# include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); void r8_mxm ( int l, int m, int n ); double r8_uniform_01 ( int *seed ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for MXM. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2008 // // Author: // // John Burkardt // { int id; int l; int m; int n; cout << "\n"; cout << "MXM\n"; cout << " C++/OpenMP version.\n"; cout << "\n"; cout << " Matrix multiplication tests.\n"; cout << "\n"; cout << " Number of processors available = " << omp_get_num_procs ( ) << "\n"; cout << " Number of threads = " << omp_get_max_threads ( ) << "\n"; l = 500; m = 500; n = 500; r8_mxm ( l, m, n ); // // Terminate. // cout << "\n"; cout << "MXM:\n"; cout << " Normal end of execution.\n"; return 0; } //****************************************************************************80 void r8_mxm ( int l, int m, int n ) //****************************************************************************80 // // Purpose: // // R8_MXM carries out a matrix-matrix multiplication in R8 arithmetic. // // Discussion: // // A(LxN) = B(LxM) * C(MxN). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 February 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int L, M, N, the dimensions that specify the sizes of the // A, B, and C matrices. // { double *a; double *b; double *c; int i; int j; int k; int ops; double rate; int seed; double time_begin; double time_elapsed; double time_stop; // // Allocate the matrices. // a = new double [ l * n ]; b = new double [ l * m ]; c = new double [ m * n ]; // // Assign values to the B and C matrices. // seed = 123456789; for ( k = 0; k < l * m; k++ ) { b[k] = r8_uniform_01 ( &seed ); } for ( k = 0; k < m * n; k++ ) { c[k] = r8_uniform_01 ( &seed ); } // // Compute A = B * C. // time_begin = omp_get_wtime ( ); # pragma omp parallel \ shared ( a, b, c, l, m, n ) \ private ( i, j, k ) # pragma omp for for ( j = 0; j < n; j++) { for ( i = 0; i < l; i++ ) { a[i+j*l] = 0.0; for ( k = 0; k < m; k++ ) { a[i+j*l] = a[i+j*l] + b[i+k*l] * c[k+j*m]; } } } time_stop = omp_get_wtime ( ); // // Report. // ops = l * n * ( 2 * m ); time_elapsed = time_stop - time_begin; rate = ( double ) ( ops ) / time_elapsed / 1000000.0; cout << "\n"; cout << "R8_MXM matrix multiplication timing.\n"; cout << " A(LxN) = B(LxM) * C(MxN).\n"; cout << " L = " << l << "\n"; cout << " M = " << m << "\n"; cout << " N = " << n << "\n"; cout << " Floating point OPS roughly " << ops << "\n"; cout << " Elapsed time dT = " << time_elapsed << "\n"; cout << " Rate = MegaOPS/dT = " << rate << "\n"; delete [] a; delete [] b; delete [] c; return; } //****************************************************************************80 double r8_uniform_01 ( int *seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 is a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = 16807 * seed mod ( 2**31 - 1 ) // unif = seed / ( 2**31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Parameters: // // Input/output, int *SEED, a seed for the random number generator. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, strictly between // 0 and 1. // { int k; double r; k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + 2147483647; } r = ( double ) ( *seed ) * 4.656612875E-10; return r; }