13 April 2015 10:09:06 AM

POLPAK_PRB
  C++ version
  Test the POLPAK library.

AGUD_TEST
  AGUD computes the inverse Gudermannian;

         X     GUD(X)     AGUD(GUD(X))

           1    0.865769           1
         1.2    0.985692         1.2
         1.4     1.08725         1.4
         1.6     1.17236         1.6
         1.8     1.24316         1.8
           2     1.30176           2
         2.2     1.35009         2.2
         2.4     1.38986         2.4
         2.6     1.42252         2.6
         2.8     1.44933         2.8
           3      1.4713           3

ALIGN_ENUM_TEST
  ALIGN_ENUM counts the number of possible
  alignments of two biological sequences.

  Alignment enumeration table:

             0         1         2         3         4         5  

   0         1         1         1         1         1         1  
   1         1         3         5         7         9        11  
   2         1         5        13        25        41        61  
   3         1         7        25        63       129       231  
   4         1         9        41       129       321       681  
   5         1        11        61       231       681      1683  
   6         1        13        85       377      1289      3653  
   7         1        15       113       575      2241      7183  
   8         1        17       145       833      3649     13073  
   9         1        19       181      1159      5641     22363  
  10         1        21       221      1561      8361     36365  

             6         7         8         9        10  

   0         1         1         1         1         1  
   1        13        15        17        19        21  
   2        85       113       145       181       221  
   3       377       575       833      1159      1561  
   4      1289      2241      3649      5641      8361  
   5      3653      7183     13073     22363     36365  
   6      8989     19825     40081     75517    134245  
   7     19825     48639    108545    224143    433905  
   8     40081    108545    265729    598417   1256465  
   9     75517    224143    598417   1462563   3317445  
  10    134245    433905   1256465   3317445   8097453  

BELL_TEST
  BELL computes Bell numbers.

  N  exact C(I)  computed C(I)

     0         1         1
     1         1         1
     2         2         2
     3         5         5
     4        15        15
     5        52        52
     6       203       203
     7       877       877
     8      4140      4140
     9     21147     21147
    10    115975    115975

BENFORD_TEST
  BENFORD(I) is the Benford probability of the
  initial digit sequence I.

     I  BENFORD(I)

     1     0.30103
     2    0.176091
     3    0.124939
     4     0.09691
     5   0.0791812
     6   0.0669468
     7   0.0579919
     8   0.0511525
     9   0.0457575

BERNOULLI_NUMBER_TEST
  BERNOULLI_NUMBER computes Bernoulli numbers;

   I      Exact     BERNOULLI_NUMBER

     0           1           1
     1        -0.5        -0.5
     2    0.166667    0.166667
     3           0           0
     4  -0.0333333  -0.0333333
     6  -0.0238095   0.0238095
     8  -0.0333333  -0.0333333
    10   0.0757576   0.0757576
    20    -529.124    -529.124
    30  6.01581e+08  6.01581e+08

BERNOULLI_NUMBER2_TEST
  BERNOULLI_NUMBER2 computes Bernoulli numbers;

   I      Exact     BERNOULLI_NUMBER2

     0           1           1
     1        -0.5        -0.5
     2    0.166667    0.166667
     3           0           0
     4  -0.0333333  -0.0333333
     6  -0.0238095   0.0238095
     8  -0.0333333  -0.0333333
    10   0.0757576   0.0757576
    20    -529.124    -529.124
    30  6.01581e+08  6.01581e+08

BERNOULLI_NUMBER3_TEST
  BERNOULLI_NUMBER3 computes Bernoulli numbers.

   I      Exact     BERNOULLI_NUMBER3

     0               1               1
     1            -0.5            -0.5
     2        0.166667        0.166667
     3               0               0
     4      -0.0333333      -0.0333331
     6      -0.0238095       0.0238095
     8      -0.0333333      -0.0333333
    10       0.0757576       0.0757576
    20        -529.124        -529.124
    30     6.01581e+08     6.01581e+08

BERNOULLI_POLY_TEST
  BERNOULLI_POLY evaluates Bernoulli polynomials;

  X = 0.2

  I          BX

       1        -0.3
       2  0.00666667
       3  1.8547e+06
       4      525499
       5  1.25096e+07
       6    -0.94882
       7     35.5459
       8     16.3941
       9    -17139.4
      10    -418.656
      11     29482.6
      12     15985.3
      13  -5.54642e+07
      14     -871872
      15  1.09544e+08

BERNOULLI_POLY2_TEST
  BERNOULLI_POLY2 evaluates Bernoulli polynomials.

  X = 0.2

  I          BX

   1              -0.3
   2        0.00666667
   3             0.048
   4       -0.00773314
   5        -0.0236798
   6        0.00691363
   7         0.0249088
   8          -0.01015
   9        -0.0452782
  10         0.0233263
  11           0.12605
  12        -0.0781468
  13         -0.497979
  14           0.36044
  15           2.64878

BERNSTEIN_POLY_TEST:
  BERNSTEIN_POLY evaluates the Bernstein polynomials.

   N   K   X   Exact   B(N,K)(X)

     0     0     0.25               1               1
     1     0     0.25            0.75            0.75
     1     1     0.25            0.25            0.25
     2     0     0.25          0.5625          0.5625
     2     1     0.25           0.375           0.375
     2     2     0.25          0.0625          0.0625
     3     0     0.25        0.421875        0.421875
     3     1     0.25        0.421875        0.421875
     3     2     0.25        0.140625        0.140625
     3     3     0.25        0.015625        0.015625
     4     0     0.25        0.316406        0.316406
     4     1     0.25        0.421875        0.421875
     4     2     0.25        0.210938        0.210938
     4     3     0.25        0.046875        0.046875
     4     4     0.25      0.00390625      0.00390625

BPAB_TEST
  BPAB evaluates Bernstein polynomials.

  The Bernstein polynomials of degree 10
  based on the interval from 0
  to 1
  evaluated at X = 0.3

     0       0.0282475
     1        0.121061
     2        0.233474
     3        0.266828
     4        0.200121
     5        0.102919
     6       0.0367569
     7      0.00900169
     8       0.0014467
     9     0.000137781
    10      5.9049e-06

CARDAN_POLY_TEST
  CARDAN_POLY evaluates a Cardan polynomial directly.


  Compare CARDAN_POLY_COEF + R8POLY_VALUE_HORNER
  versus CARDAN_POLY alone.

  Evaluate polynomials at X = 0.25
  We use the parameter S = 0.5

  Order       Horner          Direct

   0               2               2
   1            0.25            0.25
   2         -0.9375         -0.9375
   3       -0.359375       -0.359375
   4        0.378906        0.378906
   5        0.274414        0.274414
   6        -0.12085        -0.12085
   7       -0.167419       -0.167419
   8       0.0185699       0.0185699
   9       0.0883522       0.0883522
  10       0.0128031       0.0128031

CARDAN_POLY_COEF_TEST
  CARDAN_POLY_COEF returns the coefficients of a
  Cardan polynomial.

  We use the parameter S = 1

  Table of polynomial coefficients:

   0      2  
   1      0      1  
   2     -2      0      1  
   3      0     -3      0      1  
   4      2      0     -4      0      1  
   5      0      5      0     -5      0      1  
   6     -2      0      9      0     -6      0      1  
   7      0     -7      0     14      0     -7      0      1  
   8      2      0    -16      0     20      0     -8      0      1  
   9      0      9      0    -30      0     27      0     -9      0      1  
  10     -2      0     25      0    -50      0     35      0    -10      0      1  

CARDINAL_COS_TEST
  CARDINAL_COS evaluates cardinal cosine functions.
  Ci(Tj) = Delta(i,j), where Tj = cos(pi*i/(n+1)).
  A simple check of all pairs should form the identity matrix.

  The CARDINAL_COS test matrix:

     1  3.87588e-17  -3.8087e-17  3.6957e-17  -3.53525e-17  3.32498e-17  -3.06162e-17  2.7408e-17  -2.35683e-17  1.90224e-17  -1.36726e-17  2.68781e-17  -3.7494e-33
     0     1  1.02156e-16  -8.36449e-17  7.58758e-17  -6.97041e-17  6.33924e-17  -5.63412e-17  4.82323e-17  -3.88197e-17  2.78539e-17  -5.47043e-17  7.62877e-33
    -0  -2.64398e-17     1  1.36226e-16  -9.65848e-17  8.11722e-17  -7.0705e-17  6.1345e-17  -5.17597e-17  4.1285e-17  -2.94604e-17  5.76875e-17  -8.03719e-33
     0  1.02054e-17  -6.42177e-17     1  1.70697e-16  -1.09948e-16  8.65956e-17  -7.14377e-17  5.8574e-17  -4.59243e-17  3.24365e-17  -6.31671e-17  8.78539e-33
    -0  -5.66903e-18  2.78816e-17  -1.0453e-16     1  2.04362e-16  -1.22465e-16  9.09354e-17  -7.0705e-17  5.38036e-17  -3.73543e-17  7.20914e-17  -9.9984e-33
     0  3.73543e-18  -1.68071e-17  4.82924e-17  -1.46581e-16     1  2.36584e-16  -1.33305e-16  9.31777e-17  -6.72378e-17  4.53636e-17  -8.62879e-17  1.1914e-32
    -0  -2.73453e-18  1.17842e-17  -3.06162e-17  7.0705e-17  -1.90435e-16     1  2.66609e-16  -1.4141e-16  9.18485e-17  -5.89208e-17  1.09409e-16  -1.49976e-32
     0  2.15665e-18  -9.07271e-18  2.24126e-17  -4.65889e-17  9.52176e-17  -2.36584e-16     1  2.93162e-16  -1.44877e-16  8.40356e-17  -1.49455e-16  2.02347e-32
    -0  -1.80183e-18  7.47086e-18  -1.79345e-17  3.53525e-17  -6.49539e-17  1.22465e-16  -2.86107e-16     1  3.1359e-16  -1.39408e-16  2.26819e-16  -2.99952e-32
     0  1.57878e-18  -6.48731e-18  1.53081e-17  -2.9287e-17  5.10269e-17  -8.65956e-17  1.53927e-16  -3.41394e-16     1  3.21089e-16  -4.08319e-16  5.1205e-32
    -0  -1.44182e-18  5.89208e-18  -1.37617e-17  2.58798e-17  -4.38178e-17  7.0705e-17  -1.13641e-16  1.9317e-16  -4.08679e-16     1  1.05786e-15  -1.11944e-31
     0  1.36726e-18  -5.57078e-18  1.29399e-17  -2.41162e-17  4.02437e-17  -6.33924e-17  9.75858e-17  -1.51752e-16  2.50935e-16  -5.10778e-16     1  4.40146e-31
    -0  -6.71783e-19  2.73453e-18  -6.34082e-18  1.17842e-17  -1.95772e-17  3.06162e-17  -4.65497e-17  7.0705e-17  -1.10871e-16  1.90435e-16  -1.55074e-15     1

CARDINAL_SIN_TEST
  CARDINAL_SIN evaluates cardinal sine functions.
  Si(Tj) = Delta(i,j), where Tj = cos(pi*i/(n+1)).
  A simple check of all pairs should form the identity matrix.

  The CARDINAL_SIN test matrix:

     1     0    -0     0    -0     0    -0     0    -0     0    -0     0    -0
     0     1  5.28796e-17  -3.06162e-17  2.26761e-17  -1.86772e-17  1.64072e-17  -1.50966e-17  1.44146e-17  -1.4209e-17  1.44182e-17  -5.47043e-17  1.61228e-17
    -0  -5.10778e-17     1  9.63266e-17  -5.57633e-17  4.20178e-17  -3.53525e-17  3.17545e-17  -2.98835e-17  2.91929e-17  -2.94604e-17  1.11444e-16  -3.28143e-17
     0  2.78816e-17  -9.08176e-17     1  1.39374e-16  -8.04874e-17  6.12323e-17  -5.2296e-17  4.78254e-17  -4.59243e-17  4.58722e-17  -1.72576e-16  5.07265e-17
    -0  -1.8969e-17  4.82924e-17  -1.28023e-16     1  1.83226e-16  -1.06058e-16  8.15305e-17  -7.0705e-17  6.58957e-17  -6.46996e-17  2.41223e-16  -7.0705e-17
     0  1.39408e-17  -3.24689e-17  6.59687e-17  -1.6349e-16     1  2.28522e-16  -1.33305e-16  1.03926e-16  -9.18485e-17  8.76357e-17  -3.22031e-16  9.39705e-17
    -0  -1.05654e-17  2.35683e-17  -4.32978e-17  8.16431e-17  -1.97153e-16     1  2.76014e-16  -1.63286e-16  1.29893e-16  -1.17842e-16  4.22723e-16  -1.22465e-16
     0  8.04874e-18  -1.75271e-17  3.06162e-17  -5.19631e-17  9.52176e-17  -2.28522e-16     1  3.26979e-16  -1.97906e-16  1.62344e-16  -5.57774e-16  1.59599e-16
    -0  -6.02904e-18  1.29399e-17  -2.19652e-17  3.53525e-17  -5.82361e-17  1.06058e-16  -2.56516e-16     1  3.84068e-16  -2.41462e-16  7.5895e-16  -2.12115e-16
     0  4.31331e-18  -9.17444e-18  1.53081e-17  -2.39127e-17  3.73543e-17  -6.12323e-17  1.12682e-16  -2.78747e-16     1  4.54088e-16  -1.11555e-15  2.95656e-16
    -0  -2.78539e-18  5.89208e-18  -9.73096e-18  1.49417e-17  -2.26818e-17  3.53525e-17  -5.88249e-17  1.11527e-16  -2.8898e-16     1  2.04363e-15  -4.57044e-16
     0  1.36726e-18  -2.88365e-18  4.73634e-18  -7.20732e-18  1.07833e-17  -1.64072e-17  2.6148e-17  -4.53523e-17  9.18485e-17  -2.64398e-16     1  9.30212e-16
    -0  -6.35731e-34  1.33953e-33  -2.19635e-33  3.3328e-33  -4.96418e-33  7.4988e-33  -1.18036e-32  1.99968e-32  -3.84038e-32  9.32863e-32  -1.46752e-30     1

CATALAN_TEST
  CATALAN computes Catalan numbers.

  N  exact C(I)  computed C(I)

     0         1         1
     1         1         1
     2         2         2
     3         5         5
     4        14        14
     5        42        42
     6       132       132
     7       429       429
     8      1430      1430
     9      4862      4862
    10     16796     16796

CATALAN_ROW_NEXT_TEST
  CATALAN_ROW_NEXT computes a row of Catalan''s triangle.

  First, compute row 7:

   7         1         7        27        75       165       297       429       429  

  Now compute rows consecutively, one at a time:

   8         1  
   1         1         1  
   2         1         2         2  
   3         1         3         5         5  
   4         1         4         9        14        14  
   5         1         5        14        28        42        42  
   6         1         6        20        48        90       132       132  
   7         1         7        27        75       165       297       429       429  
   8         1         8        35       110       275       572      1001      1430      1430  
   9         1         9        44       154       429      1001      2002      3432      4862      4862  
  10         1        10        54       208       637      1638      3640      7072     11934     16796     16796  

CHARLIER_TEST:
  CHARLIER evaluates Charlier polynomials.

       N      A         X        P(N,A,X)



       0      0.25         0               1
       1      0.25         0              -0
       2      0.25         0              -4
       3      0.25         0             -36
       4      0.25         0            -420
       5      0.25         0           -6564

       0      0.25       0.5               1
       1      0.25       0.5              -2
       2      0.25       0.5             -10
       3      0.25       0.5             -54
       4      0.25       0.5            -474
       5      0.25       0.5           -6246

       0      0.25         1               1
       1      0.25         1              -4
       2      0.25         1              -8
       3      0.25         1              -8
       4      0.25         1              24
       5      0.25         1             440

       0      0.25       1.5               1
       1      0.25       1.5              -6
       2      0.25       1.5               2
       3      0.25       1.5              54
       4      0.25       1.5             354
       5      0.25       1.5            3030

       0      0.25         2               1
       1      0.25         2              -8
       2      0.25         2              20
       3      0.25         2              84
       4      0.25         2             180
       5      0.25         2             276

       0      0.25       2.5               1
       1      0.25       2.5             -10
       2      0.25       2.5              46
       3      0.25       2.5              34
       4      0.25       2.5            -450
       5      0.25       2.5           -3694


       0       0.5         0               1
       1       0.5         0              -0
       2       0.5         0              -2
       3       0.5         0             -10
       4       0.5         0             -58
       5       0.5         0            -442

       0       0.5       0.5               1
       1       0.5       0.5              -1
       2       0.5       0.5              -4
       3       0.5       0.5             -12
       4       0.5       0.5             -48
       5       0.5       0.5            -288

       0       0.5         1               1
       1       0.5         1              -2
       2       0.5         1              -4
       3       0.5         1              -4
       4       0.5         1               4
       5       0.5         1              60

       0       0.5       1.5               1
       1       0.5       1.5              -3
       2       0.5       1.5              -2
       3       0.5       1.5               8
       4       0.5       1.5              44
       5       0.5       1.5             200

       0       0.5         2               1
       1       0.5         2              -4
       2       0.5         2               2
       3       0.5         2              18
       4       0.5         2              42
       5       0.5         2              66

       0       0.5       2.5               1
       1       0.5       2.5              -5
       2       0.5       2.5               8
       3       0.5       2.5              20
       4       0.5       2.5              -8
       5       0.5       2.5            -192


       0         1         0               1
       1         1         0              -0
       2         1         0              -1
       3         1         0              -3
       4         1         0              -9
       5         1         0             -33

       0         1       0.5               1
       1         1       0.5            -0.5
       2         1       0.5           -1.75
       3         1       0.5          -3.375
       4         1       0.5         -6.5625
       5         1       0.5        -16.0312

       0         1         1               1
       1         1         1              -1
       2         1         1              -2
       3         1         1              -2
       4         1         1               0
       5         1         1               8

       0         1       1.5               1
       1         1       1.5            -1.5
       2         1       1.5           -1.75
       3         1       1.5           0.375
       4         1       1.5          6.1875
       5         1       1.5         20.1562

       0         1         2               1
       1         1         2              -2
       2         1         2              -1
       3         1         2               3
       4         1         2               9
       5         1         2              15

       0         1       2.5               1
       1         1       2.5            -2.5
       2         1       2.5            0.25
       3         1       2.5           5.125
       4         1       2.5          6.9375
       5         1       2.5        -3.15625


       0         2         0               1
       1         2         0              -0
       2         2         0            -0.5
       3         2         0              -1
       4         2         0           -1.75
       5         2         0           -3.25

       0         2       0.5               1
       1         2       0.5           -0.25
       2         2       0.5         -0.8125
       3         2       0.5        -1.17188
       4         2       0.5        -1.41797
       5         2       0.5        -1.55566

       0         2         1               1
       1         2         1            -0.5
       2         2         1              -1
       3         2         1              -1
       4         2         1            -0.5
       5         2         1            0.75

       0         2       1.5               1
       1         2       1.5           -0.75
       2         2       1.5         -1.0625
       3         2       1.5       -0.578125
       4         2       1.5        0.582031
       5         2       1.5         2.46582

       0         2         2               1
       1         2         2              -1
       2         2         2              -1
       3         2         2               0
       4         2         2             1.5
       5         2         2               3

       0         2       2.5               1
       1         2       2.5           -1.25
       2         2       2.5         -0.8125
       3         2       2.5        0.640625
       4         2       2.5         2.01953
       5         2       2.5         2.25293


       0        10         0               1
       1        10         0              -0
       2        10         0            -0.1
       3        10         0           -0.12
       4        10         0          -0.126
       5        10         0         -0.1284

       0        10       0.5               1
       1        10       0.5           -0.05
       2        10       0.5         -0.1525
       3        10       0.5       -0.165375
       4        10       0.5       -0.160969
       5        10       0.5       -0.151158

       0        10         1               1
       1        10         1            -0.1
       2        10         1            -0.2
       3        10         1            -0.2
       4        10         1           -0.18
       5        10         1          -0.154

       0        10       1.5               1
       1        10       1.5           -0.15
       2        10       1.5         -0.2425
       3        10       1.5       -0.224625
       4        10       1.5       -0.185569
       5        10       1.5       -0.142111

       0        10         2               1
       1        10         2            -0.2
       2        10         2           -0.28
       3        10         2           -0.24
       4        10         2           -0.18
       5        10         2           -0.12

       0        10       2.5               1
       1        10       2.5           -0.25
       2        10       2.5         -0.3125
       3        10       2.5       -0.246875
       4        10       2.5       -0.165469
       5        10       2.5      -0.0915391

CHEBY_T_POLY_TEST:
  CHEBY_T_POLY evaluates the Chebyshev T polynomial.

     N      X        Exact F       T(N)(X)

         0       0.8               1               1
         1       0.8             0.8             0.8
         2       0.8            0.28            0.28
         3       0.8          -0.352          -0.352
         4       0.8         -0.8432         -0.8432
         5       0.8        -0.99712        -0.99712
         6       0.8       -0.752192       -0.752192
         7       0.8       -0.206387       -0.206387
         8       0.8        0.421972        0.421972
         9       0.8        0.881543        0.881543
        10       0.8        0.988497        0.988497
        11       0.8        0.700051        0.700051
        12       0.8        0.131586        0.131586

CHEBY_T_POLY_COEF_TEST
  CHEBY_T_POLY_COEF determines the  polynomial coefficients
  of the Chebyshev polynomial T(n,x).

  T(0,x)

             1

  T(1,x)

             1 * x

  T(2,x)

             2 * x^2
            -1

  T(3,x)

             4 * x^3
            -3 * x

  T(4,x)

             8 * x^4
            -8 * x^2
             1

  T(5,x)

            16 * x^5
           -20 * x^3
             5 * x

CHEBY_T_POLY_ZERO_TEST:
  CHEBY_T_POLY_ZERO returns zeroes of T(N,X).

       N      X        T(N,X)

         1  6.12323e-17     6.12323e-17

         2  0.707107     2.22045e-16
         2  -0.707107    -2.22045e-16

         3  0.866025     3.33067e-16
         3  6.12323e-17    -1.83697e-16
         3  -0.866025    -3.33067e-16

         4   0.92388    -2.22045e-16
         4  0.382683    -2.22045e-16
         4  -0.382683     1.11022e-16
         4  -0.92388    -2.22045e-16


CHEBY_U_POLY_TEST:
  CHEBY_U_POLY evaluates the Chebyshev U polynomial.

     N      X        Exact F       U(N)(X)

         0       0.8               1               1
         1       0.8             1.6             1.6
         2       0.8            1.56            1.56
         3       0.8           0.896           0.896
         4       0.8         -0.1264         -0.1264
         5       0.8        -1.09824        -1.09824
         6       0.8        -1.63078        -1.63078
         7       0.8        -1.51101        -1.51101
         8       0.8       -0.786839       -0.786839
         9       0.8        0.252072        0.252072
        10       0.8         1.19015         1.19015
        11       0.8         1.65217         1.65217
        12       0.8         1.45333         1.45333

CHEBY_U_POLY_COEF_TEST
  CHEBY_U_POLY_COEF determines the polynomial coefficients
  of the Chebyshev polynomial U(n,x).

  U(0,x)

             1

  U(1,x)

             2 * x

  U(2,x)

             4 * x^2
            -1

  U(3,x)

             8 * x^3
            -4 * x

  U(4,x)

            16 * x^4
           -12 * x^2
             1

  U(5,x)

            32 * x^5
           -32 * x^3
             6 * x

CHEBY_U_POLY_ZERO_TEST:
  CHEBY_U_POLY_ZERO returns zeroes of U(N,X).

       N      X        U(N,X)

         1  6.12323e-17     1.22465e-16

         2       0.5     4.44089e-16
         2      -0.5    -8.88178e-16

         3  0.707107     6.66134e-16
         3  6.12323e-17    -2.44929e-16
         3  -0.707107     6.66134e-16

         4  0.809017               0
         4  0.309017    -1.11022e-16
         4  -0.309017     5.55112e-16
         4  -0.809017    -8.88178e-16


CHEBYSHEV_DISCRETE_TEST:
  CHEBYSHEV_DISCRETE evaluates discrete Chebyshev polynomials.

       N      M         X        T(N,M,X)

       0         5         0               1
       1         5         0              -4
       2         5         0              12
       3         5         0             -24
       4         5         0              24
       5         5         0               0

       0         5       0.5               1
       1         5       0.5              -3
       2         5       0.5             1.5
       3         5       0.5            34.5
       4         5       0.5        -199.125
       5         5       0.5         826.875

       0         5         1               1
       1         5         1              -2
       2         5         1              -6
       3         5         1              48
       4         5         1             -96
       5         5         1               0

       0         5       1.5               1
       1         5       1.5              -1
       2         5       1.5           -10.5
       3         5       1.5            31.5
       4         5       1.5          70.875
       5         5       1.5        -354.375

       0         5         2               1
       1         5         2               0
       2         5         2             -12
       3         5         2              -0
       4         5         2             144
       5         5         2               0

       0         5       2.5               1
       1         5       2.5               1
       2         5       2.5           -10.5
       3         5       2.5           -31.5
       4         5       2.5          70.875
       5         5       2.5         354.375

COLLATZ_COUNT_TEST:
  COLLATZ_COUNT(N) counts the length of the
  Collatz sequence beginning with N.

       N       COUNT(N)     COUNT(N)
              (computed)    (table)

         1         1         1
         2         2         2
         3         8         8
         4         3         3
         5         6         6
         6         9         9
         7        17        17
         8         4         4
         9        20        20
        10         7         7
        27       112       112
        50        25        25
       100        26        26
       200        27        27
       300        17        17
       400        28        28
       500       111       111
       600        18        18
       700        83        83
       800        29        29

COLLATZ_COUNT_MAX_TEST:
  COLLATZ_COUNT_MAX(N) returns the length of the
  longest Collatz sequence from 1 to N.

         N     I_MAX     J_MAX

        10         9        20
       100        97       119
      1000       871       179
     10000      6171       262
    100000     77031       351

COMB_ROW_NEXT_TEST
  COMB_ROW_NEXT computes the next row of Pascal's triangle.

   0      1
   1      1    1
   2      1    2    1
   3      1    3    3    1
   4      1    4    6    4    1
   5      1    5   10   10    5    1
   6      1    6   15   20   15    6    1
   7      1    7   21   35   35   21    7    1
   8      1    8   28   56   70   56   28    8    1
   9      1    9   36   84  126  126   84   36    9    1
  10      1   10   45  120  210  252  210  120   45   10    1

COMMUL_TEST
  COMMUL computes a multinomial coefficient.


  N = 8
  Number of factors = 0x7fffbadc14d0
   0         6
   1         2
  Value of coefficient = 28

  N = 8
  Number of factors = 0x7fffbadc14d0
   0         2
   1         2
   2         4
  Value of coefficient = 28

  N = 13
  Number of factors = 0x7fffbadc14d0
   0         5
   1         3
   2         3
   3         2
  Value of coefficient = 720720

COMPLETE_SYMMETRIC_POLY_TEST
  COMPLETE_SYMMETRIC_POLY evaluates a complete symmetric.
  polynomial in a given set of variables X.

  Variable vector X:

         0:              1
         1:              2
         2:              3
         3:              4
         4:              5

   N\R     0       1       2       3       4       5

   0       1       0       0       0       0       0
   1       1       1       1       1       1       1
   2       1       3       7      15      31      63
   3       1       6      25      90     301     966
   4       1      10      65     350    1701    7770
   5       1      15     140    1050    6951   42525

COS_POWER_INT_TEST:
  COS_POWER_INT computes the integral of the N-th power
  of the cosine function.

         A         B       N        Exact    Computed

         0   3.14159       0       3.14159       3.14159
         0   3.14159       1             0   1.22465e-16
         0   3.14159       2        1.5708        1.5708
         0   3.14159       3             0   1.22465e-16
         0   3.14159       4        1.1781        1.1781
         0   3.14159       5             0   1.22465e-16
         0   3.14159       6      0.981748      0.981748
         0   3.14159       7             0   1.22465e-16
         0   3.14159       8      0.859029      0.859029
         0   3.14159       9             0   1.22465e-16
         0   3.14159      10      0.773126      0.773126

EULER_NUMBER_TEST
  EULER_NUMBER computes Euler numbers.

  N  exact   EULER_NUMBER

     0             1             1
     1             0             0
     2            -1            -1
     4             5             5
     6           -61           -61
     8          1385          1385
    10        -50521        -50521
    12       2702765       2702765

EULER_NUMBER2_TEST
  EULER_NUMBER2 computes Euler numbers.

  N  exact   EULER_NUMBER2

     0             1               1
     1             0               0
     2            -1              -1
     4             5               5
     6           -61             -61
     8          1385            1385
    10        -50521          -50521
    12       2702765     2.70276e+06

EULER_POLY_TEST
  EULER_POLY evaluates Euler polynomials.

  N         X              F(X)

   0             0.5               1
   1             0.5     2.77556e-17
   2             0.5           -0.25
   3             0.5    -1.45953e-06
   4             0.5        0.312497
   5             0.5    -3.32929e-06
   6             0.5       -0.953128
   7             0.5    -1.73264e-06
   8             0.5         5.41016
   9             0.5    -1.02449e-06
  10             0.5        -49.3369
  11             0.5     6.47439e-07
  12             0.5         659.855
  13             0.5     5.22754e-06
  14             0.5          -12168
  15             0.5     0.000218677

EULERIAN_TEST
  EULERIAN evaluates Eulerian numbers.

     1       0       0       0       0       0       0  
     1       1       0       0       0       0       0  
     1       4       1       0       0       0       0  
     1      11      11       1       0       0       0  
     1      26      66      26       1       0       0  
     1      57     302     302      57       1       0  
     1     120    1191    2416    1191     120       1  

F_HOFSTADTER_TEST
  F_HOFSTADTER evaluates Hofstadter's recursive
  F function.

     N   F(N)

       0       0
       1       1
       2       1
       3       2
       4       2
       5       3
       6       3
       7       4
       8       4
       9       5
      10       5
      11       6
      12       6
      13       7
      14       7
      15       8
      16       8
      17       9
      18       9
      19      10
      20      10
      21      11
      22      11
      23      12
      24      12
      25      13
      26      13
      27      14
      28      14
      29      15
      30      15

FIBONACCI_DIRECT_TEST
  FIBONACCI_DIRECT evalutes a Fibonacci number directly.

       1           1
       2           1
       3           2
       4           3
       5           5
       6           8
       7          13
       8          21
       9          34
      10          55
      11          89
      12         144
      13         233
      14         377
      15         610
      16         987
      17        1597
      18        2584
      19        4181
      20        6765

FIBONACCI_FLOOR_TEST
  FIBONACCI_FLOOR computes the largest Fibonacci number
  less than or equal to a given positive integer.

     N  Fibonacci  Index

       1       1       2
       2       2       3
       3       3       4
       4       3       4
       5       5       5
       6       5       5
       7       5       5
       8       8       6
       9       8       6
      10       8       6
      11       8       6
      12       8       6
      13      13       7
      14      13       7
      15      13       7
      16      13       7
      17      13       7
      18      13       7
      19      13       7
      20      13       7

FIBONACCI_RECURSIVE_TEST
  FIBONACCI_RECURSIVE computes the Fibonacci sequence.

       1           1
       2           1
       3           2
       4           3
       5           5
       6           8
       7          13
       8          21
       9          34
      10          55
      11          89
      12         144
      13         233
      14         377
      15         610
      16         987
      17        1597
      18        2584
      19        4181
      20        6765

G_HOFSTADTER_TEST
  G_HOFSTADTER evaluates Hofstadter's recursive
  G function.

     N   G(N)

       0       0
       1       1
       2       1
       3       2
       4       3
       5       3
       6       4
       7       4
       8       5
       9       6
      10       6
      11       7
      12       8
      13       8
      14       9
      15       9
      16      10
      17      11
      18      11
      19      12
      20      12
      21      13
      22      14
      23      14
      24      15
      25      16
      26      16
      27      17
      28      17
      29      18
      30      19

GEGENBAUER_POLY_TEST
  GEGENBAUER_POLY evaluates the Gegenbauer polynomials.

        N       A       X       GPV      GEGENBAUER

       0         0.5         0.2               1               1
       1         0.5         0.2             0.2             0.2
       2         0.5         0.2           -0.44           -0.44
       3         0.5         0.2           -0.28           -0.28
       4         0.5         0.2           0.232           0.232
       5         0.5         0.2         0.30752         0.30752
       6         0.5         0.2       -0.080576       -0.080576
       7         0.5         0.2       -0.293517       -0.293517
       8         0.5         0.2      -0.0395648      -0.0395648
       9         0.5         0.2        0.245971        0.245957
      10         0.5         0.2        0.129072        0.129072
       2           0         0.4               0               0
       2           1         0.4           -0.36           -0.36
       2           2         0.4           -0.08           -0.08
       2           3         0.4            0.84            0.84
       2           4         0.4             2.4             2.4
       2           5         0.4             4.6             4.6
       2           6         0.4            7.44            7.44
       2           7         0.4           10.92           10.92
       2           8         0.4           15.04           15.04
       2           9         0.4            19.8            19.8
       2          10         0.4            25.2            25.2
       5           3        -0.5              -9               9
       5           3        -0.4        -0.16128        -0.16128
       5           3        -0.3        -6.67296        -6.67296
       5           3        -0.2        -8.37504        -8.37504
       5           3        -0.1        -5.52672        -5.52672
       5           3           0               0               0
       5           3         0.1         5.52672         5.52672
       5           3         0.2         8.37504         8.37504
       5           3         0.3         6.67296         6.67296
       5           3         0.4         0.16128         0.16128
       5           3         0.5              -9              -9
       5           3         0.6        -15.4253        -15.4253
       5           3         0.7        -9.69696        -9.69696
       5           3         0.8          22.441          22.441
       5           3         0.9         100.889         100.889
       5           3           1             252             252

GEN_HERMITE_POLY_TEST
  GEN_HERMITE_POLY evaluates the generalized Hermite
  polynomial.

  Table of H(N,MU)(X) for

    N(max) = 10
    MU =     0
    X =      0

       0               1
       1               0
       2              -2
       3              -0
       4              12
       5               0
       6            -120
       7              -0
       8            1680
       9               0
      10          -30240

  Table of H(N,MU)(X) for

    N(max) = 10
    MU =     0
    X =      1

       0               1
       1               2
       2               2
       3              -4
       4             -20
       5              -8
       6             184
       7             464
       8           -1648
       9          -10720
      10            8224

  Table of H(N,MU)(X) for

    N(max) = 10
    MU =     0.1
    X =      0

       0               1
       1               0
       2            -2.4
       3              -0
       4           15.36
       5               0
       6        -159.744
       7              -0
       8         2300.31
       9               0
      10        -42325.8

  Table of H(N,MU)(X) for

    N(max) = 10
    MU =     0.1
    X =      0.5

       0               1
       1               1
       2            -1.4
       3            -5.4
       4            3.56
       5           46.76
       6           9.736
       7        -551.384
       8        -691.582
       9         8130.56
      10         20855.7

  Table of H(N,MU)(X) for

    N(max) = 10
    MU =     0.5
    X =      0.5

       0               1
       1               1
       2              -3
       3              -7
       4              17
       5              73
       6            -131
       7           -1007
       8            1089
       9           17201
      10           -4579

  Table of H(N,MU)(X) for

    N(max) = 10
    MU =     1
    X =      0.5

       0               1
       1               1
       2              -5
       3              -9
       4              41
       5             113
       6            -461
       7           -1817
       8            6481
       9           35553
      10         -107029

GEN_LAGUERRE_POLY_TEST
  GEN_LAGUERRE_POLY evaluates the generalized Laguerre
  functions.

  Table of L(N,ALPHA)(X) for

    N(max) = 10
    ALPHA =  0
    X =      0

       0               1
       1               1
       2               1
       3               1
       4               1
       5               1
       6               1
       7               1
       8               1
       9               1
      10               1

  Table of L(N,ALPHA)(X) for

    N(max) = 10
    ALPHA =  0
    X =      1

       0               1
       1               0
       2            -0.5
       3       -0.666667
       4          -0.625
       5       -0.466667
       6       -0.256944
       7      -0.0404762
       8        0.153993
       9        0.309744
      10        0.418946

  Table of L(N,ALPHA)(X) for

    N(max) = 10
    ALPHA =  0.1
    X =      0

       0               1
       1             1.1
       2           1.155
       3          1.1935
       4         1.22334
       5          1.2478
       6          1.2686
       7         1.28672
       8         1.30281
       9         1.31728
      10         1.33046

  Table of L(N,ALPHA)(X) for

    N(max) = 10
    ALPHA =  0.1
    X =      0.5

       0               1
       1             0.6
       2            0.23
       3      -0.0673333
       4        -0.28935
       5       -0.442469
       6       -0.535747
       7       -0.578765
       8       -0.580771
       9       -0.550311
      10       -0.495076

  Table of L(N,ALPHA)(X) for

    N(max) = 10
    ALPHA =  0.5
    X =      0.5

       0               1
       1               1
       2            0.75
       3        0.416667
       4       0.0729167
       5        -0.24375
       6       -0.513715
       7       -0.727703
       8       -0.882836
       9       -0.980303
      10        -1.02388

  Table of L(N,ALPHA)(X) for

    N(max) = 10
    ALPHA =  1
    X =      0.5

       0               1
       1             1.5
       2           1.625
       3         1.47917
       4         1.14844
       5        0.702865
       6         0.19872
       7        -0.31962
       8       -0.817983
       9         -1.2709
      10        -1.66028

GUD_TEST:
  GUD evaluates the Gudermannian function.

     X      Exact F       GUD(X)

          -2    -1.30176    -1.30176
          -1   -0.865769   -0.865769
           0           0           0
         0.1   0.0998337   0.0998337
         0.2     0.19868     0.19868
         0.5    0.480381    0.480381
           1    0.865769    0.865769
         1.5     1.13173     1.13173
           2     1.30176     1.30176
         2.5     1.40699     1.40699
           3      1.4713      1.4713
         3.5     1.51042     1.51042
           4     1.53417     1.53417

HAIL_TEST
  HAIL(I) computes the length of the hail sequence
  for I, also known as the 3*N+1 sequence.

  I,  HAIL(I)

     1       0
     2       1
     3       7
     4       2
     5       5
     6       8
     7      16
     8       3
     9      19
    10       6
    11      14
    12       9
    13       9
    14      17
    15      17
    16       4
    17      12
    18      20
    19      20
    20       7

H_HOFSTADTER_TEST
  H_HOFSTADTER evaluates Hofstadter's recursive
  H function.

     N   H(N)

       0       0
       1       1
       2       1
       3       2
       4       3
       5       4
       6       4
       7       5
       8       5
       9       6
      10       7
      11       7
      12       8
      13       9
      14      10
      15      10
      16      11
      17      12
      18      13
      19      13
      20      14
      21      14
      22      15
      23      16
      24      17
      25      17
      26      18
      27      18
      28      19
      29      20
      30      20

HERMITE_POLY_PHYS_TEST:
  HERMITE_POLY_PHYS evaluates the physicist's Hermite polynomial.

     N      X        Exact F       H(N)(X)

         0         5               1               1
         1         5              10              10
         2         5              98              98
         3         5             940             940
         4         5            8812            8812
         5         5           80600           80600
         6         5          717880          717880
         7         5      6.2116e+06      6.2116e+06
         8         5     5.20657e+08     5.20657e+07
         9         5     4.21271e+08     4.21271e+08
        10         5     3.27553e+09     3.27553e+09
        11         5     2.43299e+10     2.43299e+10
        12         5     1.71237e+11     1.71237e+11
         5       0.5              41              41
         5         1              -8              -8
         5         3            3816            3816
         5        10      3.0412e+06      3.0412e+06

HERMITE_POLY_PHYS_COEF_TEST
  HERMITE_POLY_PHYS_COEF: physicist's Hermite polynomial coefficients.

  H(0)

             1

  H(1)

             2 * x
             0

  H(2)

             4 * x^2
             0 * x
            -2

  H(3)

             8 * x^3
             0 * x^2
           -12 * x
            -0

  H(4)

            16 * x^4
             0 * x^3
           -48 * x^2
            -0 * x
            12

  H(5)

            32 * x^5
             0 * x^4
          -160 * x^3
            -0 * x^2
           120 * x
             0

I4_CHOOSE_TEST
  I4_CHOOSE evaluates C(N,K).

   N     K    CNK

       0       0       1
       1       0       1
       1       1       1
       2       0       1
       2       1       2
       2       2       1
       3       0       1
       3       1       3
       3       2       3
       3       3       1
       4       0       1
       4       1       4
       4       2       6
       4       3       4
       4       4       1

I4_FACTOR_TEST:
  I4_FACTOR tries to factor an I4

  Factors of N = 60
    2^2
    3^1
    5^1

  Factors of N = 664048
    2^4
    7^3
    11^2

  Factors of N = 8466763
    2699^1
    3137^1

I4_FACTORIAL_TEST:
  I4_FACTORIAL evaluates the factorial function.

     X       Exact F       I4_FACTORIAL(X)

     0             1             1
     1             1             1
     2             2             2
     3             6             6
     4            24            24
     5           120           120
     6           720           720
     7          5040          5040
     8         40320         40320
     9        362880        362880
    10       3628800       3628800
    11      39916800      39916800
    12     479001600     479001600

I4_FACTORIAL2_TEST:
  I4_FACTORIAL2 evaluates the double factorial function.

   N   Exact  I4_FACTORIAL2(N)

     0         1         1
     1         1         1
     2         2         2
     3         3         3
     4         8         8
     5        15        15
     6        48        48
     7       105       105
     8       384       384
     9       945       945
    10      3840      3840
    11     10395     10395
    12     46080     46080
    13    135135    135135
    14    645120    645120
    15   2027025   2027025

I4_IS_TRIANGULAR_TEST
  I4_IS_TRIANGULAR returns 0 or 1 depending on
  whether I is triangular.

   I  =>   0/1

     0  1
     1  0
     2  1
     3  0
     4  0
     5  1
     6  0
     7  0
     8  0
     9  1
    10  0
    11  0
    12  0
    13  0
    14  1
    15  0
    16  0
    17  0
    18  0
    19  0
    20  1

I4_PARTITION_DISTINCT_COUNT_TEST:
  For the number of partitions of an integer
  into distinct parts,
  I4_PARTITION_DISTINCT_COUNT computes any value.

     N       Exact F    Q(N)

           0           1           1
           1           1           0
           2           1           2
           3           2           0
           4           2           3
           5           3           1
           6           4           5
           7           5           1
           8           6           8
           9           8           3
          10          10          12
          11          12           4
          12          15          18
          13          18           7
          14          22          27
          15          27          10
          16          32          38
          17          38          16
          18          46          54
          19          54          22
          20          64          76

I4_TO_TRIANGLE_TEST
  I4_TO_TRIANGLE converts a linear index to a
  triangular one.

     K  => I     J

     0     0     0
     1     1     0
     2     1     1
     3     2     0
     4     2     1
     5     2     2
     6     3     0
     7     3     1
     8     3     2
     9     3     3
    10     4     0
    11     4     1
    12     4     2
    13     4     3
    14     4     4
    15     5     0
    16     5     1
    17     5     2
    18     5     3
    19     5     4
    20     5     5

JACOBI_POLY_TEST
  JACOBI_POLY evaluates the Jacobi polynomials.
  the Jacobi polynomials.

        N       A       B      X       JPV      JACOBI

       0       0       1         0.5               1               1
       1       0       1         0.5            0.25            0.25
       2       0       1         0.5          -0.375          -0.375
       3       0       1         0.5       -0.484375       -0.484375
       4       0       1         0.5       -0.132812       -0.132812
       5       0       1         0.5        0.275391        0.275391
       5       1       1         0.5       -0.164062       -0.164062
       5       2       1         0.5         -1.1748         -1.1748
       5       3       1         0.5        -2.36133        -2.36133
       5       4       1         0.5        -2.61621        -2.61621
       5       5       1         0.5        0.117188        0.117188
       5       0       2         0.5        0.421875        0.421875
       5       0       3         0.5        0.504883        0.504883
       5       0       4         0.5        0.509766        0.509766
       5       0       5         0.5        0.430664        0.430664
       5       0       1          -1              -6              -6
       5       0       1        -0.8         0.03862         0.03862
       5       0       1        -0.6         0.81184         0.81184
       5       0       1        -0.4         0.03666         0.03666
       5       0       1        -0.2        -0.48512        -0.48512
       5       0       1           0         -0.3125         -0.3125
       5       0       1         0.2         0.18912         0.18912
       5       0       1         0.4         0.40234         0.40234
       5       0       1         0.6         0.01216         0.01216
       5       0       1         0.8        -0.43962        -0.43962
       5       0       1           1               1               1

JACOBI_SYMBOL_TEST
  JACOBI_SYMBOL computes the Jacobi symbol
  (Q/P), which records if Q is a quadratic
  residue modulo the number P.

Jacobi Symbols for P = 3

         3         0         0
         3         1         1
         3         2        -1
         3         3         0

Jacobi Symbols for P = 9

         9         0         0
         9         1         1
         9         2         1
         9         3         0
         9         4         1
         9         5         1
         9         6         0
         9         7         1
         9         8         1
         9         9         0

Jacobi Symbols for P = 10

        10         0         0
        10         1         1
        10         2         0
        10         3        -1
        10         4         0
        10         5         0
        10         6         0
        10         7        -1
        10         8         0
        10         9         1
        10        10         0

Jacobi Symbols for P = 12

        12         0         0
        12         1         1
        12         2         0
        12         3         0
        12         4         0
        12         5        -1
        12         6         0
        12         7         1
        12         8         0
        12         9         0
        12        10         0
        12        11        -1
        12        12         0

KRAWTCHOUK_TEST:
  KRAWTCHOUK evaluates Krawtchouk polynomials.

        N         P         X          M      K(N,P,X,M)



         0      0.25         0         5               1
         1      0.25         0         5           -1.25
         2      0.25         0         5           0.625
         3      0.25         0         5        -0.15625
         4      0.25         0         5       0.0195312
         5      0.25         0         5    -0.000976562

         0      0.25       0.5         5               1
         1      0.25       0.5         5           -0.75
         2      0.25       0.5         5               0
         3      0.25       0.5         5          0.1875
         4      0.25       0.5         5       -0.105469
         5      0.25       0.5         5       0.0439453

         0      0.25         1         5               1
         1      0.25         1         5           -0.25
         2      0.25         1         5          -0.375
         3      0.25         1         5         0.21875
         4      0.25         1         5      -0.0429688
         5      0.25         1         5      0.00292969

         0      0.25       1.5         5               1
         1      0.25       1.5         5            0.25
         2      0.25       1.5         5            -0.5
         3      0.25       1.5         5          0.0625
         4      0.25       1.5         5       0.0507812
         5      0.25       1.5         5      -0.0224609

         0      0.25         2         5               1
         1      0.25         2         5            0.75
         2      0.25         2         5          -0.375
         3      0.25         2         5        -0.15625
         4      0.25         2         5       0.0820312
         5      0.25         2         5     -0.00878906

         0      0.25       2.5         5               1
         1      0.25       2.5         5            1.25
         2      0.25       2.5         5               0
         3      0.25       2.5         5         -0.3125
         4      0.25       2.5         5       0.0195312
         5      0.25       2.5         5       0.0205078


         0       0.5         0         5               1
         1       0.5         0         5            -2.5
         2       0.5         0         5             2.5
         3       0.5         0         5           -1.25
         4       0.5         0         5          0.3125
         5       0.5         0         5        -0.03125

         0       0.5       0.5         5               1
         1       0.5       0.5         5              -2
         2       0.5       0.5         5           1.375
         3       0.5       0.5         5           -0.25
         4       0.5       0.5         5       -0.132812
         5       0.5       0.5         5        0.078125

         0       0.5         1         5               1
         1       0.5         1         5            -1.5
         2       0.5         1         5             0.5
         3       0.5         1         5            0.25
         4       0.5         1         5         -0.1875
         5       0.5         1         5         0.03125

         0       0.5       1.5         5               1
         1       0.5       1.5         5              -1
         2       0.5       1.5         5          -0.125
         3       0.5       1.5         5           0.375
         4       0.5       1.5         5      -0.0703125
         5       0.5       1.5         5      -0.0234375

         0       0.5         2         5               1
         1       0.5         2         5            -0.5
         2       0.5         2         5            -0.5
         3       0.5         2         5            0.25
         4       0.5         2         5          0.0625
         5       0.5         2         5        -0.03125

         0       0.5       2.5         5               1
         1       0.5       2.5         5               0
         2       0.5       2.5         5          -0.625
         3       0.5       2.5         5              -0
         4       0.5       2.5         5        0.117188
         5       0.5       2.5         5               0

LAGUERRE_ASSOCIATED_TEST
  LAGUERRE_ASSOCIATED evaluates the associated Laguerre
  polynomials.

  Table of L(N,M)(X) for

  N(max) = 6
  M      = 0
  X =      0

       0               1
       1               1
       2               1
       3               1
       4               1
       5               1
       6               1

  Table of L(N,M)(X) for

  N(max) = 6
  M      = 0
  X =      1

       0               1
       1               0
       2            -0.5
       3       -0.666667
       4          -0.625
       5       -0.466667
       6       -0.256944

  Table of L(N,M)(X) for

  N(max) = 6
  M      = 1
  X =      0

       0               1
       1               2
       2               3
       3               4
       4               5
       5               6
       6               7

  Table of L(N,M)(X) for

  N(max) = 6
  M      = 2
  X =      0.5

       0               1
       1             2.5
       2           4.125
       3         5.60417
       4          6.7526
       5         7.45547
       6         7.65419

  Table of L(N,M)(X) for

  N(max) = 6
  M      = 3
  X =      0.5

       0               1
       1             3.5
       2           7.625
       3         13.2292
       4         19.9818
       5         27.4372
       6         35.0914

  Table of L(N,M)(X) for

  N(max) = 6
  M      = 1
  X =      0.5

       0               1
       1             1.5
       2           1.625
       3         1.47917
       4         1.14844
       5        0.702865
       6         0.19872

LAGUERRE_POLY_COEF:
  LAGUERRE_POLY evaluates the Laguerre polynomial.

     N      X        Exact F       L(N)(X)

         0         1               1               1
         1         1               0               0
         2         1            -0.5            -0.5
         3         1       -0.666667       -0.666667
         4         1          -0.625          -0.625
         5         1       -0.466667       -0.466667
         6         1       -0.256944       -0.256944
         7         1      -0.0404762      -0.0404762
         8         1        0.153993        0.153993
         9         1        0.309744        0.309744
        10         1        0.418946        0.418946
        11         1        0.480134        0.480134
        12         1        0.496212        0.496212
         5       0.5       -0.445573       -0.445573
         5         3            0.85            0.85
         5         5        -3.16667        -3.16667
         5        10         34.3333         34.3333

LAGUERRE_POLY_COEF_TEST
  LAGUERRE_POLY_COEF determines Laguerre 
  polynomial coefficients.

  L(0)

             1

  L(1)

            -1 * x
             1

  L(2)

           0.5 * x^2
            -2 * x
             1

  L(3)

     -0.166667 * x^3
           1.5 * x^2
            -3 * x
             1

  L(4)

     0.0416667 * x^4
     -0.666667 * x^3
             3 * x^2
            -4 * x
             1

  L(5)

   -0.00833333 * x^5
      0.208333 * x^4
      -1.66667 * x^3
             5 * x^2
            -5 * x
             1

  Factorially scaled L(0)

             1

  Factorially scaled L(1)

            -1 * x
             1

  Factorially scaled L(2)

             1 * x^2
            -4 * x
             2

  Factorially scaled L(3)

            -1 * x^3
             9 * x^2
           -18 * x
             6

  Factorially scaled L(4)

             1 * x^4
           -16 * x^3
            72 * x^2
           -96 * x
            24

  Factorially scaled L(5)

            -1 * x^5
            25 * x^4
          -200 * x^3
           600 * x^2
          -600 * x
           120

LEGENDRE_POLY_TEST:
  LEGENDRE_POLY evaluates the Legendre PN function.

     N      X        Exact F       P(N)(X)

         0      0.25               1               1
         1      0.25            0.25            0.25
         2      0.25        -0.40625        -0.40625
         3      0.25       -0.335938       -0.335938
         9      0.25        0.176824        0.176824
        10      0.25          0.2212          0.2212
         3         0               0              -0
         3       0.1         -0.1475         -0.1475
         3       0.2           -0.28           -0.28
         3       0.3         -0.3825         -0.3825
         3       0.4           -0.44           -0.44
         3       0.5         -0.4375         -0.4375
         3         1               1               1

LEGENDRE_POLY_COEF_TEST
  LEGENDRE_POLY_COEF determines the Legendre P 
  polynomial coefficients.

  P(0)

             1

  P(1)

             1 * x
             0

  P(2)

           1.5 * x^2
             0 * x
          -0.5

  P(3)

           2.5 * x^3
             0 * x^2
          -1.5 * x
            -0

  P(4)

         4.375 * x^4
             0 * x^3
         -3.75 * x^2
            -0 * x
         0.375

  P(5)

         7.875 * x^5
             0 * x^4
         -8.75 * x^3
            -0 * x^2
         1.875 * x
             0

LEGENDRE_ASSOCIATED_TEST:
  LEGENDRE_ASSOCIATED evaluates associated Legendre functions.

      N       M    X     Exact F     PNM(X)

         1         0         0               0               0
         1         0       0.5             0.5             0.5
         1         0  0.707107        0.707107        0.707107
         1         0         1               1               1
         1         1       0.5       -0.866025       -0.866025
         2         0       0.5          -0.125          -0.125
         2         1       0.5        -1.29904        -1.29904
         2         2       0.5            2.25            2.25
         3         0       0.5         -0.4375         -0.4375
         3         1       0.5       -0.324759        -0.32476
         3         2       0.5           5.625           5.625
         3         3       0.5        -9.74278        -9.74279
         4         2       0.5         4.21875         4.21875
         5         2       0.5        -4.92187        -4.92188
         6         3       0.5         12.7874         12.7874
         7         3       0.5         116.685         116.685
         8         4       0.5        -1050.67        -1050.67
         9         4       0.5        -2078.49        -2078.49
        10         5       0.5         30086.2         30086.2

LEGENDRE_ASSOCIATED_NORMALIZED_TEST:
  LEGENDRE_ASSOCIATED_NORMALIZED evaluates 
  normalized associated Legendre functions.

      N       M    X     Exact F     PNM(X)

         0         0       0.5        0.282095        0.282095
         1         0       0.5        0.244301        0.244301
         1         1       0.5       -0.299207       -0.299207
         2         0       0.5      -0.0788479      -0.0788479
         2         1       0.5       -0.334523       -0.334523
         2         2       0.5        0.289706        0.289706
         3         0       0.5       -0.326529       -0.326529
         3         1       0.5      -0.0699706      -0.0699706
         3         2       0.5        0.383245        0.383245
         3         3       0.5       -0.270995       -0.270995
         4         0       0.5       -0.244629       -0.244629
         4         1       0.5        0.256066        0.256066
         4         2       0.5        0.188169        0.188169
         4         3       0.5       -0.406492       -0.406492
         4         4       0.5        0.248925        0.248925
         5         0       0.5        0.084058        0.084058
         5         1       0.5        0.329379        0.329379
         5         2       0.5       -0.158885       -0.158885
         5         3       0.5       -0.280871       -0.280871
         5         4       0.5        0.412795        0.412795
         5         5       0.5       -0.226097       -0.226097

LEGENDRE_FUNCTION_Q_TEST:
  LEGENDRE_FUNCTION_Q evaluates the Legendre Q function.

     N      X        Exact F       Q(N)(X)

         0         0               0               0
         1         0              -1              -1
         2         0               0              -0
         3         0        0.666667        0.666667
         9         0       -0.406349       -0.406349
        10         0               0              -0
         0       0.5        0.549306        0.549306
         1       0.5       -0.725347       -0.725347
         2       0.5       -0.818663       -0.818663
         3       0.5       -0.198655       -0.198655
         9       0.5       -0.116163       -0.116163
        10       0.5        0.291658        0.291658

LEGENDRE_SYMBOL_TEST
  LEGENDRE_SYMBOL computes the Legendre
  symbol (Q/P) which records whether Q is 
  a quadratic residue modulo the prime P.

  Legendre Symbols for P = 7

         7         0         0
         7         1         1
         7         2         1
         7         3        -1
         7         4         1
         7         5        -1
         7         6        -1
         7         7         0

  Legendre Symbols for P = 11

        11         0         0
        11         1         1
        11         2        -1
        11         3         1
        11         4         1
        11         5         1
        11         6        -1
        11         7        -1
        11         8        -1
        11         9         1
        11        10        -1
        11        11         0

  Legendre Symbols for P = 13

        13         0         0
        13         1         1
        13         2        -1
        13         3         1
        13         4         1
        13         5        -1
        13         6        -1
        13         7        -1
        13         8        -1
        13         9         1
        13        10         1
        13        11        -1
        13        12         1
        13        13         0

  Legendre Symbols for P = 17

        17         0         0
        17         1         1
        17         2         1
        17         3        -1
        17         4         1
        17         5        -1
        17         6        -1
        17         7        -1
        17         8         1
        17         9         1
        17        10        -1
        17        11        -1
        17        12        -1
        17        13         1
        17        14        -1
        17        15         1
        17        16         1
        17        17         0

LERCH_TEST:
  LERCH evaluates the Lerch function.

       Z       S       A         Lerch           Lerch
                             Tabulated        Computed

         1     2         0         1.64493         1.64492
         1     3         0         1.20206         1.20206
         1    10         0         1.00099         1.00099
       0.5     2         1         1.16448         1.16448
       0.5     3         1         1.07443         1.07443
       0.5    10         1         1.00049         1.00049
  0.333333     2         2        0.295919        0.295919
  0.333333     3         2        0.139451        0.139451
  0.333333    10         2     0.000982318     0.000982318
       0.1     2         3        0.117791        0.117791
       0.1     3         3       0.0386845       0.0386845
       0.1    10         3     1.70315e-05     1.70315e-05

LGAMMA_TEST:
  LGAMMA is a C math library function which evaluates
  the logarithm of the Gamma function.

     X       Exact F       LGAMMA(X)

       0.2     1.52406     1.52406
       0.4    0.796678    0.796678
       0.6    0.398234    0.398234
       0.8     0.15206     0.15206
         1           0           0
       1.1  -0.0498725  -0.0498724
       1.2  -0.0853741  -0.0853741
       1.3   -0.108175   -0.108175
       1.4   -0.119613   -0.119613
       1.5   -0.120782   -0.120782
       1.6   -0.112592   -0.112592
       1.7  -0.0958077  -0.0958077
       1.8  -0.0710839  -0.0710839
       1.9  -0.0389843  -0.0389843
         2           0           0
        10     12.8018     12.8018
        20     39.3399     39.3399
        30      71.257      71.257

LOCK_TEST
  LOCK counts the combinations on a button lock.

  I,  LOCK(I)

     0           1
     1           1
     2           3
     3          13
     4          75
     5         541
     6        4683
     7       47293
     8      545835
     9     7087261
    10   102247563

MEIXNER_TEST:
  MEIXNER evaluates Meixner polynomials.

       N      BETA         C         X        M(N,BETA,C,X)

         0       0.5     0.125         0               1
         1       0.5     0.125         0               1
         2       0.5     0.125         0           0.125
         3       0.5     0.125         0       -0.684375
         4       0.5     0.125         0       -0.779297
         5       0.5     0.125         0       -0.181787

         0       0.5     0.125       0.5               1
         1       0.5     0.125       0.5              -6
         2       0.5     0.125       0.5        -3.66667
         3       0.5     0.125       0.5            2.05
         4       0.5     0.125       0.5             4.9
         5       0.5     0.125       0.5         2.66944

         0       0.5     0.125         1               1
         1       0.5     0.125         1             -13
         2       0.5     0.125         1          -3.375
         3       0.5     0.125         1         8.45937
         4       0.5     0.125         1         9.08633
         5       0.5     0.125         1      -0.0737033

         0       0.5     0.125       1.5               1
         1       0.5     0.125       1.5             -20
         2       0.5     0.125       1.5               1
         3       0.5     0.125       1.5            16.4
         4       0.5     0.125       1.5             9.1
         5       0.5     0.125       1.5        -8.00556

         0       0.5     0.125         2               1
         1       0.5     0.125         2             -27
         2       0.5     0.125         2         9.45833
         3       0.5     0.125         2         23.7281
         4       0.5     0.125         2          3.3332
         5       0.5     0.125         2        -19.0084

         0       0.5     0.125       2.5               1
         1       0.5     0.125       2.5             -34
         2       0.5     0.125       2.5              22
         3       0.5     0.125       2.5            28.3
         4       0.5     0.125       2.5           -8.75
         5       0.5     0.125       2.5        -29.7736

         0         1      0.25         0               1
         1         1      0.25         0               1
         2         1      0.25         0            0.25
         3         1      0.25         0         -0.4375
         4         1      0.25         0          -0.625
         5         1      0.25         0        -0.30625

         0         1      0.25       0.5               1
         1         1      0.25       0.5            -0.5
         2         1      0.25       0.5        -0.78125
         3         1      0.25       0.5       -0.285156
         4         1      0.25       0.5        0.327515
         5         1      0.25       0.5        0.547452

         0         1      0.25         1               1
         1         1      0.25         1              -2
         2         1      0.25         1           -1.25
         3         1      0.25         1             0.5
         4         1      0.25         1         1.34375
         5         1      0.25         1        0.809375

         0         1      0.25       1.5               1
         1         1      0.25       1.5            -3.5
         2         1      0.25       1.5        -1.15625
         3         1      0.25       1.5         1.70703
         4         1      0.25       1.5         2.09412
         5         1      0.25       1.5        0.362021

         0         1      0.25         2               1
         1         1      0.25         2              -5
         2         1      0.25         2            -0.5
         3         1      0.25         2           3.125
         4         1      0.25         2         2.32812
         5         1      0.25         2       -0.753906

         0         1      0.25       2.5               1
         1         1      0.25       2.5            -6.5
         2         1      0.25       2.5         0.71875
         3         1      0.25       2.5         4.54297
         4         1      0.25       2.5         1.87439
         5         1      0.25       2.5        -2.36916

         0         2       0.5         0               1
         1         2       0.5         0               1
         2         2       0.5         0             0.5
         3         2       0.5         0               0
         4         2       0.5         0            -0.3
         5         2       0.5         0           -0.35

         0         2       0.5       0.5               1
         1         2       0.5       0.5            0.75
         2         2       0.5       0.5        0.229167
         3         2       0.5       0.5       -0.160156
         4         2       0.5       0.5       -0.305664
         5         2       0.5       0.5       -0.237101

         0         2       0.5         1               1
         1         2       0.5         1             0.5
         2         2       0.5         1               0
         3         2       0.5         1           -0.25
         4         2       0.5         1           -0.25
         5         2       0.5         1       -0.104167

         0         2       0.5       1.5               1
         1         2       0.5       1.5            0.25
         2         2       0.5       1.5         -0.1875
         3         2       0.5       1.5       -0.277344
         4         2       0.5       1.5       -0.150977
         5         2       0.5       1.5       0.0276286

         0         2       0.5         2               1
         1         2       0.5         2               0
         2         2       0.5         2       -0.333333
         3         2       0.5         2           -0.25
         4         2       0.5         2          -0.025
         5         2       0.5         2        0.141667

         0         2       0.5       2.5               1
         1         2       0.5       2.5           -0.25
         2         2       0.5       2.5         -0.4375
         3         2       0.5       2.5       -0.175781
         4         2       0.5       2.5        0.113086
         5         2       0.5       2.5        0.225562

MERTENS_TEST
  MERTENS computes the Mertens function.

      N   Exact   MERTENS(N)

         1           1           1
         2           0           0
         3          -1          -1
         4          -1          -1
         5          -2          -2
         6          -1          -1
         7          -2          -2
         8          -2          -2
         9          -2          -2
        10          -1          -1
        11          -2          -2
        12          -2          -2
       100           1           1
      1000           2           2
     10000         -23         -23

MOEBIUS_TEST
  MOEBIUS computes the Moebius function.

      N   Exact   MOEBIUS(N)

         1           1           1
         2          -1          -1
         3          -1          -1
         4           0           0
         5          -1          -1
         6           1           1
         7          -1          -1
         8           0           0
         9           0           0
        10           1           1
        11          -1          -1
        12           0           0
        13          -1          -1
        14           1           1
        15           1           1
        16           0           0
        17          -1          -1
        18           0           0
        19          -1          -1
        20           0           0

MOTZKIN_TEST
  MOTZKIN computes the Motzkin numbers A(0:N).
  A(N) counts the paths from (0,0) to (N,0).

  I,  A(I)

     0           1
     1           1
     2           2
     3           4
     4           9
     5          21
     6          51
     7         127
     8         323
     9         835
    10        2188

NORMAL_01_CDF_INVERSE_TEST:
  NORMAL_01_CDF_INVERSE inverts the normal 01 CDF.

    FX      X    NORMAL_01_CDF_INVERSE(FX)

       0.5               0               0
  0.539828             0.1             0.1
   0.57926             0.2             0.2
  0.617911             0.3             0.3
  0.655422             0.4             0.4
  0.691462             0.5             0.5
  0.725747             0.6             0.6
  0.758036             0.7             0.7
  0.788145             0.8             0.8
   0.81594             0.9             0.9
  0.841345               1               1
  0.933193             1.5             1.5
   0.97725               2               2
   0.99379             2.5             2.5
   0.99865               3               3
  0.999767             3.5             3.5
  0.999968               4               4

OMEGA_TEST
  OMEGA computes the OMEGA function.

          N   Exact   OMEGA(N)

             1           1           1
             2           1           1
             3           1           1
             4           1           1
             5           1           1
             6           2           2
             7           1           1
             8           1           1
             9           1           1
            10           2           2
            30           3           3
           101           1           1
           210           4           4
          1320           4           4
          1764           3           3
          2003           1           1
          2310           5           5
          2827           2           2
          8717           2           2
         12553           1           1
         30030           6           6
        510510           7           7
       9699690           8           8

PENTAGON_NUM_TEST
  PENTAGON_NUM computes the pentagonal numbers.

     1       1
     2       5
     3      12
     4      22
     5      35
     6      51
     7      70
     8      92
     9     117
    10     145

PHI_TEST
  PHI computes the PHI function.

  N   Exact   PHI(N)

     1           1           1
     2           1           1
     3           2           2
     4           2           2
     5           4           4
     6           2           2
     7           6           6
     8           4           4
     9           6           6
    10           4           4
    20           8           8
    30           8           8
    40          16          16
    50          20          20
    60          16          16
   100          40          40
   149         148         148
   500         200         200
   750         200         200
   999         648         648

PLANE_PARTITION_NUM_TEST
  PLANE_PARTITION_NUM computes the number of plane
  partitions of an integer.

     1       1
     2       3
     3       6
     4      13
     5      24
     6      48
     7      86
     8     160
     9     282
    10     500

POLY_BERNOULLI_TEST
  POLY_BERNOULLI computes the poly-Bernoulli numbers
  of negative index, B_n^(-k)

   N   K    B_N^(-K)


   0   0             1
   1   0             0
   2   0             0
   3   0             0
   4   0             0
   5   0             0
   6   0             0

   0   1             1
   1   1             2
   2   1             4
   3   1             8
   4   1            16
   5   1            32
   6   1            64

   0   2             1
   1   2             4
   2   2            14
   3   2            46
   4   2           146
   5   2           454
   6   2          1394

   0   3             1
   1   3             8
   2   3            46
   3   3           230
   4   3          1066
   5   3          4718
   6   3         20266

   0   4             1
   1   4            16
   2   4           146
   3   4          1066
   4   4          6902
   5   4         41506
   6   4        237686

   0   5             1
   1   5            32
   2   5           454
   3   5          4718
   4   5         41506
   5   5        329462
   6   5       2441314

   0   6             1
   1   6            64
   2   6          1394
   3   6         20266
   4   6        237686
   5   6       2441314
   6   6      22934774

POLY_COEF_COUNT_TEST
  POLY_COEF_COUNT counts the number of coefficients
  in a polynomial of degree DEGREE and dimension DIM.

 Dimension    Degree     Count

         1         0         1
         1         1         2
         1         2         3
         1         3         4
         1         4         5
         1         5         6

         4         0         1
         4         1         5
         4         2        15
         4         3        35
         4         4        70
         4         5       126

         7         0         1
         7         1         8
         7         2        36
         7         3       120
         7         4       330
         7         5       792

        10         0         1
        10         1        11
        10         2        66
        10         3       286
        10         4      1001
        10         5      3003

PRIME_TEST
  PRIME returns primes from a table.

  Number of primes stored is 1600

     I    Prime(I)

     1       2
     2       3
     3       5
     4       7
     5      11
     6      13
     7      17
     8      19
     9      23
    10      29

  1590   13411
  1591   13417
  1592   13421
  1593   13441
  1594   13451
  1595   13457
  1596   13463
  1597   13469
  1598   13477
  1599   13487
  1600   13499

PYRAMID_NUM_TEST
  PYRAMID_NUM computes the pyramidal numbers.

     1       1
     2       4
     3      10
     4      20
     5      35
     6      56
     7      84
     8     120
     9     165
    10     220

PYRAMID_SQUARE_NUM_TEST
  PYRAMID_SQUARE_NUM computes the pyramidal square numbers.

       1       1
       2       5
       3      14
       4      30
       5      55
       6      91
       7     140
       8     204
       9     285
      10     385

R8_AGM_TEST
  R8_AGM computes the arithmetic geometric mean.

           A           B            AGM                       AGM               Diff
                                   (Tabulated)             R8_AGM(A,B)

          22          96         52.27464119870424         52.27464119870424  7.10543e-15
          83          56         68.83653005985852         68.83653005985852           0
          42           7         20.65930119673401         20.65930119673401  3.55271e-15
          26          11         17.69685487374365         17.69685487374367  1.77636e-14
           4          63          23.8670497217533          23.8670497217533  3.55271e-15
           6          45         20.71701598280599         20.71701598280599  3.55271e-15
          40          75         56.12784225561668         56.12784225561668           0
          80           0                         0                         0           0
          90          35         59.26956508122964         59.26956508122989  2.4869e-13
           9           1         3.936235503649555         3.936235503649556  4.44089e-16
          53          53                        53                        53           0
           1           2         1.456791031046907         1.456791031046907           0
           1           4         2.243028580287603         2.243028580287603           0
           1           8         3.615756177597363         3.615756177597363           0
         1.5           8         4.081692408022163         4.081692408022163           0

R8_BETA_TEST:
  R8_BETA evaluates the Beta function.

     X      Y        Exact F       R8_BETA(X,Y)

         0.2           1           5           5
         0.4           1         2.5         2.5
         0.6           1     1.66667     1.66667
         0.8           1        1.25        1.25
           1         0.2           5           5
           1         0.4         2.5         2.5
           1           1           1           1
           2           2    0.166667    0.166667
           3           3   0.0333333   0.0333333
           4           4  0.00714286  0.00714286
           5           5   0.0015873   0.0015873
           6           2   0.0238095   0.0238095
           6           3  0.00595238  0.00595238
           6           4  0.00198413  0.00198413
           6           5  0.000793651  0.000793651
           6           6  0.00036075  0.00036075
           7           7  8.32501e-05  8.32501e-05

R8_CHOOSE_TEST
  R8_CHOOSE evaluates C(N,K).

   N     K    CNK

       0       0       1
       1       0       1
       1       1       1
       2       0       1
       2       1       2
       2       2       1
       3       0       1
       3       1       3
       3       2       3
       3       3       1
       4       0       1
       4       1       4
       4       2       6
       4       3       4
       4       4       1

R8_ERF_TEST:
  R8_ERF evaluates the error function.

     X      Exact F     R8_ERF(X)

         0               0               0
       0.1        0.112463        0.112463
       0.2        0.222703        0.222703
       0.3        0.328627        0.328627
       0.4        0.428392        0.428392
       0.5          0.5205          0.5205
       0.6        0.603856        0.603856
       0.7        0.677801        0.677801
       0.8        0.742101        0.742101
       0.9        0.796908        0.796908
         1        0.842701        0.842701
       1.1        0.880205        0.880205
       1.2        0.910314        0.910314
       1.3        0.934008        0.934008
       1.4        0.952285        0.952285
       1.5        0.966105        0.966105
       1.6        0.976348        0.976348
       1.7         0.98379         0.98379
       1.8        0.989091        0.989091
       1.9         0.99279         0.99279
         2        0.995322        0.995322

R8_ERF_INVERSE_TEST
  R8_ERF_INVERSE inverts the error function.

    FX           X1           X2

         0               0               0
  0.112463             0.1             0.1
  0.222703             0.2             0.2
  0.328627             0.3             0.3
  0.428392             0.4             0.4
    0.5205             0.5             0.5
  0.603856             0.6             0.6
  0.677801             0.7             0.7
  0.742101             0.8             0.8
  0.796908             0.9             0.9
  0.842701               1               1
  0.880205             1.1             1.1
  0.910314             1.2             1.2
  0.934008             1.3             1.3
  0.952285             1.4             1.4
  0.966105             1.5             1.5
  0.976348             1.6             1.6
   0.98379             1.7             1.7
  0.989091             1.8             1.8
   0.99279             1.9             1.9
  0.995322               2               2

R8_EULER_CONSTANT_TEST:
  R8_EULER_CONSTANT returns the Euler-Mascheroni constant
  sometimes denoted by 'gamma'.

  gamma = limit ( N -> oo ) ( sum ( 1 <= I <= N ) 1 / I ) - log ( N )

  Numerically, g = 0.577216

         N      Partial Sum    |gamma - partial sum|

         1               1        0.422784
         2        0.806853        0.229637
         4        0.697039        0.119823
         8        0.638416       0.0611999
        16         0.60814       0.0309246
        32        0.592759       0.0155436
        64        0.585008      0.00779216
       128        0.581117      0.00390116
       256        0.579168      0.00195185
       512        0.578192     0.000976245
      1024        0.577704     0.000488202
      2048         0.57746     0.000244121
      4096        0.577338     0.000122065
      8192        0.577277     6.10339e-05
     16384        0.577246     3.05173e-05
     32768        0.577231     1.52587e-05
     65536        0.577223     7.62938e-06
    131072        0.577219     3.81469e-06
    262144        0.577218     1.90735e-06
    524288        0.577217     9.53674e-07
   1048576        0.577216     4.76837e-07

R8_FACTORIAL_TEST:
  R8_FACTORIAL evaluates the factorial function.

     N       Exact F       R8_FACTORIAL(N)

     0               1               1
     1               1               1
     2               2               2
     3               6               6
     4              24              24
     5             120             120
     6             720             720
     7            5040            5040
     8           40320           40320
     9          362880          362880
    10      3.6288e+06      3.6288e+06
    11     3.99168e+07     3.99168e+07
    12     4.79002e+08     4.79002e+08
    13     6.22702e+09     6.22702e+09
    14     8.71783e+10     8.71783e+10
    15     1.30767e+12     1.30767e+12
    16     2.09228e+13     2.09228e+13
    17     3.55687e+14     3.55687e+14
    18     6.40237e+15     6.40237e+15
    19     1.21645e+17     1.21645e+17
    20      2.4329e+18      2.4329e+18
    25     1.55112e+25     1.55112e+25
    30     2.65253e+32     2.65253e+32

R8_FACTORIAL_LOG_TEST:
  R8_FACTORIAL_LOG evaluates the logarithm of the
  factorial function.

     N	   Exact F	 R8_FACTORIAL_LOG(N)

      0               0               0
      1               0               0
      2        0.693147        0.693147
      3         1.79176         1.79176
      4         3.17805         3.17805
      5         4.78749         4.78749
      6         6.57925         6.57925
      7         8.52516         8.52516
      8         10.6046         10.6046
      9         12.8018         12.8018
     10         15.1044         15.1044
     11         17.5023         17.5023
     12         19.9872         19.9872
     13         22.5522         22.5522
     14         25.1912         25.1912
     15         27.8993         27.8993
     16         30.6719         30.6719
     17         33.5051         33.5051
     18         36.3954         36.3954
     19         39.3399         39.3399
     20         42.3356         42.3356
     25         58.0036         58.0036
     50         148.478         148.478
    100         363.739         363.739
    150          605.02          605.02
    500         2611.33         2611.33
   1000         5912.13         5912.13

 R8_HYPER_2F1_TEST:
   R8_HYPER_2F1 evaluates the hypergeometric function 2F1.

      A       B       C       X       2F1                       2F1                     DIFF
                                     (tabulated)               (computed)

    -2.5     3.3     6.7    0.25        0.7235612934899779        0.7235612934899781    2.22e-16
    -0.5     1.1     6.7    0.25        0.9791110934527796        0.9791110934527797    1.11e-16
     0.5     1.1     6.7    0.25         1.021657814008856         1.021657814008856           0
     2.5     3.3     6.7    0.25         1.405156320011213         1.405156320011212   4.441e-16
    -2.5     3.3     6.7    0.55        0.4696143163982161        0.4696143163982162   5.551e-17
    -0.5     1.1     6.7    0.55        0.9529619497744632        0.9529619497744636   3.331e-16
     0.5     1.1     6.7    0.55         1.051281421394799         1.051281421394798   8.882e-16
     2.5     3.3     6.7    0.55         2.399906290477786         2.399906290477784   1.776e-15
    -2.5     3.3     6.7    0.85        0.2910609592841472        0.2910609592841471   5.551e-17
    -0.5     1.1     6.7    0.85        0.9253696791037318        0.9253696791037308   9.992e-16
     0.5     1.1     6.7    0.85           1.0865504094807         1.086550409480699   8.882e-16
     2.5     3.3     6.7    0.85         5.738156552618904         5.738156552619273   3.686e-13
     3.3     6.7    -5.5    0.25         15090.66974870461          15090.6697487046   1.091e-11
     1.1     6.7    -0.5    0.25        -104.3117006736435        -104.3117006736435   2.842e-14
     1.1     6.7     0.5    0.25         21.17505070776881          21.1750507077688   1.066e-14
     3.3     6.7     4.5    0.25         4.194691581903192         4.194691581903191   8.882e-16
     3.3     6.7    -5.5    0.55         10170777974.04881         10170777974.04883   1.144e-05
     1.1     6.7    -0.5    0.55        -24708.63532248916        -24708.63532248914   1.819e-11
     1.1     6.7     0.5    0.55         1372.230454838499         1372.230454838497   2.274e-12
     3.3     6.7     4.5    0.55         58.09272870639465         58.09272870639462   2.842e-14
     3.3     6.7    -5.5    0.85     5.868208761512417e+18     5.868208761512401e+18   1.638e+04
     1.1     6.7    -0.5    0.85          -446350101.47296        -446350101.4729614   1.431e-06
     1.1     6.7     0.5    0.85         5383505.756129573         5383505.756129585   1.211e-08
     3.3     6.7     4.5    0.85         20396.91377601966         20396.91377601966   3.638e-12

R8_PSI_TEST:
  R8_PSI evaluates the Psi function.

         X                  Psi(X)                    Psi(X)          DIFF
                         (Tabulated)                (R8_PSI)

         1       -0.5772156649015329       -0.5772156649015329           0
       1.1       -0.4237549404110768       -0.4237549404110768   5.551e-17
       1.2       -0.2890398965921883       -0.2890398965921884   5.551e-17
       1.3       -0.1691908888667997       -0.1691908888667995   1.665e-16
       1.4      -0.06138454458511615      -0.06138454458511624   9.021e-17
       1.5       0.03648997397857652       0.03648997397857652           0
       1.6        0.1260474527734763        0.1260474527734763   2.776e-17
       1.7         0.208547874873494         0.208547874873494   2.776e-17
       1.8        0.2849914332938615        0.2849914332938615           0
       1.9        0.3561841611640597        0.3561841611640596    1.11e-16
         2        0.4227843350984671        0.4227843350984672    1.11e-16

R8POLY_DEGREE_TEST
  R8POLY_DEGREE determines the degree of an R8POLY.

  The R8POLY:

  p(x) =  4 * x^3
         +3 * x^2
         +2 * x
         +1
  Dimensioned degree = 3,  Actual degree = 3

  The R8POLY:

  p(x) =  3 * x^2
         +2 * x
         +1
  Dimensioned degree = 3,  Actual degree = 2

  The R8POLY:

  p(x) =  4 * x^3
         +2 * x
         +1
  Dimensioned degree = 3,  Actual degree = 3

  The R8POLY:

  p(x) =  1
  Dimensioned degree = 3,  Actual degree = 0

  The R8POLY:

  p(x) =  0
  Dimensioned degree = 3,  Actual degree = 0

R8POLY_PRINT_TEST
  R8POLY_PRINT prints an R8POLY.

  The R8POLY:

  p(x) =  9 * x^5
         +0.78 * x^4
         +56 * x^2
         -3.4 * x
         +2

R8POLY_VALUE_HORNER_TEST
  R8POLY_VALUE_HORNER evaluates a polynomial at
  one point, using Horner's method.

  The polynomial coefficients:

  p(x) =  1 * x^4
         -10 * x^3
         +35 * x^2
         -50 * x
         +24

   I    X    P(X)

   0         0              24
   1    0.3333           10.86
   2    0.6667           3.457
   3         1               0
   4     1.333         -0.9877
   5     1.667         -0.6914
   6         2               0
   7     2.333          0.4938
   8     2.667          0.4938
   9         3               0
  10     3.333         -0.6914
  11     3.667         -0.9877
  12         4               0
  13     4.333           3.457
  14     4.667           10.86
  15         5              24

SIGMA_TEST
  SIGMA computes the SIGMA function.

  N   Exact   SIGMA(N)

     1           1           1
     2           3           3
     3           4           4
     4           7           7
     5           6           6
     6          12          12
     7           8           8
     8          15          15
     9          13          13
    10          18          18
    30          72          72
   127         128         128
   128         255         255
   129         176         176
   210         576         576
   360        1170        1170
   617         618         618
   815         984         984
   816        2232        2232
  1000        2340        2340

SIMPLEX_NUM_TEST
  SIMPLEX_NUM computes the N-th simplex number
  in M dimensions.

      M: 0     1     2     3     4     5
   N
   0     1     0     0     0     0     0
   1     1     1     1     1     1     1
   2     1     2     3     4     5     6
   3     1     3     6    10    15    21
   4     1     4    10    20    35    56
   5     1     5    15    35    70   126
   6     1     6    21    56   126   252
   7     1     7    28    84   210   462
   8     1     8    36   120   330   792
   9     1     9    45   165   495  1287
  10     1    10    55   220   715  2002

SIN_POWER_INT_TEST:
  SIN_POWER_INT computes the integral of the N-th power
  of the sine function.

         A         B       N        Exact    Computed

        10        20       0            10            10
         0         1       1        0.4597        0.4597
         0         1       2        0.2727        0.2727
         0         1       3        0.1789        0.1789
         0         1       4         0.124         0.124
         0         1       5       0.08897       0.08897
         0         2       5        0.9039        0.9039
         1         2       5         0.815         0.815
         0         1      10       0.02189       0.02189
         0         1      11       0.01702       0.01702

SLICE_TEST:
  SLICE determines the maximum number of pieces created
  by SLICE_NUM slices in a DIM_NUM space.

  Slice Array:

  Col:       0       1       2       3       4       5       6       7
  Row

    0:       2       3       4       5       6       7       8       9
    1:       2       4       7      11      16      22      29      37
    2:       2       4       8      15      26      42      64      93
    3:       2       4       8      16      31      57      99     163
    4:       2       4       8      16      32      63     120     219

SPHERICAL_HARMONIC_TEST:
  SPHERICAL_HARMONIC evaluates spherical harmonic functions.

         N         M    THETA      PHI            YR            YI

         0         0    0.5236     1.047          0.2821               0
                                                  0.2821               0
         1         0    0.5236     1.047          0.4231               0
                                                  0.4231               0
         2         1    0.5236     1.047         -0.1673         -0.2897
                                                 -0.1673         -0.2897
         3         2    0.5236     1.047         -0.1106          0.1916
                                                 -0.1106          0.1916
         4         3    0.5236     1.047          0.1355               0
                                                  0.1355       1.038e-16
         5         5    0.2618    0.6283        0.000539               0
                                                0.000539      -6.601e-20
         5         4    0.2618    0.6283       -0.005147        0.003739
                                               -0.005147        0.003739
         5         3    0.2618    0.6283         0.01371         -0.0422
                                                 0.01371         -0.0422
         5         2    0.2618    0.6283         0.06096          0.1876
                                                 0.06096          0.1876
         5         1    0.2618    0.6283          -0.417          -0.303
                                                  -0.417          -0.303
         4         2    0.6283    0.7854               0          0.4139
                                               2.535e-17          0.4139
         4         2     1.885    0.7854               0         -0.1003
                                              -6.143e-18         -0.1003
         4         2     3.142    0.7854               0               0
                                                       0               0
         4         2     4.398    0.7854               0         -0.1003
                                              -6.143e-18         -0.1003
         4         2     5.655    0.7854               0          0.4139
                                               2.535e-17          0.4139
         3        -1    0.3927    0.4488          0.3641         -0.1754
                                                  0.3641         -0.1754
         3        -1    0.3927    0.8976           0.252          -0.316
                                                   0.252          -0.316
         3        -1    0.3927     1.346         0.08993          -0.394
                                                 0.08993          -0.394
         3        -1    0.3927     1.795        -0.08993          -0.394
                                                -0.08993          -0.394
         3        -1    0.3927     2.244          -0.252          -0.316
                                                  -0.252          -0.316

STIRLING1_TEST
  STIRLING1: Stirling numbers of first kind.
  Get rows 1 through 8

     1       1       0       0       0       0       0       0       0  
     2      -1       1       0       0       0       0       0       0  
     3       2      -3       1       0       0       0       0       0  
     4      -6      11      -6       1       0       0       0       0  
     5      24     -50      35     -10       1       0       0       0  
     6    -120     274    -225      85     -15       1       0       0  
     7     720   -1764    1624    -735     175     -21       1       0  
     8   -5040   13068  -13132    6769   -1960     322     -28       1  

STIRLING2_TEST
  STIRLING2: Stirling numbers of second kind.
  Get rows 1 through 8

     1       1       0       0       0       0       0       0       0  
     2       1       1       0       0       0       0       0       0  
     3       1       3       1       0       0       0       0       0  
     4       1       7       6       1       0       0       0       0  
     5       1      15      25      10       1       0       0       0  
     6       1      31      90      65      15       1       0       0  
     7       1      63     301     350     140      21       1       0  
     8       1     127     966    1701    1050     266      28       1  

TAU_TEST
  TAU computes the Tau function.

  N  exact C(I)  computed C(I)

     1           1           1
     2           2           2
     3           2           2
     4           3           3
     5           2           2
     6           4           4
     7           2           2
     8           4           4
     9           3           3
    10           4           4
    23           2           2
    72          12          12
   126          12          12
   226           4           4
   300          18          18
   480          24          24
   521           2           2
   610           8           8
   832          14          14
   960          28          28

TETRAHEDRON_NUM_TEST
  TETRAHEDRON_NUM computes the tetrahedron numbers.

     1       1
     2       4
     3      10
     4      20
     5      35
     6      56
     7      84
     8     120
     9     165
    10     220

TRIANGLE_NUM_TEST
  TRIANGLE_NUM computes the triangular numbers.

     1       1
     2       3
     3       6
     4      10
     5      15
     6      21
     7      28
     8      36
     9      45
    10      55

TRIANGLE_TO_I4_TEST
  TRIANGLE_TO_I4 converts a triangular index to a
  linear one.

     I     J ==>   K

     0     0     0
     1     0     1
     1     1     2
     2     0     3
     2     1     4
     2     2     5
     3     0     6
     3     1     7
     3     2     8
     3     3     9
     4     0    10
     4     1    11
     4     2    12
     4     3    13
     4     4    14

TRINOMIAL_TEST
  TRINOMIAL evaluates the trinomial coefficient:

  T(I,J,K) = (I+J+K)! / I! / J! / K!

     I     J     K    T(I,J,K)

     0     0     0         1
     1     0     0         1
     2     0     0         1
     3     0     0         1
     4     0     0         1
     0     1     0         1
     1     1     0         2
     2     1     0         3
     3     1     0         4
     4     1     0         5
     0     2     0         1
     1     2     0         3
     2     2     0         6
     3     2     0        10
     4     2     0        15
     0     3     0         1
     1     3     0         4
     2     3     0        10
     3     3     0        20
     4     3     0        35
     0     4     0         1
     1     4     0         5
     2     4     0        15
     3     4     0        35
     4     4     0        70
     0     0     1         1
     1     0     1         2
     2     0     1         3
     3     0     1         4
     4     0     1         5
     0     1     1         2
     1     1     1         6
     2     1     1        12
     3     1     1        20
     4     1     1        30
     0     2     1         3
     1     2     1        12
     2     2     1        30
     3     2     1        60
     4     2     1       105
     0     3     1         4
     1     3     1        20
     2     3     1        60
     3     3     1       140
     4     3     1       280
     0     4     1         5
     1     4     1        30
     2     4     1       105
     3     4     1       280
     4     4     1       630
     0     0     2         1
     1     0     2         3
     2     0     2         6
     3     0     2        10
     4     0     2        15
     0     1     2         3
     1     1     2        12
     2     1     2        30
     3     1     2        60
     4     1     2       105
     0     2     2         6
     1     2     2        30
     2     2     2        90
     3     2     2       210
     4     2     2       420
     0     3     2        10
     1     3     2        60
     2     3     2       210
     3     3     2       560
     4     3     2      1260
     0     4     2        15
     1     4     2       105
     2     4     2       420
     3     4     2      1260
     4     4     2      3150
     0     0     3         1
     1     0     3         4
     2     0     3        10
     3     0     3        20
     4     0     3        35
     0     1     3         4
     1     1     3        20
     2     1     3        60
     3     1     3       140
     4     1     3       280
     0     2     3        10
     1     2     3        60
     2     2     3       210
     3     2     3       560
     4     2     3      1260
     0     3     3        20
     1     3     3       140
     2     3     3       560
     3     3     3      1680
     4     3     3      4200
     0     4     3        35
     1     4     3       280
     2     4     3      1260
     3     4     3      4200
     4     4     3     11550
     0     0     4         1
     1     0     4         5
     2     0     4        15
     3     0     4        35
     4     0     4        70
     0     1     4         5
     1     1     4        30
     2     1     4       105
     3     1     4       280
     4     1     4       630
     0     2     4        15
     1     2     4       105
     2     2     4       420
     3     2     4      1260
     4     2     4      3150
     0     3     4        35
     1     3     4       280
     2     3     4      1260
     3     3     4      4200
     4     3     4     11550
     0     4     4        70
     1     4     4       630
     2     4     4      3150
     3     4     4     11550
     4     4     4     34650

V_HOFSTADTER_TEST
  V_HOFSTADTER evaluates Hofstadter's recursive
  V function.

     N   V(N)

       0       0
       1       1
       2       1
       3       1
       4       1
       5       2
       6       3
       7       4
       8       5
       9       5
      10       6
      11       6
      12       7
      13       8
      14       8
      15       9
      16       9
      17      10
      18      11
      19      11
      20      11
      21      12
      22      12
      23      13
      24      14
      25      14
      26      15
      27      15
      28      16
      29      17
      30      17

VIBONACCI_TEST
  VIBONACCI computes a Vibonacci sequence.

  We compute the series 3 times.

     I      V1      V2      V3

       0       1       1       1
       1       1       1       1
       2       0       0      -2
       3       1      -1       1
       4      -1      -1      -1
       5       0       0      -2
       6      -1      -1      -3
       7       1       1       1
       8      -2       0      -2
       9      -3       1      -3
      10      -1      -1       5
      11       4      -2       2
      12       3      -3      -7
      13      -7      -1      -5
      14      10      -4       2
      15      -3       3       7
      16     -13       1       9
      17     -16       2      -2
      18      -3      -3     -11
      19     -19       1      -9

ZECKENDORF_TEST
  ZECKENDORF computes the Zeckendorf decomposition of
  an integer N into nonconsecutive Fibonacci numbers.

   N Sum M Parts

   1     1  
   2     2  
   3     3  
   4     3     1  
   5     5  
   6     5     1  
   7     5     2  
   8     8  
   9     8     1  
  10     8     2  
  11     8     3  
  12     8     3     1  
  13    13  
  14    13     1  
  15    13     2  
  16    13     3  
  17    13     3     1  
  18    13     5  
  19    13     5     1  
  20    13     5     2  
  21    21  
  22    21     1  
  23    21     2  
  24    21     3  
  25    21     3     1  
  26    21     5  
  27    21     5     1  
  28    21     5     2  
  29    21     8  
  30    21     8     1  
  31    21     8     2  
  32    21     8     3  
  33    21     8     3     1  
  34    34  
  35    34     1  
  36    34     2  
  37    34     3  
  38    34     3     1  
  39    34     5  
  40    34     5     1  
  41    34     5     2  
  42    34     8  
  43    34     8     1  
  44    34     8     2  
  45    34     8     3  
  46    34     8     3     1  
  47    34    13  
  48    34    13     1  
  49    34    13     2  
  50    34    13     3  
  51    34    13     3     1  
  52    34    13     5  
  53    34    13     5     1  
  54    34    13     5     2  
  55    55  
  56    55     1  
  57    55     2  
  58    55     3  
  59    55     3     1  
  60    55     5  
  61    55     5     1  
  62    55     5     2  
  63    55     8  
  64    55     8     1  
  65    55     8     2  
  66    55     8     3  
  67    55     8     3     1  
  68    55    13  
  69    55    13     1  
  70    55    13     2  
  71    55    13     3  
  72    55    13     3     1  
  73    55    13     5  
  74    55    13     5     1  
  75    55    13     5     2  
  76    55    21  
  77    55    21     1  
  78    55    21     2  
  79    55    21     3  
  80    55    21     3     1  
  81    55    21     5  
  82    55    21     5     1  
  83    55    21     5     2  
  84    55    21     8  
  85    55    21     8     1  
  86    55    21     8     2  
  87    55    21     8     3  
  88    55    21     8     3     1  
  89    89  
  90    89     1  
  91    89     2  
  92    89     3  
  93    89     3     1  
  94    89     5  
  95    89     5     1  
  96    89     5     2  
  97    89     8  
  98    89     8     1  
  99    89     8     2  
 100    89     8     3  

ZERNIKE_POLY_TEST
  ZERNIKE_POLY evaluates a Zernike polynomial directly.

  Table of polynomial coefficients:

   N   M


   0   0        1

   1   0        0        0
   1   1        0        1

   2   0       -1        0        2
   2   1        0        0        0
   2   2        0        0        1

   3   0        0        0        0        0
   3   1        0       -2        0        3
   3   2        0        0        0        0
   3   3        0        0        0        1

   4   0        1        0       -6        0        6
   4   1        0        0        0        0        0
   4   2        0        0       -3        0        4
   4   3        0        0        0        0        0
   4   4        0        0        0        0        1

   5   0        0        0        0        0        0        0
   5   1        0        3        0      -12        0       10
   5   2        0        0        0        0        0        0
   5   3        0        0        0       -4        0        5
   5   4        0        0        0        0        0        0
   5   5        0        0        0        0        0        1

  Z1: Compute polynomial coefficients,
  then evaluate by Horner's method;
  Z2: Evaluate directly by recursion.

   N   M       Z1              Z2


   0   0                 1                 1

   1   0                 0                 0
   1   1            0.9877            0.9877

   2   0            0.9509            0.9509
   2   1                 0                 0
   2   2            0.9755            0.9755

   3   0                 0                 0
   3   1            0.9149            0.9149
   3   2                 0                 0
   3   3            0.9634            0.9634

   4   0            0.8564            0.8564
   4   1                 0                 0
   4   2            0.8797            0.8797
   4   3                 0                 0
   4   4            0.9515            0.9515

   5   0                 0                 0
   5   1            0.7997            0.7997
   5   2                 0                 0
   5   3            0.8452            0.8452
   5   4                 0                 0
   5   5            0.9398            0.9398

ZERNIKE_POLY_COEF_TEST
  ZERNIKE_POLY_COEF determines the Zernike
  polynomial coefficients.

  Zernike polynomial

  p(x) =  0

  Zernike polynomial

  p(x) =  10 * x^5
         -12 * x^3
         +3 * x

  Zernike polynomial

  p(x) =  0

  Zernike polynomial

  p(x) =  5 * x^5
         -4 * x^3

  Zernike polynomial

  p(x) =  0

  Zernike polynomial

  p(x) =  1 * x^5

ZETA_TEST
  ZETA computes the Zeta function.

       N            exact Zeta         computed Zeta

       2                 1.645                 1.644
       3                 1.202                 1.202
       4                 1.082                 1.082
       5                 1.037                 1.037
       6                 1.017                 1.017
       7                 1.008                 1.008
       8                 1.004                 1.004
       9                 1.002                 1.002
      10                 1.001                 1.001
      11                     1                     1
      12                     1                     1
      16                     1                     1
      20                     1                     1
      30                     1                     1
      40                     1                     1

POLPAK_PRB
  Normal end of execution.

13 April 2015 10:09:07 AM