianming Jin. // C++ version by John Burkardt. // // The original FORTRAN77 version of this routine is copyrighted by // Shanjie Zhang and Jianming Jin. However, they give permission to // incorporate this routine into a user program provided that the copyright // is acknowledged. // // Reference: // // Shanjie Zhang, Jianming Jin, // Computation of Special Functions, // Wiley, 1996, // ISBN: 0-471-11963-6, // LC: QA351.C45 // // Parameters: // // Input, double A, B, C, X, the arguments of the function. // C must not be equal to a nonpositive integer. // X < 1. // // Output, double R8_HYPER_2F1, the value of the function. // { double a0; double aa; double bb; double c0; double c1; double el = 0.5772156649015329; double eps; double f0; double f1; double g0; double g1; double g2; double g3; double ga; double gabc; double gam; double gb; double gbm; double gc; double gca; double gcab; double gcb; double gm; double hf; double hw; int j; int k; bool l0; bool l1; bool l2; bool l3; bool l4; bool l5; int m; int nm; double pa; double pb; double pi = 3.141592653589793; double r; double r0; double r1; double rm; double rp; double sm; double sp; double sp0; double x1; l0 = ( c == ( int ) ( c ) ) && ( c < 0.0 ); l1 = ( 1.0 - x < 1.0E-15 ) && ( c - a - b <= 0.0 ); l2 = ( a == ( int ) ( a ) ) && ( a < 0.0 ); l3 = ( b == ( int ) ( b ) ) && ( b < 0.0 ); l4 = ( c - a == ( int ) ( c - a ) ) && ( c - a <= 0.0 ); l5 = ( c - b == ( int ) ( c - b ) ) && ( c - b <= 0.0 ); if ( l0 || l1 ) { cout << "\n"; cout << "R8_HYPER_2F1 - Fatal error!\n"; cout << " The hypergeometric series is divergent.\n"; hf = 0.0; return hf; } if ( 0.95 < x ) { eps = 1.0E-08; } else { eps = 1.0E-15; } if ( x == 0.0 || a == 0.0 || b == 0.0 ) { hf = 1.0; return hf; } else if ( 1.0 - x == eps && 0.0 < c - a - b ) { gc = r8_gamma ( c ); gcab = r8_gamma ( c - a - b ); gca = r8_gamma ( c - a ); gcb = r8_gamma ( c - b ); hf = gc * gcab / ( gca * gcb ); return hf; } else if ( 1.0 + x <= eps && r8_abs ( c - a + b - 1.0 ) <= eps ) { g0 = sqrt ( pi ) * pow ( 2.0, - a ); g1 = r8_gamma ( c ); g2 = r8_gamma ( 1.0 + a / 2.0 - b ); g3 = r8_gamma ( 0.5 + 0.5 * a ); hf = g0 * g1 / ( g2 * g3 ); return hf; } else if ( l2 || l3 ) { if ( l2 ) { nm = ( int ) ( r8_abs ( a ) ); } if ( l3 ) { nm = ( int ) ( r8_abs ( b ) ); } hf = 1.0; r = 1.0; for ( k = 1; k <= nm; k++ ) { r = r * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( c + k - 1.0 ) ) * x; hf = hf + r; } return hf; } else if ( l4 || l5 ) { if ( l4 ) { nm = ( int ) ( r8_abs ( c - a ) ); } if ( l5 ) { nm = ( int ) ( r8_abs ( c - b ) ); } hf = 1.0; r = 1.0; for ( k = 1; k <= nm; k++ ) { r = r * ( c - a + k - 1.0 ) * ( c - b + k - 1.0 ) / ( k * ( c + k - 1.0 ) ) * x; hf = hf + r; } hf = pow ( 1.0 - x, c - a - b ) * hf; return hf; } aa = a; bb = b; x1 = x; if ( x < 0.0 ) { x = x / ( x - 1.0 ); if ( a < c && b < a && 0.0 < b ) { a = bb; b = aa; } b = c - b; } if ( 0.75 <= x ) { gm = 0.0; if ( r8_abs ( c - a - b - ( int ) ( c - a - b ) ) < 1.0E-15 ) { m = int ( c - a - b ); ga = r8_gamma ( a ); gb = r8_gamma ( b ); gc = r8_gamma ( c ); gam = r8_gamma ( a + m ); gbm = r8_gamma ( b + m ); pa = r8_psi ( a ); pb = r8_psi ( b ); if ( m != 0 ) { gm = 1.0; } for ( j = 1; j <= abs ( m ) - 1; j++ ) { gm = gm * j; } rm = 1.0; for ( j = 1; j <= abs ( m ); j++ ) { rm = rm * j; } f0 = 1.0; r0 = 1.0;; r1 = 1.0; sp0 = 0.0;; sp = 0.0; if ( 0 <= m ) { c0 = gm * gc / ( gam * gbm ); c1 = - gc * pow ( x - 1.0, m ) / ( ga * gb * rm ); for ( k = 1; k <= m - 1; k++ ) { r0 = r0 * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( k - m ) ) * ( 1.0 - x ); f0 = f0 + r0; } for ( k = 1; k <= m; k++ ) { sp0 = sp0 + 1.0 / ( a + k - 1.0 ) + 1.0 / ( b + k - 1.0 ) - 1.0 / ( double ) ( k ); } f1 = pa + pb + sp0 + 2.0 * el + log ( 1.0 - x ); hw = f1; for ( k = 1; k <= 250; k++ ) { sp = sp + ( 1.0 - a ) / ( k * ( a + k - 1.0 ) ) + ( 1.0 - b ) / ( k * ( b + k - 1.0 ) ); sm = 0.0; for ( j = 1; j <= m; j++ ) { sm = sm + ( 1.0 - a ) / ( ( j + k ) * ( a + j + k - 1.0 ) ) + 1.0 / ( b + j + k - 1.0 ); } rp = pa + pb + 2.0 * el + sp + sm + log ( 1.0 - x ); r1 = r1 * ( a + m + k - 1.0 ) * ( b + m + k - 1.0 ) / ( k * ( m + k ) ) * ( 1.0 - x ); f1 = f1 + r1 * rp; if ( r8_abs ( f1 - hw ) < r8_abs ( f1 ) * eps ) { break; } hw = f1; } hf = f0 * c0 + f1 * c1; } else if ( m < 0 ) { m = - m; c0 = gm * gc / ( ga * gb * pow ( 1.0 - x, m ) ); c1 = - pow ( - 1.0, m ) * gc / ( gam * gbm * rm ); for ( k = 1; k <= m - 1; k++ ) { r0 = r0 * ( a - m + k - 1.0 ) * ( b - m + k - 1.0 ) / ( k * ( k - m ) ) * ( 1.0 - x ); f0 = f0 + r0; } for ( k = 1; k <= m; k++ ) { sp0 = sp0 + 1.0 / ( double ) ( k ); } f1 = pa + pb - sp0 + 2.0 * el + log ( 1.0 - x ); hw = f1; for ( k = 1; k <= 250; k++ ) { sp = sp + ( 1.0 - a ) / ( k * ( a + k - 1.0 ) ) + ( 1.0 - b ) / ( k * ( b + k - 1.0 ) ); sm = 0.0; for ( j = 1; j <= m; j++ ) { sm = sm + 1.0 / ( double ) ( j + k ); } rp = pa + pb + 2.0 * el + sp - sm + log ( 1.0 - x ); r1 = r1 * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( m + k ) ) * ( 1.0 - x ); f1 = f1 + r1 * rp; if ( r8_abs ( f1 - hw ) < r8_abs ( f1 ) * eps ) { break; } hw = f1; } hf = f0 * c0 + f1 * c1; } } else { ga = r8_gamma ( a ); gb = r8_gamma ( b ); gc = r8_gamma ( c ); gca = r8_gamma ( c - a ); gcb = r8_gamma ( c - b ); gcab = r8_gamma ( c - a - b ); gabc = r8_gamma ( a + b - c ); c0 = gc * gcab / ( gca * gcb ); c1 = gc * gabc / ( ga * gb ) * pow ( 1.0 - x, c - a - b ); hf = 0.0; hw = hf; r0 = c0; r1 = c1; for ( k = 1; k <= 250; k++ ) { r0 = r0 * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( a + b - c + k ) ) * ( 1.0 - x ); r1 = r1 * ( c - a + k - 1.0 ) * ( c - b + k - 1.0 ) / ( k * ( c - a - b + k ) ) * ( 1.0 - x ); hf = hf + r0 + r1; if ( r8_abs ( hf - hw ) < r8_abs ( hf ) * eps ) { break; } hw = hf; } hf = hf + c0 + c1; } } else { a0 = 1.0; if ( a < c && c < 2.0 * a && b < c && c < 2.0 * b ) { a0 = pow ( 1.0 - x, c - a - b ); a = c - a; b = c - b; } hf = 1.0; hw = hf; r = 1.0; for ( k = 1; k <= 250; k++ ) { r = r * ( a + k - 1.0 ) * ( b + k - 1.0 ) / ( k * ( c + k - 1.0 ) ) * x; hf = hf + r; if ( r8_abs ( hf - hw ) <= r8_abs ( hf ) * eps ) { break; } hw = hf; } hf = a0 * hf; } if ( x1 < 0.0 ) { x = x1; c0 = 1.0 / pow ( 1.0 - x, aa ); hf = c0 * hf; } a = aa; b = bb; if ( 120 < k ) { cout << "\n"; cout << "R8_HYPER_2F1 - Warning!\n"; cout << " A large number of iterations were needed.\n"; cout << " The accuracy of the results should be checked.\n"; } return hf; } //****************************************************************************80 double r8_psi ( double xx ) //****************************************************************************80 // // Purpose: // // R8_PSI evaluates the function Psi(X). // // Discussion: // // This routine evaluates the logarithmic derivative of the // Gamma function, // // PSI(X) = d/dX ( GAMMA(X) ) / GAMMA(X) // = d/dX LN ( GAMMA(X) ) // // for real X, where either // // - XMAX1 < X < - XMIN, and X is not a negative integer, // // or // // XMIN < X. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 February 2008 // // Author: // // Original FORTRAN77 version by William Cody // C++ version by John Burkardt // // Reference: // // William Cody, Anthony Strecok, Henry Thacher, // Chebyshev Approximations for the Psi Function, // Mathematics of Computation, // Volume 27, Number 121, January 1973, pages 123-127. // // Parameters: // // Input, double XX, the argument of the function. // // Output, double, the value of the function. // { double aug; double den; double four = 4.0; double fourth = 0.25; double half = 0.5; int i; int n; int nq; double one = 1.0; double p1[9] = { 4.5104681245762934160E-03, 5.4932855833000385356, 3.7646693175929276856E+02, 7.9525490849151998065E+03, 7.1451595818951933210E+04, 3.0655976301987365674E+05, 6.3606997788964458797E+05, 5.8041312783537569993E+05, 1.6585695029761022321E+05 }; double p2[7] = { -2.7103228277757834192, -1.5166271776896121383E+01, -1.9784554148719218667E+01, -8.8100958828312219821, -1.4479614616899842986, -7.3689600332394549911E-02, -6.5135387732718171306E-21 }; double piov4 = 0.78539816339744830962; double q1[8] = { 9.6141654774222358525E+01, 2.6287715790581193330E+03, 2.9862497022250277920E+04, 1.6206566091533671639E+05, 4.3487880712768329037E+05, 5.4256384537269993733E+05, 2.4242185002017985252E+05, 6.4155223783576225996E-08 }; double q2[6] = { 4.4992760373789365846E+01, 2.0240955312679931159E+02, 2.4736979003315290057E+02, 1.0742543875702278326E+02, 1.7463965060678569906E+01, 8.8427520398873480342E-01 }; double sgn; double three = 3.0; double upper; double value; double w; double x; double x01 = 187.0; double x01d = 128.0; double x02 = 6.9464496836234126266E-04; double xinf = 1.70E+38; double xlarge = 2.04E+15; double xmax1 = 3.60E+16; double xmin1 = 5.89E-39; double xsmall = 2.05E-09; double z; double zero = 0.0; x = xx; w = r8_abs ( x ); aug = zero; // // Check for valid arguments, then branch to appropriate algorithm. // if ( xmax1 <= - x || w < xmin1 ) { if ( zero < x ) { value = - xinf; } else { value = xinf; } return value; } if ( x < half ) { // // X < 0.5, use reflection formula: psi(1-x) = psi(x) + pi * cot(pi*x) // Use 1/X for PI*COTAN(PI*X) when XMIN1 < |X| <= XSMALL. // if ( w <= xsmall ) { aug = - one / x; } // // Argument reduction for cotangent. // else { if ( x < zero ) { sgn = piov4; } else { sgn = - piov4; } w = w - ( double ) ( ( int ) ( w ) ); nq = int ( w * four ); w = four * ( w - ( double ) ( nq ) * fourth ); // // W is now related to the fractional part of 4.0 * X. // Adjust argument to correspond to values in the first // quadrant and determine the sign. // n = nq / 2; if ( n + n != nq ) { w = one - w; } z = piov4 * w; if ( ( n % 2 ) != 0 ) { sgn = - sgn; } // // Determine the final value for -pi * cotan(pi*x). // n = ( nq + 1 ) / 2; if ( ( n % 2 ) == 0 ) { // // Check for singularity. // if ( z == zero ) { if ( zero < x ) { value = -xinf; } else { value = xinf; } return value; } aug = sgn * ( four / tan ( z ) ); } else { aug = sgn * ( four * tan ( z ) ); } } x = one - x; } // // 0.5 <= X <= 3.0. // if ( x <= three ) { den = x; upper = p1[0] * x; for ( i = 1; i <= 7; i++ ) { den = ( den + q1[i-1] ) * x; upper = ( upper + p1[i]) * x; } den = ( upper + p1[8] ) / ( den + q1[7] ); x = ( x - x01 / x01d ) - x02; value = den * x + aug; return value; } // // 3.0 < X. // if ( x < xlarge ) { w = one / ( x * x ); den = w; upper = p2[0] * w; for ( i = 1; i <= 5; i++ ) { den = ( den + q2[i-1] ) * w; upper = ( upper + p2[i] ) * w; } aug = ( upper + p2[6] ) / ( den + q2[5] ) - half / x + aug; } value = aug + log ( x ); return value; } //****************************************************************************80 double *r8mat_data_read ( string input_filename, int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_DATA_READ reads the data from an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // The file is assumed to contain one record per line. // // Records beginning with '#' are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Input, int M, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double R8MAT_DATA_READ[M*N], the table data. // { bool error; ifstream input; int i; int j; string line; double *table; double *x; input.open ( input_filename.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R8MAT_DATA_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_filename << "\"\n"; return NULL; } table = new double[m*n]; x = new double[m]; j = 0; while ( j < n ) { getline ( input, line ); if ( input.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } input.close ( ); delete [] x; return table; } //****************************************************************************80 void r8mat_header_read ( string input_filename, int *m, int *n ) //****************************************************************************80 // // Purpose: // // R8MAT_HEADER_READ reads the header from an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 February 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILENAME, the name of the input file. // // Output, int *M, the number of spatial dimensions. // // Output, int *N, the number of points. // { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_COLUMN_COUNT failed.\n"; *n = -1; return; } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { cerr << "\n"; cerr << "R8MAT_HEADER_READ - Fatal error!\n"; cerr << " FILE_ROW_COUNT failed.\n"; return; } return; } //****************************************************************************80 double r8vec_dot ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT computes the dot product of a pair of R8VEC's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 int s_len_trim ( string s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; n = s.length ( ); while ( 0 < n ) { if ( s[n-1] != ' ' ) { return n; } n = n - 1; } return n; } //****************************************************************************80 int s_to_i4 ( string s, int *last, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_I4 reads an I4 from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, a string to be examined. // // Output, int *LAST, the last character of S used to make IVAL. // // Output, bool *ERROR is TRUE if an error occurred. // // Output, int *S_TO_I4, the integer value read from the string. // If the string is blank, then IVAL will be returned 0. // { char c; int i; int isgn; int istate; int ival; *error = false; istate = 0; isgn = 1; i = 0; ival = 0; for ( ; ; ) { c = s[i]; i = i + 1; // // Haven't read anything. // if ( istate == 0 ) { if ( c == ' ' ) { } else if ( c == '-' ) { istate = 1; isgn = -1; } else if ( c == '+' ) { istate = 1; isgn = + 1; } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read the sign, expecting digits. // else if ( istate == 1 ) { if ( c == ' ' ) { } else if ( '0' <= c && c <= '9' ) { istate = 2; ival = c - '0'; } else { *error = true; return ival; } } // // Have read at least one digit, expecting more. // else if ( istate == 2 ) { if ( '0' <= c && c <= '9' ) { ival = 10 * (ival) + c - '0'; } else { ival = isgn * ival; *last = i - 1; return ival; } } } // // If we read all the characters in the string, see if we're OK. // if ( istate == 2 ) { ival = isgn * ival; *last = s_len_trim ( s ); } else { *error = true; *last = 0; } return ival; } //****************************************************************************80 double s_to_r8 ( string s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0**(-9.23) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_R8, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( string s, int n, double rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be read. // // Input, int N, the number of values expected. // // Output, double RVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { int begin; bool error; int i; int lchar; int length; begin = 0; length = s.length ( ); error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s.substr(begin,length), &lchar, &error ); if ( error ) { return error; } begin = begin + lchar; length = length - lchar; } return error; } //****************************************************************************80 int s_word_count ( string s ) //****************************************************************************80 // // Purpose: // // S_WORD_COUNT counts the number of "words" in a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string S, the string to be examined. // // Output, int S_WORD_COUNT, the number of "words" in the string. // Words are presumed to be separated by one or more blanks. // { bool blank; int char_count; int i; int word_count; word_count = 0; blank = true; char_count = s.length ( ); for ( i = 0; i < char_count; i++ ) { if ( isspace ( s[i] ) ) { blank = true; } else if ( blank ) { word_count = word_count + 1; blank = false; } } return word_count; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }