# include # include # include # include using namespace std; int main ( int argc, char *argv[] ); void prime_number_sweep ( int n_lo, int n_hi, int n_factor ); int prime_number ( int n ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for PRIME_OPENMP. // // Discussion: // // This program calls a version of PRIME_NUMBER that includes // OpenMP directives for parallel processing. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 August 2009 // // Author: // // John Burkardt // { int n_factor; int n_hi; int n_lo; cout << "\n"; cout << "PRIME_OPENMP\n"; cout << " C++/OpenMP version\n"; cout << "\n"; cout << " Number of processors available = " << omp_get_num_procs ( ) << "\n"; cout << " Number of threads = " << omp_get_max_threads ( ) << "\n"; n_lo = 1; n_hi = 131072; n_factor = 2; prime_number_sweep ( n_lo, n_hi, n_factor ); n_lo = 5; n_hi = 500000; n_factor = 10; prime_number_sweep ( n_lo, n_hi, n_factor ); // // Terminate. // cout << "\n"; cout << "PRIME_OPENMP\n"; cout << " Normal end of execution.\n"; return 0; } //****************************************************************************80 void prime_number_sweep ( int n_lo, int n_hi, int n_factor ) //****************************************************************************80 // // Purpose: // // PRIME_NUMBER_SWEEP does repeated calls to PRIME_NUMBER. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 August 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N_LO, the first value of N. // // Input, int N_HI, the last value of N. // // Input, int N_FACTOR, the factor by which to increase N after // each iteration. // { int i; int n; int primes; double wtime; cout << "\n"; cout << "TEST01\n"; cout << " Call PRIME_NUMBER to count the primes from 1 to N.\n"; cout << "\n"; cout << " N Pi Time\n"; cout << "\n"; n = n_lo; while ( n <= n_hi ) { wtime = omp_get_wtime ( ); primes = prime_number ( n ); wtime = omp_get_wtime ( ) - wtime; cout << " " << setw(8) << n << " " << setw(8) << primes << " " << setw(14) << wtime << "\n"; n = n * n_factor; } return; } //****************************************************************************80 int prime_number ( int n ) //****************************************************************************80 // // Purpose: // // PRIME_NUMBER returns the number of primes between 1 and N. // // Discussion: // // A naive algorithm is used. // // Mathematica can return the number of primes less than or equal to N // by the command PrimePi[N]. // // N PRIME_NUMBER // // 1 0 // 10 4 // 100 25 // 1,000 168 // 10,000 1,229 // 100,000 9,592 // 1,000,000 78,498 // 10,000,000 664,579 // 100,000,000 5,761,455 // 1,000,000,000 50,847,534 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 May 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the maximum number to check. // // Output, int PRIME_NUMBER, the number of prime numbers up to N. // { int i; int j; int prime; int total = 0; # pragma omp parallel \ shared ( n ) \ private ( i, j, prime ) # pragma omp for reduction ( + : total ) for ( i = 2; i <= n; i++ ) { prime = 1; for ( j = 2; j < i; j++ ) { if ( i % j == 0 ) { prime = 0; break; } } total = total + prime; } return total; }