# include # include # include # include using namespace std; # include "piecewise_linear_product_integral.hpp" //****************************************************************************80 double piecewise_linear_product_integral ( double a, double b, int f_num, double f_x[], double f_v[], int g_num, double g_x[], double g_v[] ) //****************************************************************************80 // // Purpose: // // PIECEWISE_LINEAR_PRODUCT_INTEGRAL: piecewise linear product integral. // // Discussion: // // We are given two piecewise linear functions F(X) and G(X) and we wish // to compute the exact value of the integral // // INTEGRAL = Integral ( A <= X <= B ) F(X) * G(X) dx // // The functions F(X) and G(X) are defined as tables of coordinates X and // values V. A piecewise linear function is evaluated at a point X by // evaluating the interpolant to the data at the endpoints of the interval // containing X. // // It must be the case that A <= B. // // It must be the case that the node coordinates F_X(*) and G_X(*) are // given in ascending order. // // It must be the case that: // // F_X(1) <= A and B <= F_X(F_NUM) // G_X(1) <= A and B <= G_X(G_NUM) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 April 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double A, B, the limits of integration. // // Input, int F_NUM, the number of nodes for F. // // Input, double F_X[F_NUM], the node coordinates for F. // // Input, double F_V[F_NUM], the nodal values for F. // // Input, int G_NUM, the number of nodes for G. // // Input, double G_X[G_NUM], the node coordinates for G. // // Input, double G_V[G_NUM], the nodal values for G. // // Output, double INTEGRAL, the integral of F(X) * G(X) // from A to B. // { double bit; int f_left; double f0; double f1; double fl; double fr; int g_left; double g0; double g1; double gl; double gr; double h0; double h1; double h2; int i; double integral; double xl; double xr; double xr_max; integral = 0.0; if ( f_x[f_num-1] <= a || g_x[g_num-1] <= a ) { return integral; } if ( f_num < 2 || g_num < 2 ) { return integral; } xr = a; f_left = 0; r8vec_bracket3 ( f_num, f_x, xr, &f_left ); fr = f_v[f_left] + ( xr - f_x[f_left] ) * ( f_v[f_left+1] - f_v[f_left] ) / ( f_x[f_left+1] - f_x[f_left] ); g_left = 0; r8vec_bracket3 ( g_num, g_x, xr, &g_left ); gr = g_v[g_left] + ( xr - g_x[g_left] ) * ( g_v[g_left+1] - g_v[g_left] ) / ( g_x[g_left+1] - g_x[g_left] ); xr_max = b; xr_max = r8_min ( xr_max, f_x[f_num-1] ); xr_max = r8_min ( xr_max, g_x[g_num-1] ); while ( xr < xr_max ) { // // Shift right values to left. // xl = xr; fl = fr; gl = gr; // // Determine the new right values. // The hard part is figuring out how to advance XR some, but not too much. // xr = xr_max; for ( i = 1; i <= 2; i++ ) { if ( f_left + i <= f_num - 1 ) { if ( xl < f_x[f_left+i] && f_x[f_left+i] < xr ) { xr = f_x[f_left+i]; break; } } } for ( i = 1; i <= 2; i++ ) { if ( g_left + i <= g_num - 1 ) { if ( xl < g_x[g_left+i] && g_x[g_left+i] < xr ) { xr = g_x[g_left+i]; break; } } } r8vec_bracket3 ( f_num, f_x, xr, &f_left ); fr = f_v[f_left] + ( xr - f_x[f_left] ) * ( f_v[f_left+1] - f_v[f_left] ) / ( f_x[f_left+1] - f_x[f_left] ); r8vec_bracket3 ( g_num, g_x, xr, &g_left ); gr = g_v[g_left] + ( xr - g_x[g_left] ) * ( g_v[g_left+1] - g_v[g_left] ) / ( g_x[g_left+1] - g_x[g_left] ); // // Form the linear polynomials for F(X) and G(X) over [XL,XR], // then the product H(X), integrate H(X) and add to the running total. // if ( r8_epsilon ( ) <= r8_abs ( xr - xl ) ) { f1 = fl - fr; f0 = fr * xl - fl * xr; g1 = gl - gr; g0 = gr * xl - gl * xr; h2 = f1 * g1; h1 = f1 * g0 + f0 * g1; h0 = f0 * g0; h2 = h2 / 3.0; h1 = h1 / 2.0; bit = ( ( h2 * xr + h1 ) * xr + h0 ) * xr - ( ( h2 * xl + h1 ) * xl + h0 ) * xl; integral = integral + bit / ( xr - xl ) / ( xr - xl ); } } return integral; } //****************************************************************************80 double piecewise_linear_product_quad ( double a, double b, int f_num, double f_x[], double f_v[], int g_num, double g_x[], double g_v[], int quad_num ) //****************************************************************************80 // // Purpose: // // PIECEWISE_LINEAR_PRODUCT_QUAD: estimate piecewise linear product integral. // // Discussion: // // We are given two piecewise linear functions F(X) and G(X) and we wish // to estimate the value of the integral // // INTEGRAL = Integral ( A <= X <= B ) F(X) * G(X) dx // // The functions F(X) and G(X) are defined as tables of coordinates X and // values V. A piecewise linear function is evaluated at a point X by // evaluating the interpolant to the data at the endpoints of the interval // containing X. // // It must be the case that A <= B. // // It must be the case that the node coordinates F_X(*) and G_X(*) are // given in ascending order. // // It must be the case that: // // F_X(1) <= A and B <= F_X(F_NUM) // G_X(1) <= A and B <= G_X(G_NUM) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 April 2009 // // Author: // // John Burkardt // // Parameters: // // Input, double A, B, the limits of integration. // // Input, int F_NUM, the number of nodes for F. // // Input, double F_X[F_NUM], the node coordinates for F. // // Input, double F_V[F_NUM], the nodal values for F. // // Input, int G_NUM, the number of nodes for G. // // Input, double G_X[G_NUM], the node coordinates for G. // // Input, double G_V[G_NUM], the nodal values for G. // // Input, int QUAD_NUM, the number of quadrature points. // // Output, double PIECEWISE_LINEAR_PRODUCT_QUAD, an estimate for the integral // of F(X) * G(X) from A to B. // { double a2; double b2; int f_left; double fq; int g_left; double gq; int i; double quad; double xq; quad = 0.0; f_left = 0; g_left = 0; a2 = a; a2 = r8_max ( a2, f_x[0] ); a2 = r8_max ( a2, g_x[0] ); b2 = b; b2 = r8_min ( b2, f_x[f_num-1] ); b2 = r8_min ( b2, g_x[g_num-1] ); for ( i = 1; i <= quad_num; i++ ) { xq = ( ( double ) ( 2 * i - 1 ) * b2 + ( double ) ( 2 * quad_num - 2 * i + 1 ) * a2 ) / ( double ) ( 2 * quad_num ); r8vec_bracket3 ( f_num, f_x, xq, &f_left ); fq = f_v[f_left] + ( xq - f_x[f_left] ) * ( f_v[f_left+1] - f_v[f_left] ) / ( f_x[f_left+1] - f_x[f_left] ); r8vec_bracket3 ( g_num, g_x, xq, &g_left ); gq = g_v[g_left] + ( xq - g_x[g_left] ) * ( g_v[g_left+1] - g_v[g_left] ) / ( g_x[g_left+1] - g_x[g_left] ); quad = quad + fq * gq; } quad = quad * ( b - a ) / ( double ) ( quad_num ); return quad; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = x; } else { value = - x; } return value; } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( y < x ) { value = x; } else { value = y; } return value; } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } //****************************************************************************80 void r8vec_bracket3 ( int n, double t[], double tval, int *left ) //****************************************************************************80 // // Purpose: // // R8VEC_BRACKET3 finds the interval containing or nearest a given value. // // Discussion: // // An R8VEC is a vector of R8's. // // The routine always returns the index LEFT of the sorted array // T with the property that either // * T is contained in the interval [ T[LEFT], T[LEFT+1] ], or // * T < T[LEFT] = T[0], or // * T > T[LEFT+1] = T[N-1]. // // The routine is useful for interpolation problems, where // the abscissa must be located within an interval of data // abscissas for interpolation, or the "nearest" interval // to the (extreme) abscissa must be found so that extrapolation // can be carried out. // // This version of the function has been revised so that the value of // LEFT that is returned uses the 0-based indexing natural to C++. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 April 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, length of the input array. // // Input, double T[N], an array that has been sorted into ascending order. // // Input, double TVAL, a value to be bracketed by entries of T. // // Input/output, int *LEFT. // On input, if 0 <= LEFT <= N-2, LEFT is taken as a suggestion for the // interval [ T[LEFT-1] T[LEFT] ] in which TVAL lies. This interval // is searched first, followed by the appropriate interval to the left // or right. After that, a binary search is used. // On output, LEFT is set so that the interval [ T[LEFT], T[LEFT+1] ] // is the closest to TVAL; it either contains TVAL, or else TVAL // lies outside the interval [ T[0], T[N-1] ]. // { int high; int low; int mid; // // Check the input data. // if ( n < 2 ) { cout << "\n"; cout << "R8VEC_BRACKET3 - Fatal error//\n"; cout << " N must be at least 2.\n"; exit ( 1 ); } // // If *LEFT is not between 0 and N-2, set it to the middle value. // if ( *left < 0 || n - 2 < *left ) { *left = ( n - 1 ) / 2; } // // CASE 1: TVAL < T[*LEFT]: // Search for TVAL in (T[I],T[I+1]), for I = 0 to *LEFT-1. // if ( tval < t[*left] ) { if ( *left == 0 ) { return; } else if ( *left == 1 ) { *left = 0; return; } else if ( t[*left-1] <= tval ) { *left = *left - 1; return; } else if ( tval <= t[1] ) { *left = 0; return; } // // ...Binary search for TVAL in (T[I],T[I+1]), for I = 1 to *LEFT-2. // low = 1; high = *left - 2; for ( ; ; ) { if ( low == high ) { *left = low; return; } mid = ( low + high + 1 ) / 2; if ( t[mid] <= tval ) { low = mid; } else { high = mid - 1; } } } // // CASE 2: T[*LEFT+1] < TVAL: // Search for TVAL in (T[I],T[I+1]) for intervals I = *LEFT+1 to N-2. // else if ( t[*left+1] < tval ) { if ( *left == n - 2 ) { return; } else if ( *left == n - 3 ) { *left = *left + 1; return; } else if ( tval <= t[*left+2] ) { *left = *left + 1; return; } else if ( t[n-2] <= tval ) { *left = n - 2; return; } // // ...Binary search for TVAL in (T[I],T[I+1]) for intervals I = *LEFT+2 to N-3. // low = *left + 2; high = n - 3; for ( ; ; ) { if ( low == high ) { *left = low; return; } mid = ( low + high + 1 ) / 2; if ( t[mid] <= tval ) { low = mid; } else { high = mid - 1; } } } // // CASE 3: T[*LEFT] <= TVAL <= T[*LEFT+1]: // T is just where the user said it might be. // else { } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }