# include # include # include # include # include using namespace std; # include "polynomial.hpp" //****************************************************************************80 int i4_choose ( int n, int k ) //****************************************************************************80 // // Purpose: // // I4_CHOOSE computes the binomial coefficient C(N,K). // // Discussion: // // The value is calculated in such a way as to avoid overflow and // roundoff. The calculation is done in integer arithmetic. // // The formula used is: // // C(N,K) = N! / ( K! * (N-K)! ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 January 2013 // // Author: // // John Burkardt // // Reference: // // ML Wolfson, HV Wright, // Algorithm 160: // Combinatorial of M Things Taken N at a Time, // Communications of the ACM, // Volume 6, Number 4, April 1963, page 161. // // Parameters: // // Input, int N, K, the values of N and K. // // Output, int I4_CHOOSE, the number of combinations of N // things taken K at a time. // { int i; int mn; int mx; int value; mn = k; if ( n - k < mn ) { mn = n - k; } if ( mn < 0 ) { value = 0; } else if ( mn == 0 ) { value = 1; } else { mx = k; if ( mx < n - k ) { mx = n - k; } value = mx + 1; for ( i = 2; i <= mn; i++ ) { value = ( value * ( mx + i ) ) / i; } } return value; } //****************************************************************************80 int i4_fall ( int x, int n ) //****************************************************************************80 // // Purpose: // // I4_FALL computes the falling factorial function [X]_N. // // Discussion: // // Note that the number of "injections" or 1-to-1 mappings from // a set of N elements to a set of M elements is [M]_N. // // The number of permutations of N objects out of M is [M]_N. // // Moreover, the Stirling numbers of the first kind can be used // to convert a falling factorial into a polynomial, as follows: // // [X]_N = S^0_N + S^1_N * X + S^2_N * X^2 + ... + S^N_N X^N. // // The formula is: // // [X]_N = X * ( X - 1 ) * ( X - 2 ) * ... * ( X - N + 1 ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 November 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int X, the argument of the falling factorial function. // // Input, int N, the order of the falling factorial function. // If N = 0, FALL = 1, if N = 1, FALL = X. Note that if N is // negative, a "rising" factorial will be computed. // // Output, int I4_FALL, the value of the falling factorial function. // { int i; int value; value = 1; if ( 0 < n ) { for ( i = 1; i <= n; i++ ) { value = value * x; x = x - 1; } } else if ( n < 0 ) { for ( i = -1; n <= i; i-- ) { value = value * x; x = x + 1; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 void i4vec_concatenate ( int n1, int a[], int n2, int b[], int c[] ) //****************************************************************************80 // // Purpose: // // I4VEC_CONCATENATE concatenates two I4VEC's. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 November 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, the number of entries in the first vector. // // Input, int A[N1], the first vector. // // Input, int N2, the number of entries in the second vector. // // Input, int B[N2], the second vector. // // Output, int C[N1+N2], the concatenated vector. // { int i; for ( i = 0; i < n1; i++ ) { c[i] = a[i]; } for ( i = 0; i < n2; i++ ) { c[n1+i] = b[i]; } return; } //****************************************************************************80 void i4vec_permute ( int n, int p[], int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_PERMUTE permutes an I4VEC in place. // // Discussion: // // An I4VEC is a vector of I4's. // // This routine permutes an array of integer "objects", but the same // logic can be used to permute an array of objects of any arithmetic // type, or an array of objects of any complexity. The only temporary // storage required is enough to store a single object. The number // of data movements made is N + the number of cycles of order 2 or more, // which is never more than N + N/2. // // Example: // // Input: // // N = 5 // P = ( 1, 3, 4, 0, 2 ) // A = ( 1, 2, 3, 4, 5 ) // // Output: // // A = ( 2, 4, 5, 1, 3 ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 October 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of objects. // // Input, int P[N], the permutation. P(I) = J means // that the I-th element of the output array should be the J-th // element of the input array. // // Input/output, int A[N], the array to be permuted. // { int a_temp; int i; int iget; int iput; int istart; perm_check0 ( n, p ); // // In order for the sign negation trick to work, we need to assume that the // entries of P are strictly positive. Presumably, the lowest number is 0. // So temporarily add 1 to each entry to force positivity. // for ( i = 0; i < n; i++ ) { p[i] = p[i] + 1; } // // Search for the next element of the permutation that has not been used. // for ( istart = 1; istart <= n; istart++ ) { if ( p[istart-1] < 0 ) { continue; } else if ( p[istart-1] == istart ) { p[istart-1] = - p[istart-1]; continue; } else { a_temp = a[istart-1]; iget = istart; // // Copy the new value into the vacated entry. // for ( ; ; ) { iput = iget; iget = p[iget-1]; p[iput-1] = - p[iput-1]; if ( iget < 1 || n < iget ) { cerr << "\n"; cerr << "I4VEC_PERMUTE - Fatal error!\n"; cerr << " Entry IPUT = " << iput << " of the permutation has\n"; cerr << " an illegal value IGET = " << iget << ".\n"; exit ( 1 ); } if ( iget == istart ) { a[iput-1] = a_temp; break; } a[iput-1] = a[iget-1]; } } } // // Restore the signs of the entries. // for ( i = 0; i < n; i++ ) { p[i] = - p[i]; } // // Restore the entries. // for ( i = 0; i < n; i++ ) { p[i] = p[i] - 1; } return; } //****************************************************************************80 int *i4vec_sort_heap_index_a ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_SORT_HEAP_INDEX_A does an indexed heap ascending sort of an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // The sorting is not actually carried out. Rather an index array is // created which defines the sorting. This array may be used to sort // or index the array, or to sort or index related arrays keyed on the // original array. // // Once the index array is computed, the sorting can be carried out // "implicitly: // // a(indx(*)) // // or explicitly, by the call // // i4vec_permute ( n, indx, 0, a ) // // after which a(*) is sorted. // // Note that the index vector is 0-based. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, int A[N], an array to be index-sorted. // // Output, int I4VEC_SORT_HEAP_INDEX_A[N], contains the sort index. The // I-th element of the sorted array is A(INDX(I)). // { int aval; int i; int *indx; int indxt; int ir; int j; int l; if ( n < 1 ) { return NULL; } indx = new int[n]; for ( i = 0; i < n; i++ ) { indx[i] = i; } if ( n == 1 ) { indx[0] = indx[0]; return indx; } l = n / 2 + 1; ir = n; for ( ; ; ) { if ( 1 < l ) { l = l - 1; indxt = indx[l-1]; aval = a[indxt]; } else { indxt = indx[ir-1]; aval = a[indxt]; indx[ir-1] = indx[0]; ir = ir - 1; if ( ir == 1 ) { indx[0] = indxt; break; } } i = l; j = l + l; while ( j <= ir ) { if ( j < ir ) { if ( a[indx[j-1]] < a[indx[j]] ) { j = j + 1; } } if ( aval < a[indx[j-1]] ) { indx[i-1] = indx[j-1]; i = j; j = j + j; } else { j = ir + 1; } } indx[i-1] = indxt; } return indx; } //****************************************************************************80 int i4vec_sum ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_SUM sums the entries of an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Example: // // Input: // // A = ( 1, 2, 3, 4 ) // // Output: // // I4VEC_SUM = 10 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 May 1999 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, int A[N], the vector to be summed. // // Output, int I4VEC_SUM, the sum of the entries of A. // { int i; int sum; sum = 0; for ( i = 0; i < n; i++ ) { sum = sum + a[i]; } return sum; } //****************************************************************************80 void mono_next_grlex ( int m, int x[] ) //****************************************************************************80 // // Purpose: // // MONO_NEXT_GRLEX returns the next monomial in grlex order. // // Discussion: // // Example: // // M = 3 // // # X(1) X(2) X(3) Degree // +------------------------ // 1 | 0 0 0 0 // | // 2 | 0 0 1 1 // 3 | 0 1 0 1 // 4 | 1 0 0 1 // | // 5 | 0 0 2 2 // 6 | 0 1 1 2 // 7 | 0 2 0 2 // 8 | 1 0 1 2 // 9 | 1 1 0 2 // 10 | 2 0 0 2 // | // 11 | 0 0 3 3 // 12 | 0 1 2 3 // 13 | 0 2 1 3 // 14 | 0 3 0 3 // 15 | 1 0 2 3 // 16 | 1 1 1 3 // 17 | 1 2 0 3 // 18 | 2 0 1 3 // 19 | 2 1 0 3 // 20 | 3 0 0 3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input/output, int X[M], the current monomial. // The first element is X = [ 0, 0, ..., 0, 0 ]. // { int i; int im1; int j; int t; // // Ensure that 1 <= M. // if ( m < 1 ) { cerr << "\n"; cerr << "MONO_NEXT_GRLEX - Fatal error!\n"; cerr << " M < 1\n"; exit ( 1 ); } // // Ensure that 0 <= X(I). // for ( i = 0; i < m; i++ ) { if ( x[i] < 0 ) { cerr << "\n"; cerr << "MONO_NEXT_GRLEX - Fatal error!\n"; cerr << " X[I] < 0\n"; exit ( 1 ); } } // // Find I, the index of the rightmost nonzero entry of X. // i = 0; for ( j = m; 1 <= j; j-- ) { if ( 0 < x[j-1] ) { i = j; break; } } // // set T = X(I) // set X(I) to zero, // increase X(I-1) by 1, // increment X(D) by T-1. // if ( i == 0 ) { x[m-1] = 1; return; } else if ( i == 1 ) { t = x[0] + 1; im1 = m; } else if ( 1 < i ) { t = x[i-1]; im1 = i - 1; } x[i-1] = 0; x[im1-1] = x[im1-1] + 1; x[m-1] = x[m-1] + t - 1; return; } //****************************************************************************80 int mono_rank_grlex ( int m, int x[] ) //****************************************************************************80 // // Purpose: // // MONO_RANK_GRLEX computes the graded lexicographic rank of a monomial. // // Discussion: // // The graded lexicographic ordering is used, over all monomials of // dimension M, for degree NM = 0, 1, 2, ... // // For example, if M = 3, the ranking begins: // // Rank Sum 1 2 3 // ---- --- -- -- -- // 1 0 0 0 0 // // 2 1 0 0 1 // 3 1 0 1 0 // 4 1 1 0 1 // // 5 2 0 0 2 // 6 2 0 1 1 // 7 2 0 2 0 // 8 2 1 0 1 // 9 2 1 1 0 // 10 2 2 0 0 // // 11 3 0 0 3 // 12 3 0 1 2 // 13 3 0 2 1 // 14 3 0 3 0 // 15 3 1 0 2 // 16 3 1 1 1 // 17 3 1 2 0 // 18 3 2 0 1 // 19 3 2 1 0 // 20 3 3 0 0 // // 21 4 0 0 4 // .. .. .. .. .. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // 1 <= D. // // Input, int XC[M], the monomial. // For each 1 <= I <= M, we have 0 <= XC(I). // // Output, int MONO_RANK_GRLEX, the rank. // { int i; int j; int ks; int n; int nm; int ns; int rank; int tim1; int *xs; // // Ensure that 1 <= M. // if ( m < 1 ) { cerr << "\n"; cerr << "MONO_RANK_GRLEX - Fatal error!\n"; cerr << " M < 1\n"; exit ( 1 ); } // // Ensure that 0 <= X(I). // for ( i = 0; i < m; i++ ) { if ( x[i] < 0 ) { cerr << "\n"; cerr << "MONO_RANK_GRLEX - Fatal error!\n"; cerr << " X[I] < 0\n"; exit ( 1 ); } } // // NM = sum ( X ) // nm = i4vec_sum ( m, x ); // // Convert to KSUBSET format. // ns = nm + m - 1; ks = m - 1; xs = new int[ks]; xs[0] = x[0] + 1; for ( i = 2; i < m; i++ ) { xs[i-1] = xs[i-2] + x[i-1] + 1; } // // Compute the rank. // rank = 1; for ( i = 1; i <= ks; i++ ) { if ( i == 1 ) { tim1 = 0; } else { tim1 = xs[i-2]; } if ( tim1 + 1 <= xs[i-1] - 1 ) { for ( j = tim1 + 1; j <= xs[i-1] - 1; j++ ) { rank = rank + i4_choose ( ns - j, ks - i ); } } } for ( n = 0; n < nm; n++ ) { rank = rank + i4_choose ( n + m - 1, n ); } delete [] xs; return rank; } //****************************************************************************80 void mono_total_next_grlex ( int m, int n, int x[] ) //****************************************************************************80 // // Purpose: // // MONO_TOTAL_NEXT_GRLEX: grlex next monomial with total degree equal to N. // // Discussion: // // We consider all monomials in a M dimensional space, with total degree N. // // For example: // // M = 3 // N = 3 // // # X(1) X(2) X(3) Degree // +------------------------ // 1 | 0 0 3 3 // 2 | 0 1 2 3 // 3 | 0 2 1 3 // 4 | 0 3 0 3 // 5 | 1 0 2 3 // 6 | 1 1 1 3 // 7 | 1 2 0 3 // 8 | 2 0 1 3 // 9 | 2 1 0 3 // 10 | 3 0 0 3 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the degree. // 0 <= N. // // Input/output, int X[M], the current monomial. // To start the sequence, set X = [ 0, 0, ..., 0, N ]. // The last value in the sequence is X = [ N, 0, ..., 0, 0 ]. // { int i; int im1; int j; int t; if ( n < 0 ) { cerr << "\n"; cerr << "MONO_TOTAL_NEXT_GRLEX - Fatal error!\n"; cerr << " N < 0.\n"; exit ( 1 ); } if ( i4vec_sum ( m, x ) != n ) { cerr << "\n"; cerr << "MONO_TOTAL_NEXT_GRLEX - Fatal error!\n"; cerr << " Input X does not sum to N.\n"; exit ( 1 ); } if ( n == 0 ) { return; } if ( x[0] == n ) { x[0] = 0; x[m-1] = n; } else { mono_next_grlex ( m, x ); } return; } //****************************************************************************80 int *mono_unrank_grlex ( int m, int rank ) //****************************************************************************80 // // Purpose: // // MONO_UNRANK_GRLEX computes the composition of given grlex rank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 January 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // 1 <= M. // // Input, int RANK, the rank. // 1 <= RANK. // // Output, int MONO_UNRANK_GRLEX[M], the monomial X of the given rank. // For each I, 0 <= XC[I] <= NM, and // sum ( 1 <= I <= M ) XC[I] = NM. // { int i; int j; int ks; int nksub; int nm; int ns; int r; int rank1; int rank2; int *x; int *xs; // // Ensure that 1 <= M. // if ( m < 1 ) { cerr << "\n"; cerr << "MONO_UNRANK_GRLEX - Fatal error!\n"; cerr << " M < 1\n"; exit ( 1 ); } // // Ensure that 1 <= RANK. // if ( rank < 1 ) { cerr << "\n"; cerr << "MONO_UNRANK_GRLEX - Fatal error!\n"; cerr << " RANK < 1\n"; exit ( 1 ); } // // Special case M == 1. // if ( m == 1 ) { x = new int[m]; x[0] = rank - 1; return x; } // // Determine the appropriate value of NM. // Do this by adding up the number of compositions of sum 0, 1, 2, // ..., without exceeding RANK. Moreover, RANK - this sum essentially // gives you the rank of the composition within the set of compositions // of sum NM. And that's the number you need in order to do the // unranking. // rank1 = 1; nm = -1; for ( ; ; ) { nm = nm + 1; r = i4_choose ( nm + m - 1, nm ); if ( rank < rank1 + r ) { break; } rank1 = rank1 + r; } rank2 = rank - rank1; // // Convert to KSUBSET format. // Apology: an unranking algorithm was available for KSUBSETS, // but not immediately for compositions. One day we will come back // and simplify all this. // ks = m - 1; ns = nm + m - 1; xs = new int[ks]; nksub = i4_choose ( ns, ks ); j = 1; for ( i = 1; i <= ks; i++ ) { r = i4_choose ( ns - j, ks - i ); while ( r <= rank2 && 0 < r ) { rank2 = rank2 - r; j = j + 1; r = i4_choose ( ns - j, ks - i ); } xs[i-1] = j; j = j + 1; } // // Convert from KSUBSET format to COMP format. // x = new int[m]; x[0] = xs[0] - 1; for ( i = 2; i < m; i++ ) { x[i-1] = xs[i-1] - xs[i-2] - 1; } x[m-1] = ns - xs[ks-1]; delete [] xs; return x; } //****************************************************************************80 int mono_upto_enum ( int m, int n ) //****************************************************************************80 // // Purpose: // // MONO_UPTO_ENUM enumerates monomials in M dimensions of degree up to N. // // Discussion: // // For M = 2, we have the following values: // // N VALUE // // 0 1 // 1 3 // 2 6 // 3 10 // 4 15 // 5 21 // // In particular, VALUE(2,3) = 10 because we have the 10 monomials: // // 1, x, y, x^2, xy, y^2, x^3, x^2y, xy^2, y^3. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 November 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the maximum degree. // // Output, int MONO_UPTO_ENUM, the number of monomials in // M variables, of total degree N or less. // { int value; value = i4_choose ( n + m, n ); return value; } //****************************************************************************80 double *mono_value ( int m, int n, int f[], double x[] ) //****************************************************************************80 // // Purpose: // // MONO_VALUE evaluates a monomial. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of evaluation points. // // Input, int F[M], the exponents of the monomial. // // Input, double X[M*N], the coordinates of the evaluation points. // // Output, double MONO_VALUE[N], the value of the monomial at X. // { int i; int j; double *v; v = new double[n]; for ( j = 0; j < n; j++ ) { v[j] = 1.0; for ( i = 0; i < m; i++ ) { v[j] = v[j] * pow ( x[i+j*m], f[i] ); } } return v; } //****************************************************************************80 void perm_check0 ( int n, int p[] ) //****************************************************************************80 // // Purpose: // // PERM_CHECK0 checks a 0-based permutation. // // Discussion: // // The routine verifies that each of the integers from 0 to // to N-1 occurs among the N entries of the permutation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 October 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries. // // Input, int P[N], the array to check. // { bool error; int location; int value; for ( value = 0; value < n; value++ ) { error = true; for ( location = 0; location < n; location++ ) { if ( p[location] == value ) { error = false; break; } } if ( error ) { cerr << "\n"; cerr << "PERM_CHECK0 - Fatal error!\n"; cerr << " Permutation is missing value " << value << "\n"; exit ( 1 ); } } return; } //****************************************************************************80 void polynomial_add ( int o1, double c1[], int e1[], int o2, double c2[], int e2[], int &o, double c[], int e[] ) //****************************************************************************80 // // Purpose: // // POLYNOMIAL_ADD adds two polynomials. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int O1, the "order" of polynomial 1. // // Input, double C1[O1], the coefficients of polynomial 1. // // Input, int E1[O1], the indices of the exponents of // polynomial 1. // // Input, int O2, the "order" of polynomial 2. // // Input, double C2[O2], the coefficients of polynomial 2. // // Input, int E2[O2], the indices of the exponents of // polynomial 2. // // Output, int &O, the "order" of the polynomial sum. // // Output, double C[O], the coefficients of the polynomial sum. // // Output, int E[O], the indices of the exponents of // the polynomial sum. // { o = o1 + o2; r8vec_concatenate ( o1, c1, o2, c2, c ); i4vec_concatenate ( o1, e1, o2, e2, e ); polynomial_sort ( o, c, e ); polynomial_compress ( o, c, e, o, c, e ); return; } //****************************************************************************80 void polynomial_axpy ( double s, int o1, double c1[], int e1[], int o2, double c2[], int e2[], int &o, double c[], int e[] ) //****************************************************************************80 // // Purpose: // // POLYNOMIAL_AXPY adds a multiple of one polynomial to another. // // Discussion: // // P(X) = S * P1(X) + P2(X) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 January 2014 // // Author: // // John Burkardt // // Parameters: // // Input, double S, the multiplier of polynomial 1. // // Input, int O1, the "order" of polynomial 1. // // Input, double C1[O1], the coefficients of polynomial 1. // // Input, int E1[O1], the indices of the exponents of // polynomial 1. // // Input, int O2, the "order" of polynomial 2. // // Input, double C2[O2], the coefficients of polynomial 2. // // Input, int E2[O2], the indices of the exponents of // polynomial 2. // // Output, int &O, the "order" of the polynomial sum. // // Output, double C[O], the coefficients of the polynomial sum. // // Output, int E[O], the indices of the exponents of // the polynomial sum. // { double *c3; int *e3; int i; int o3; double *sc1; o3 = o1 + o2; c3 = new double[o3]; e3 = new int[o3]; sc1 = new double[o1]; for ( i = 0; i < o1; i++ ) { sc1[i] = s * c1[i]; } r8vec_concatenate ( o1, sc1, o2, c2, c3 ); i4vec_concatenate ( o1, e1, o2, e2, e3 ); polynomial_sort ( o3, c3, e3 ); polynomial_compress ( o3, c3, e3, o, c, e ); delete [] c3; delete [] e3; delete [] sc1; return; } //****************************************************************************80 void polynomial_compress ( int o1, double c1[], int e1[], int &o2, double c2[], int e2[] ) //****************************************************************************80 // // Purpose: // // POLYNOMIAL_COMPRESS compresses a polynomial. // // Discussion: // // The function polynomial_sort ( ) should be called first, or else // the E1 vector should be in ascending sorted order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 October 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int O1, the "order" of the polynomial. // // Input, double C1[O1], the coefficients of the polynomial. // // Input, int E1[O1], the indices of the exponents of // the polynomial. // // Output, int &O2, the "order" of the polynomial. // // Output, double C2[O2], the coefficients of the polynomial. // // Output, int E2[O2], the indices of the exponents of // the polynomial. // { int get; int put; const double r8_epsilon_sqrt = 0.1490116119384766E-07; // // Add coefficients associated with the same exponent. // get = 0; put = 0; while ( get < o1 ) { get = get + 1; if ( 0 == put ) { put = put + 1; c2[put-1] = c1[get-1]; e2[put-1] = e1[get-1]; } else { if ( e2[put-1] == e1[get-1] ) { c2[put-1] = c2[put-1] + c1[get-1]; } else { put = put + 1; c2[put-1] = c1[get-1]; e2[put-1] = e1[get-1]; } } } o2 = put; // // Clear out zeros and tiny coefficients. // get = 0; put = 0; while ( get < o2 ) { if ( r8_epsilon_sqrt < fabs ( c2[get] ) ) { c2[put] = c2[get]; e2[put] = e2[get]; put = put + 1; } get = get + 1; } o2 = put; return; } //****************************************************************************80 void polynomial_dif ( int m, int o1, double c1[], int e1[], int dif[], int &o2, double c2[], int e2[] ) //****************************************************************************80 // // Purpose: // // POLYNOMIAL_DIF differentiates a polynomial. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int O1, the "order" of polynomial 1. // // Input, double C1[O1], the coefficients of polynomial 1. // // Input, int E1[O1], the indices of the exponents of // polynomial 1. // // Input, int DIF[M], indicates the number of // differentiations in each component. // // Output, int &O2, the "order" of the polynomial derivative. // // Output, double C2[O2], the coefficients of the polynomial // derivative. // // Output, int E2[O2], the indices of the exponents of the // polynomial derivative. // { int *f1; int i; int j; o2 = o1; for ( j = 0; j < o1; j++ ) { c2[j] = c1[j]; } for ( j = 0; j < o1; j++ ) { f1 = mono_unrank_grlex ( m, e1[j] ); for ( i = 0; i < m; i++ ) { c2[j] = c2[j] * i4_fall ( f1[i], dif[i] ); f1[i] = i4_max ( f1[i] - dif[i], 0 ); } e2[j] = mono_rank_grlex ( m, f1 ); delete [] f1; } polynomial_sort ( o2, c2, e2 ); polynomial_compress ( o2, c2, e2, o2, c2, e2 ); return; } //****************************************************************************80 void polynomial_mul ( int m, int o1, double c1[], int e1[], int o2, double c2[], int e2[], int &o, double c[], int e[] ) //****************************************************************************80 // // Purpose: // // POLYNOMIAL_MUL multiplies two polynomials. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int O1, the "order" of polynomial 1. // // Input, double C1[O1], the coefficients of polynomial 1. // // Input, int E1[O1], the indices of the exponents of // polynomial 1. // // Input, int O2, the "order" of polynomial 2. // // Input, double C2[O2], the coefficients of polynomial 2. // // Input, int E2[O2], the indices of the exponents of // polynomial 2. // // Output, int &O, the "order" of the polynomial product. // // Output, double C[O], the coefficients of the polynomial product. // // Output, int E[O], the indices of the exponents of the // polynomial product. // { int *f; int *f1; int *f2; int i; int j; int k; f = new int[m]; o = 0; for ( j = 0; j < o2; j++ ) { for ( i = 0; i < o1; i++ ) { c[o] = c1[i] * c2[j]; f1 = mono_unrank_grlex ( m, e1[i] ); f2 = mono_unrank_grlex ( m, e2[j] ); for ( k = 0; k < m; k++ ) { f[k] = f1[k] + f2[k]; } e[o] = mono_rank_grlex ( m, f ); delete [] f1; delete [] f2; o = o + 1; } } delete [] f; polynomial_sort ( o, c, e ); polynomial_compress ( o, c, e, o, c, e ); return; } //****************************************************************************80 void polynomial_print ( int m, int o, double c[], int e[], string title ) //****************************************************************************80 // // Purpose: // // POLYNOMIAL_PRINT prints a polynomial. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int O, the "order" of the polynomial, that is, // simply the number of terms. // // Input, double C[O], the coefficients. // // Input, int E[O], the indices of the exponents. // // Input, string TITLE, a title. // { int *f; int i; int j; cout << title << "\n"; if ( o == 0 ) { cout << " 0.\n"; } else { for ( j = 0; j < o; j++ ) { cout << " "; if ( c[j] < 0.0 ) { cout << "- "; } else { cout << "+ "; } cout << fabs ( c[j] ) << " * x^("; f = mono_unrank_grlex ( m, e[j] ); for ( i = 0; i < m; i++ ) { cout << f[i]; if ( i < m - 1 ) { cout << ","; } else { cout << ")"; } } delete [] f; if ( j == o - 1 ) { cout << "."; } cout << "\n"; } } return; } //****************************************************************************80 void polynomial_scale ( double s, int m, int o, double c[], int e[] ) //****************************************************************************80 // // Purpose: // // POLYNOMIAL_SCALE scales a polynomial. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 January 2014 // // Author: // // John Burkardt // // Parameters: // // Input, double S, the scale factor. // // Input, int M, the spatial dimension. // // Input, int O, the "order" of the polynomial. // // Input/output, double C[O], the coefficients of the polynomial. // // Input, int E[O], the indices of the exponents of the // polynomial. // { int i; for ( i = 0; i < o; i++ ) { c[i] = c[i] * s; } return; } //****************************************************************************80 void polynomial_sort ( int o, double c[], int e[] ) //****************************************************************************80 // // Purpose: // // POLYNOMIAL_SORT sorts the information in a polynomial. // // Discussion // // The coefficients C and exponents E are rearranged so that // the elements of E are in ascending order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 December 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int O, the "order" of the polynomial. // // Input/output, double C[O], the coefficients of the polynomial. // // Input/output, int E[O], the indices of the exponents of // the polynomial. // { int *indx; indx = i4vec_sort_heap_index_a ( o, e ); i4vec_permute ( o, indx, e ); r8vec_permute ( o, indx, c ); delete [] indx; return; } //****************************************************************************80 double *polynomial_value ( int m, int o, double c[], int e[], int n, double x[] ) //****************************************************************************80 // // Purpose: // // POLYNOMIAL_VALUE evaluates a polynomial. // // Discussion: // // The polynomial is evaluated term by term, and no attempt is made to // use an approach such as Horner's method to speed up the process. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 October 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int O, the "order" of the polynomial. // // Input, double C[O], the coefficients of the polynomial. // // Input, int E(O), the indices of the exponents // of the polynomial. // // Input, int N, the number of evaluation points. // // Input, double X[M*N], the coordinates of the evaluation points. // // Output, double POLYNOMIAL_VALUE[N], the value of the polynomial at X. // { int *f; int j; int k; double *p; double *v; p = new double[n]; for ( k = 0; k < n; k++ ) { p[k] = 0.0; } for ( j = 0; j < o; j++ ) { f = mono_unrank_grlex ( m, e[j] ); v = mono_value ( m, n, f, x ); for ( k = 0; k < n; k++ ) { p[k] = p[k] + c[j] * v[k]; } delete [] f; delete [] v; } return p; } //****************************************************************************80 void r8vec_concatenate ( int n1, double a[], int n2, double b[], double c[] ) //****************************************************************************80 // // Purpose: // // R8VEC_CONCATENATE concatenates two R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 November 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, the number of entries in the first vector. // // Input, double A[N1], the first vector. // // Input, int N2, the number of entries in the second vector. // // Input, double B[N2], the second vector. // // Output, double C[N1+N2], the concatenated vector. // { int i; for ( i = 0; i < n1; i++ ) { c[i] = a[i]; } for ( i = 0; i < n2; i++ ) { c[n1+i] = b[i]; } return; } //****************************************************************************80 void r8vec_permute ( int n, int p[], double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_PERMUTE permutes an R8VEC in place. // // Discussion: // // An R8VEC is a vector of R8's. // // This routine permutes an array of real "objects", but the same // logic can be used to permute an array of objects of any arithmetic // type, or an array of objects of any complexity. The only temporary // storage required is enough to store a single object. The number // of data movements made is N + the number of cycles of order 2 or more, // which is never more than N + N/2. // // Example: // // Input: // // N = 5 // P = ( 1, 3, 4, 0, 2 ) // A = ( 1.0, 2.0, 3.0, 4.0, 5.0 ) // // Output: // // A = ( 2.0, 4.0, 5.0, 1.0, 3.0 ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 October 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of objects. // // Input, int P[N], the permutation. // // Input/output, double A[N], the array to be permuted. // { double a_temp; int i; int iget; int iput; int istart; perm_check0 ( n, p ); // // In order for the sign negation trick to work, we need to assume that the // entries of P are strictly positive. Presumably, the lowest number is 0. // So temporarily add 1 to each entry to force positivity. // for ( i = 0; i < n; i++ ) { p[i] = p[i] + 1; } // // Search for the next element of the permutation that has not been used. // for ( istart = 1; istart <= n; istart++ ) { if ( p[istart-1] < 0 ) { continue; } else if ( p[istart-1] == istart ) { p[istart-1] = - p[istart-1]; continue; } else { a_temp = a[istart-1]; iget = istart; // // Copy the new value into the vacated entry. // for ( ; ; ) { iput = iget; iget = p[iget-1]; p[iput-1] = - p[iput-1]; if ( iget < 1 || n < iget ) { cerr << "\n"; cerr << "R8VEC_PERMUTE - Fatal error!\n"; cerr << " A permutation index is out of range.\n"; cerr << " P(" << iput << ") = " << iget << "\n"; exit ( 1 ); } if ( iget == istart ) { a[iput-1] = a_temp; break; } a[iput-1] = a[iget-1]; } } } // // Restore the signs of the entries. // for ( i = 0; i < n; i++ ) { p[i] = - p[i]; } // // Restore the entries. // for ( i = 0; i < n; i++ ) { p[i] = p[i] - 1; } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }