18 September 2013 02:50:46 PM

PROB_PRB
  C++ version.
  Test the PROB library.

TEST001
  For the ANGLE PDF:
  ANGLE_CDF evaluates the CDF;

  Parameter N =     5
  PDF argument X =   0.5
  CDF value =       0.0107809

TEST002
  For the ANGLE PDF:
  ANGLE_PDF evaluates the PDF;

  Parameter N =    5
  PDF argument X =  0.5
  PDF value =      0.0826466

TEST003
  For the ANGLE PDF:
  ANGLIT_MEAN computes the mean;

  Parameter N = 5
  PDF mean =    1.5708

TEST004
  For the Anglit PDF:
  ANGLIT_CDF evaluates the CDF;
  ANGLIT_CDF_INV inverts the CDF.
  ANGLIT_PDF evaluates the PDF;

       X            PDF           CDF            CDF_INV

     -0.299105      0.186098      0.218418     -0.299105
      0.574842      0.934378      0.956318      0.574842
      0.359757       0.99783      0.829509      0.359757
     0.0618531      0.788954      0.561695     0.0618531
    -0.0851032      0.577115      0.415307    -0.0851032
     -0.525341     -0.262184     0.0661187     -0.525341
     -0.253093      0.275599      0.257578     -0.253093
     -0.447402     -0.109188      0.109957     -0.447402
     -0.574484     -0.355613      0.043829     -0.574484
      0.135623       0.87071      0.633966      0.135623

TEST005
  For the Anglit PDF:
  ANGLIT_MEAN computes the mean;
  ANGLIT_SAMPLE samples;
  ANGLIT_VARIANCE computes the variance.

  PDF mean =     0
  PDF variance = 0.11685

  Sample size =     1000
  Sample mean =     0.00239765
  Sample variance = 0.116844
  Sample maximum =  0.739647
  Sample minimum =  -0.742509

TEST006
  For the Arcsin PDF:
  ARCSIN_CDF evaluates the CDF;
  ARCSIN_CDF_INV inverts the CDF.
  ARCSIN_PDF evaluates the PDF;

  PDF parameter A =             1

       X            PDF           CDF            CDF_INV

     -0.773671      0.502393      0.218418     -0.773671
      0.990598       2.32679      0.956318      0.990598
      0.859956      0.623687      0.829509      0.859956
      0.192611      0.324384      0.561695      0.192611
     -0.262942      0.329919      0.415307     -0.262942
     -0.978504       1.54349     0.0661187     -0.978504
     -0.690074      0.439813      0.257578     -0.690074
     -0.940927      0.940048      0.109957     -0.940927
     -0.990535       2.31906      0.043829     -0.990535
      0.408551      0.348743      0.633966      0.408551

TEST007
  For the Arcsin PDF:
  ARCSIN_MEAN computes the mean;
  ARCSIN_SAMPLE samples;
  ARCSIN_VARIANCE computes the variance.

  PDF parameter A =             1
  PDF mean =                    0
  PDF variance =                0.5

  Sample size =     1000
  Sample mean =     0.00986339
  Sample variance = 0.490326
  Sample maximum =  0.999978
  Sample minimum =  -0.999983

  PDF parameter A =             16
  PDF mean =                    0
  PDF variance =                128

  Sample size =     1000
  Sample mean =     -0.453245
  Sample variance = 129.51
  Sample maximum =  15.9995
  Sample minimum =  -15.9993

TEST008
  For the Benford PDF:
  BENFORD_PDF evaluates the PDF.

  N    PDF(N)

       1         0.30103
       2        0.176091
       3        0.124939
       4         0.09691
       5       0.0791812
       6       0.0669468
       7       0.0579919
       8       0.0511525
       9       0.0457575
      10       0.0413927
      11       0.0377886
      12       0.0347621
      13       0.0321847
      14       0.0299632
      15       0.0280287
      16       0.0263289
      17       0.0248236
      18       0.0234811
      19       0.0222764

TEST009
  For the Bernoulli PDF,
  BERNOULLI_CDF evaluates the CDF;
  BERNOULLI_CDF_INV inverts the CDF;
  BERNOULLI_PDF evaluates the PDF.

  PDF parameter A =             0.75

       X            PDF           CDF            CDF_INV

             0          0.25          0.25             0
             1          0.75             1             1
             1          0.75             1             1
             1          0.75             1             1
             1          0.75             1             1
             0          0.25          0.25             0
             1          0.75             1             1
             0          0.25          0.25             0
             0          0.25          0.25             0
             1          0.75             1             1

TEST010
  For the Bernoulli PDF:
  BERNOULLI_MEAN computes the mean;
  BERNOULLI_SAMPLE samples;
  BERNOULLI_VARIANCE computes the variance.

  PDF parameter A =             0.75
  PDF mean =                    0.75
  PDF variance =       0.1875

  Sample size =     1000
  Sample mean =     0.768
  Sample variance = 0.178354
  Sample maximum =  1
  Sample minimum =  0

TEST0105:
  BESSEL_I0 evaluates the Bessel function of the
  first kind and order 0;
  BESSEL_I0_VALUES returns some exact values.

      X       Exact F       BESSEL_I0(X)

         0                 1                 1
       0.2           1.01003           1.01003
       0.4            1.0404            1.0404
       0.6           1.09205           1.09205
       0.8           1.16651           1.16651
         1           1.26607           1.26607
       1.2           1.39373           1.39373
       1.4            1.5534            1.5534
       1.6           1.74998           1.74998
       1.8           1.98956           1.98956
         2           2.27959           2.27959
       2.5           3.28984           3.28984
         3           4.88079           4.88079
       3.5            7.3782            7.3782
         4           11.3019           11.3019
       4.5           17.4812           17.4812
         5           27.2399           27.2399
         6           67.2344           67.2344
         8           427.564           427.564
        10           2815.72           2815.72

TEST0106:
  BESSEL_I1 evaluates the Bessel function of the
  first kind and order 1;
  BESSEL_I1_VALUES returns some exact values.

      X       Exact F       BESSEL_I1(X)

         0                 0                 0
       0.2          0.100501          0.100501
       0.4          0.204027          0.204027
       0.6          0.313704          0.313704
       0.8          0.432865          0.432865
         1          0.565159          0.565159
       1.2          0.714678          0.714678
       1.4          0.886092          0.886092
       1.6           1.08481           1.08481
       1.8           1.31717           1.31717
         2           1.59064           1.59064
       2.5           2.51672           2.51672
         3           3.95337           3.95337
       3.5           6.20583           6.20583
         4           9.75947           9.75947
       4.5           15.3892           15.3892
         5           24.3356           24.3356
         6           61.3419           61.3419
         8           399.873           399.873
        10           2670.99           2670.99

TEST011
  BETA evaluates the Beta function;
  TGAMMA evaluates the Gamma function.

  Argument A =                   2.2
  Argument B =                   3.7
  Beta(A,B) =                    0.045376
  (Expected value = 0.0454 )

  Gamma(A)*Gamma(B)/Gamma(A+B) = 0.045376

TEST012
  For the Beta PDF:
  BETA_CDF evaluates the CDF;
  BETA_CDF_INV inverts the CDF.
  BETA_PDF evaluates the PDF;

  PDF parameter A =      12
  PDF parameter B =      12

             A             B        X            PDF           CDF            CDF_INV

            12            12      0.678986      0.855881      0.963719      0.678986
            12            12      0.401338       2.49915      0.166966      0.401337
            12            12      0.635316       1.67553      0.909423      0.635317
            12            12      0.594216       2.59905      0.821699      0.594216
            12            12      0.504229       3.86528      0.516356      0.504229
            12            12      0.802574     0.0256424      0.999472      0.802574
            12            12      0.544908       3.53858      0.668704      0.544908
            12            12      0.649115       1.38847      0.930537      0.649115
            12            12      0.568142       3.14746      0.746604      0.568142
            12            12      0.415317       2.80857      0.204083      0.415317

TEST013:
  BETA_INC evaluates the normalized incomplete Beta
  function BETA_INC(A,B,X).
  BETA_INC_VALUES returns some exact values.

         A         B         X       Exact F       BETA_INC(A,B,X)

       0.5       0.5      0.01         0.0637686         0.0637686
       0.5       0.5       0.1          0.204833          0.204833
       0.5       0.5         1                 1                 1
         1       0.5         0                 0                 0
         1       0.5      0.01        0.00501256        0.00501256
         1       0.5       0.1         0.0513167         0.0513167
         1       0.5       0.5          0.292893          0.292893
         1         1       0.5               0.5               0.5
         2         2       0.1             0.028             0.028
         2         2       0.2             0.104             0.104
         2         2       0.3             0.216             0.216
         2         2       0.4             0.352             0.352
         2         2       0.5               0.5               0.5
         2         2       0.6             0.648             0.648
         2         2       0.7             0.784             0.784
         2         2       0.8             0.896             0.896
         2         2       0.9             0.972             0.972
       5.5         5       0.5          0.436191          0.436191
        10       0.5       0.9          0.151641          0.151641
        10         5       0.5         0.0897827         0.0897827
        10         5         1                 1                 1
        10        10       0.5               0.5               0.5
        20         5       0.8          0.459877          0.459877
        20        10       0.6          0.214682          0.214682
        20        10       0.8          0.950736          0.950736
        20        20       0.5               0.5               0.5
        20        20       0.6          0.897941          0.897941
        30        10       0.7           0.22413           0.22413
        30        10       0.8          0.758641          0.758641
        40        20       0.7          0.700178          0.700178
         1       0.5       0.1         0.0513167         0.0513167
         1       0.5       0.2          0.105573          0.105573
         1       0.5       0.3           0.16334           0.16334
         1       0.5       0.4          0.225403          0.225403
         1         2       0.2              0.36              0.36
         1         3       0.2             0.488             0.488
         1         4       0.2            0.5904            0.5904
         1         5       0.2           0.67232           0.67232
         2         2       0.3             0.216             0.216
         3         2       0.3            0.0837            0.0837
         4         2       0.3           0.03078           0.03078
         5         2       0.3          0.010935          0.010935
   1.30625   11.7562  0.225609          0.918885          0.918885
   1.30625   11.7562  0.0335568           0.21053           0.21053
   1.30625   11.7562  0.0295222          0.182413          0.182413

TEST014
  For the Beta PDF:
  BETA_MEAN computes the mean;
  BETA_SAMPLE samples;
  BETA_VARIANCE computes the variance;

  PDF parameter A =      2
  PDF parameter B =      3

  PDF mean =     0.4
  PDF variance = 0.04

  Sample size =     1000
  Sample mean =     0.406579
  Sample variance = 0.0410724
  Sample maximum =  0.942944
  Sample minimum =  0.00629773

TEST015
  For the Beta Binomial PDF:
  BETA_BINOMIAL_CDF evaluates the CDF;
  BETA_BINOMIAL_CDF_INV inverts the CDF.
  BETA_BINOMIAL_PDF evaluates the PDF;

  PDF parameter A =      2
  PDF parameter B =      3
  PDF parameter C =      4

       X            PDF           CDF            CDF_INV

             1      0.285714           0.5             1
             4     0.0714286             1             4
             3      0.171429      0.928571             3
             2      0.257143      0.757143             2
             1      0.285714           0.5             1
             0      0.214286      0.214286             0
             1      0.285714           0.5             1
             0      0.214286      0.214286             0
             0      0.214286      0.214286             0
             2      0.257143      0.757143             2

TEST016
  For the Beta Binomial PDF:
  BETA_BINOMIAL_MEAN computes the mean;
  BETA_BINOMIAL_SAMPLE samples;
  BETA_BINOMIAL_VARIANCE computes the variance;

  PDF parameter A =      2
  PDF parameter B =      3
  PDF parameter C =      4

  PDF mean =     1.6
  PDF variance = 1.44

  Sample size =     1000
  Sample mean =     1.62
  Sample variance = 1.401
  Sample maximum =  4
  Sample minimum =  0

TEST020:
  BINOMIAL_CDF evaluates the cumulative distribution
  function for the discrete binomial probability
  density function.
  BINOMIAL_CDF_VALUES returns some exact values.

  A is the number of trials;
  B is the probability of success on one trial;
  X is the number of successes;
  BINOMIAL_CDF is the probability of having up to X
  successes.

      A     B         X   Exact F     BINOMIAL_CDF(A,B,X)

         2      0.05         0            0.9025            0.9025
         2      0.05         1            0.9975            0.9975
         2      0.05         2                 1                 1
         2       0.5         0              0.25              0.25
         2       0.5         1              0.75              0.75
         4      0.25         0          0.316406          0.316406
         4      0.25         1          0.738281          0.738281
         4      0.25         2          0.949219          0.949219
         4      0.25         3          0.996094          0.996094
        10      0.05         4          0.999936          0.999936
        10       0.1         4          0.998365          0.998365
        10      0.15         4          0.990126          0.990126
        10       0.2         4          0.967207          0.967207
        10      0.25         4          0.921873          0.921873
        10       0.3         4          0.849732          0.849732
        10       0.4         4          0.633103          0.633103
        10       0.5         4          0.376953          0.376953

TEST021
  For the Binomial PDF:
  BINOMIAL_CDF evaluates the CDF;
  BINOMIAL_CDF_INV inverts the CDF.
  BINOMIAL_PDF evaluates the PDF;

  PDF parameter A =      5
  PDF parameter B =      0.65

       X            PDF           CDF            CDF_INV

             3      0.336416      0.571585             3
             5      0.116029             1             5
             3      0.336416      0.571585             3
             4      0.312386      0.883971             4
             3      0.336416      0.571585             3
             3      0.336416      0.571585             3
             2      0.181147      0.235169             2
             4      0.312386      0.883971             4
             5      0.116029             1             5
             2      0.181147      0.235169             2

TEST022
  BINOMIAL_COEF evaluates binomial coefficients.
  BINOMIAL_COEF_LOG evaluates the logarithm.

    N     K       C(N,K)

       0       0       1               1
       1       0       1               1
       1       1       1               1
       2       0       1               1
       2       1       2               2
       2       2       1               1
       3       0       1               1
       3       1       3               3
       3       2       3               3
       3       3       1               1
       4       0       1               1
       4       1       4               4
       4       2       6               6
       4       3       4               4
       4       4       1               1

TEST023
  For the Binomial PDF:
  BINOMIAL_MEAN computes the mean;
  BINOMIAL_SAMPLE samples;
  BINOMIAL_VARIANCE computes the variance;

  PDF parameter A =      5
  PDF parameter B =      0.3

  PDF mean =     1.5
  PDF variance = 1.05

  Sample size =     1000
  Sample mean =     1.522
  Sample variance = 1.02854
  Sample maximum =  5
  Sample minimum =  0

TEST0235
  For the Birthday PDF,
  BIRTHDAY_CDF evaluates the CDF;
  BIRTHDAY_CDF_INV inverts the CDF.
  BIRTHDAY_PDF evaluates the PDF;

       N            PDF           CDF            CDF_INV

         1               0               0         0
         2      0.00273973      0.00273973         2
         3      0.00546444      0.00820417         3
         4      0.00815175       0.0163559         4
         5       0.0107797       0.0271356         5
         6       0.0133269       0.0404625         6
         7       0.0157732       0.0562357         7
         8       0.0180996       0.0743353         8
         9       0.0202885       0.0946238         9
        10       0.0223243        0.116948        10
        11       0.0241932        0.141141        11
        12       0.0258834        0.167025        12
        13       0.0273855         0.19441        13
        14       0.0286922        0.223103        14
        15       0.0297988        0.252901        15
        16       0.0307027        0.283604        16
        17       0.0314037        0.315008        17
        18       0.0319038        0.346911        18
        19       0.0322071        0.379119        19
        20       0.0323199        0.411438        20
        21         0.03225        0.443688        21
        22        0.032007        0.475695        22
        23       0.0316019        0.507297        23
        24        0.031047        0.538344        24
        25       0.0303554          0.5687        25
        26       0.0295411        0.598241        26
        27       0.0286185        0.626859        27
        28       0.0276022        0.654461        28
        29       0.0265071        0.680969        29
        30       0.0253477        0.706316        30

TEST024
  For the Bradford PDF:
  BRADFORD_CDF evaluates the CDF;
  BRADFORD_CDF_INV inverts the CDF.
  BRADFORD_PDF evaluates the PDF;

  PDF parameter A =      1
  PDF parameter B =      2
  PDF parameter C =      3

       X            PDF           CDF            CDF_INV

       1.11788       1.59869      0.218418       1.11788
       1.92165      0.574785      0.956318       1.92165
       1.71934      0.685254      0.829509       1.71934
       1.39286      0.993325      0.561695       1.39286
       1.25948       1.21682      0.415307       1.25948
         1.032       1.97451     0.0661187         1.032
       1.14305       1.51422      0.257578       1.14305
       1.05489       1.85808      0.109957       1.05489
       1.02088       2.03647      0.043829       1.02088
       1.46939      0.898629      0.633966       1.46939

TEST025
  For the Bradford PDF:
  BRADFORD_MEAN computes the mean;
  BRADFORD_SAMPLE samples;
  BRADFORD_VARIANCE computes the variance;

  PDF parameter A =      1
  PDF parameter B =      2
  PDF parameter C =      3

  PDF mean =     1.38801
  PDF variance = 0.0807807

  Sample size =     1000
  Sample mean =     1.3901
  Sample variance = 0.0795644
  Sample maximum =  1.99614
  Sample minimum =  1.00085

TEST0251
  BUFFON_LAPLACE_PDF evaluates the Buffon-Laplace PDF, the probability
  that, on a grid of cells of width A and height B,
  a needle of length L, dropped at random, will cross
  at least one grid line.

      A         B         L        PDF

         1         1         0               0
         1         1       0.2        0.241916
         1         1       0.4        0.458366
         1         1       0.6        0.649352
         1         1       0.8        0.814873
         1         1         1         0.95493

         1         2         0               0
         1         2       0.2         0.18462
         1         2       0.4        0.356507
         1         2       0.6        0.515662
         1         2       0.8        0.662085
         1         2         1        0.795775

         1         3         0               0
         1         3       0.2        0.165521
         1         3       0.4        0.322554
         1         3       0.6        0.471099
         1         3       0.8        0.611155
         1         3         1        0.742723

         1         4         0               0
         1         4       0.2        0.155972
         1         4       0.4        0.305577
         1         4       0.6        0.448817
         1         4       0.8         0.58569
         1         4         1        0.716197

         1         5         0               0
         1         5       0.2        0.150242
         1         5       0.4        0.295392
         1         5       0.6        0.435448
         1         5       0.8        0.570411
         1         5         1        0.700282

         2         1         0               0
         2         1       0.2         0.18462
         2         1       0.4        0.356507
         2         1       0.6        0.515662
         2         1       0.8        0.662085
         2         1         1        0.795775

         2         2         0               0
         2         2       0.4        0.241916
         2         2       0.8        0.458366
         2         2       1.2        0.649352
         2         2       1.6        0.814873
         2         2         2         0.95493

         2         3         0               0
         2         3       0.4        0.203718
         2         3       0.8         0.39046
         2         3       1.2        0.560225
         2         3       1.6        0.713014
         2         3         2        0.848826

         2         4         0               0
         2         4       0.4         0.18462
         2         4       0.8        0.356507
         2         4       1.2        0.515662
         2         4       1.6        0.662085
         2         4         2        0.795775

         2         5         0               0
         2         5       0.4        0.173161
         2         5       0.8        0.336135
         2         5       1.2        0.488924
         2         5       1.6        0.631527
         2         5         2        0.763944

         3         1         0               0
         3         1       0.2        0.165521
         3         1       0.4        0.322554
         3         1       0.6        0.471099
         3         1       0.8        0.611155
         3         1         1        0.742723

         3         2         0               0
         3         2       0.4        0.203718
         3         2       0.8         0.39046
         3         2       1.2        0.560225
         3         2       1.6        0.713014
         3         2         2        0.848826

         3         3         0               0
         3         3       0.6        0.241916
         3         3       1.2        0.458366
         3         3       1.8        0.649352
         3         3       2.4        0.814873
         3         3         3         0.95493

         3         4         0               0
         3         4       0.6        0.213268
         3         4       1.2        0.407437
         3         4       1.8        0.582507
         3         4       2.4        0.738479
         3         4         3        0.875352

         3         5         0               0
         3         5       0.6        0.196079
         3         5       1.2        0.376879
         3         5       1.8          0.5424
         3         5       2.4        0.692642
         3         5         3        0.827606

         4         1         0               0
         4         1       0.2        0.155972
         4         1       0.4        0.305577
         4         1       0.6        0.448817
         4         1       0.8         0.58569
         4         1         1        0.716197

         4         2         0               0
         4         2       0.4         0.18462
         4         2       0.8        0.356507
         4         2       1.2        0.515662
         4         2       1.6        0.662085
         4         2         2        0.795775

         4         3         0               0
         4         3       0.6        0.213268
         4         3       1.2        0.407437
         4         3       1.8        0.582507
         4         3       2.4        0.738479
         4         3         3        0.875352

         4         4         0               0
         4         4       0.8        0.241916
         4         4       1.6        0.458366
         4         4       2.4        0.649352
         4         4       3.2        0.814873
         4         4         4         0.95493

         4         5         0               0
         4         5       0.8        0.218997
         4         5       1.6        0.417623
         4         5       2.4        0.595876
         4         5       3.2        0.753758
         4         5         4        0.891268

         5         1         0               0
         5         1       0.2        0.150242
         5         1       0.4        0.295392
         5         1       0.6        0.435448
         5         1       0.8        0.570411
         5         1         1        0.700282

         5         2         0               0
         5         2       0.4        0.173161
         5         2       0.8        0.336135
         5         2       1.2        0.488924
         5         2       1.6        0.631527
         5         2         2        0.763944

         5         3         0               0
         5         3       0.6        0.196079
         5         3       1.2        0.376879
         5         3       1.8          0.5424
         5         3       2.4        0.692642
         5         3         3        0.827606

         5         4         0               0
         5         4       0.8        0.218997
         5         4       1.6        0.417623
         5         4       2.4        0.595876
         5         4       3.2        0.753758
         5         4         4        0.891268

         5         5         0               0
         5         5         1        0.241916
         5         5         2        0.458366
         5         5         3        0.649352
         5         5         4        0.814873
         5         5         5         0.95493


TEST0252
  BUFFON_LAPLACE_SIMULATE simulates a Buffon-Laplace needle dropping
  experiment.  On a grid of cells of width A and height B,
  a needle of length L is dropped at random.  We count
  the number of times it crosses at least one grid line,
  and use this to estimate the value of PI.

  Cell width A =    1
  Cell height B =   1
  Needle length L = 1

    Trials      Hits          Est(Pi)     Err

        10        10               3        0.141593
       100        98         3.06122       0.0803682
     10000      9557         3.13906      0.00253228
   1000000    954728         3.14226      0.00066357

TEST0253
  BUFFON_PDF evaluates the Buffon PDF, the probability
  that, on a grid of cells of width A,
  a needle of length L, dropped at random, will cross
  at least one grid line.

      A         L        PDF

         1         0               0
         1       0.2        0.127324
         1       0.4        0.254648
         1       0.6        0.381972
         1       0.8        0.509296
         1         1         0.63662

         2         0               0
         2       0.4        0.127324
         2       0.8        0.254648
         2       1.2        0.381972
         2       1.6        0.509296
         2         2         0.63662

         3         0               0
         3       0.6        0.127324
         3       1.2        0.254648
         3       1.8        0.381972
         3       2.4        0.509296
         3         3         0.63662

         4         0               0
         4       0.8        0.127324
         4       1.6        0.254648
         4       2.4        0.381972
         4       3.2        0.509296
         4         4         0.63662

         5         0               0
         5         1        0.127324
         5         2        0.254648
         5         3        0.381972
         5         4        0.509296
         5         5         0.63662


TEST0254
  BUFFON_SIMULATE simulates a Buffon needle dropping
  experiment.  On a grid of cells of width A,
  a needle of length L is dropped at random.  We count
  the number of times it crosses at least one grid line,
  and use this to estimate the value of PI.

  Cell width A =    1
  Needle length L = 1

    Trials      Hits          Est(Pi)     Err

        10         4               5         1.85841
       100        73         2.73973        0.401867
     10000      6389         3.13038       0.0112123
   1000000    637013         3.13965       0.0019393

TEST026
  For the Burr PDF:
  BURR_CDF evaluates the CDF;
  BURR_CDF_INV inverts the CDF.
  BURR_PDF evaluates the PDF;

  PDF parameter A =      1
  PDF parameter B =      2
  PDF parameter C =      3
  PDF parameter D =      2

       X            PDF           CDF            CDF_INV

       2.91469      0.364571      0.218418       2.91469
       8.07561     0.0179097      0.956318       8.07561
       5.33847      0.102359      0.829509       5.33847
       3.88175      0.292999      0.561695       3.88175
        3.4385      0.363335      0.415307        3.4385
       2.40426      0.209864     0.0661187       2.40426
       3.02016      0.376757      0.257578       3.02016
       2.58327      0.278521      0.109957       2.58327
       2.28429      0.161895      0.043829       2.28429
       4.15007       0.24607      0.633966       4.15007

TEST027
  For the Burr PDF:
  BURR_MEAN computes the mean;
  BURR_SAMPLE samples;
  BURR_VARIANCE computes the variance;

  PDF parameter A =      1
  PDF parameter B =      2
  PDF parameter C =      3
  PDF parameter D =      2

  PDF mean =     4.22453
  PDF variance = 5.72505

  Sample size =     1000
  Sample mean =     4.21466
  Sample variance = 4.28559
  Sample maximum =  20.6931
  Sample minimum =  1.71031

TEST0275
  For the Cardioid PDF:
  CARDIOID_CDF evaluates the CDF;
  CARDIOID_CDF_INV inverts the CDF.
  CARDIOID_PDF evaluates the PDF;

  PDF parameter A = 0
  PDF parameter B = 0.25

       X            PDF           CDF            CDF_INV

      -1.28896      0.181287      0.218419      -1.28895
       2.61646     0.0902998      0.956317       2.61646
       1.57037      0.159189      0.829509       1.57037
      0.259396       0.23607      0.561695      0.259396
     -0.357278      0.233707      0.415307     -0.357278
      -2.38175      0.101466     0.0661188      -2.38175
      -1.08178      0.196537      0.257578      -1.08178
      -1.99504      0.126398      0.109957      -1.99504
      -2.61484     0.0903646     0.0438293      -2.61484
      0.571348      0.226093      0.633966      0.571348

TEST0276
  For the Cardioid PDF:
  CARDIOID_MEAN computes the mean;
  CARDIOID_SAMPLE samples;
  CARDIOID_VARIANCE computes the variance.

  PDF parameter A = 0
  PDF parameter B = 0.25

  PDF mean =                    0
  PDF variance =                0

  Sample size =     1000
  Sample mean =     0.00991354
  Sample variance = 2.28985
  Sample maximum =  3.11531
  Sample minimum =  -3.11849

TEST028
  For the Cauchy PDF:
  CAUCHY_CDF evaluates the CDF;
  CAUCHY_CDF_INV inverts the CDF.
  CAUCHY_PDF evaluates the PDF;

  PDF parameter A =      2
  PDF parameter B =      3

       X            PDF           CDF            CDF_INV

      -1.66329     0.0425934      0.218418      -1.66329
       23.7233     0.0019857      0.956318       23.7233
       7.05492     0.0276373      0.829509       7.05492
       2.58886      0.102167      0.561695       2.58886
        1.1824     0.0987675      0.415307        1.1824
      -12.2343    0.00451256     0.0661187      -12.2343
     -0.860458     0.0555766      0.257578     -0.860458
      -6.33637     0.0121655      0.109957      -6.33637
      -19.6498    0.00199897      0.043829      -19.6498
       3.34283     0.0883932      0.633966       3.34283

TEST029
  For the Cauchy PDF:
  CAUCHY_MEAN computes the mean;
  CAUCHY_SAMPLE samples;
  CAUCHY_VARIANCE computes the variance;

  PDF parameter A =      2
  PDF parameter B =      3

  PDF mean =     2
  PDF variance = inf

  Sample size =     1000
  Sample mean =     1.66442
  Sample variance = 1579.41
  Sample maximum =  458.532
  Sample minimum =  -517.438

TEST030
  For the Chi PDF:
  CHI_CDF evaluates the CDF;
  CHI_CDF_INV inverts the CDF.
  CHI_PDF evaluates the PDF;

  PDF parameter A =      1
  PDF parameter B =      2
  PDF parameter C =      3

       X            PDF           CDF            CDF_INV

       5.29456      0.183427      0.797383       5.29492
       7.13704     0.0338961      0.975756       7.13672
       2.45642      0.162283     0.0878118       2.45703
       6.98388      0.040642       0.97006       6.98438
       4.74497      0.242317      0.680042       4.74512
        3.0281      0.245322      0.205594       3.02832
        2.7946      0.214758      0.151764       2.79492
       2.95034      0.235816      0.186883        2.9502
       2.49461      0.168514     0.0941283       2.49414
       2.35125      0.144944     0.0716542       2.35156

TEST031
  For the Chi PDF:
  CHI_MEAN computes the mean;
  CHI_SAMPLE samples;
  CHI_VARIANCE computes the variance;

  PDF parameter A =      1
  PDF parameter B =      2
  PDF parameter C =      3

  PDF mean =     4.19154
  PDF variance = 1.81408

  Sample size =     1000
  Sample mean =     4.15337
  Sample variance = 1.9332
  Sample maximum =  9.32689
  Sample minimum =  1.20601

TEST032:
  CHI_SQUARE_CDF evaluates the cumulative
  distribution function for the chi-square central
  probability density function.
  CHI_SQUARE_CDF_VALUES returns some exact values.

      A     X   Exact F     CHI_SQUARE_CDF(A,X)

         1      0.01         0.0796557         0.0796557
         2      0.01        0.00498752        0.00498752
         1      0.02          0.112463          0.112463
         2      0.02        0.00995017        0.00995017
         1       0.4          0.472911          0.472911
         2       0.4          0.181269          0.181269
         3       0.4         0.0597575         0.0597575
         4       0.4         0.0175231         0.0175231
         1         1          0.682689          0.682689
         2         1          0.393469          0.393469
         3         1          0.198748          0.198748
         4         1          0.090204          0.090204
         5         1         0.0374342         0.0374342
         3         2          0.427593          0.427593
         3         3          0.608375          0.608375
         3         4          0.738536          0.738536
         3         5          0.828203          0.828203
         3         6           0.88839           0.88839
        10         1       0.000172116       0.000172116
        10         2        0.00365985        0.00365985
        10         3         0.0185759         0.0185759

TEST033
  For the Chi Square PDF:
  CHI_SQUARE_CDF evaluates the CDF;
  CHI_SQUARE_CDF_INV inverts the CDF.
  CHI_SQUARE_PDF evaluates the PDF;

  PDF parameter A =             4

       X            PDF           CDF            CDF_INV

       6.22214     0.0693042      0.816838       6.22214
       8.25908     0.0332227      0.917464       8.25908
       9.02741     0.0247301      0.939582       9.02741
       4.13727      0.130694      0.612253       4.13727
      0.703353      0.123704     0.0490852      0.703353
       1.44998      0.175567      0.164536       1.44998
      0.634817      0.115542     0.0408827      0.634817
       8.54272       0.02982      0.926397       8.54272
       13.0901    0.00470332      0.989156       13.0901
       1.46095      0.175928      0.166465       1.46095

TEST034
  For the Chi Square PDF:
  CHI_SQUARE_MEAN computes the mean;
  CHI_SQUARE_SAMPLE samples;
  CHI_SQUARE_VARIANCE computes the variance.

  PDF parameter A =             10
  PDF mean =                    10
  PDF variance =                20

  Sample size =     1000
  Sample mean =     9.97738
  Sample variance = 21.1882
  Sample maximum =  31.1387
  Sample minimum =  1.63719

TEST035
  For the Chi Square Noncentral PDF:
  CHI_SQUARE_NONCENTRAL_MEAN computes the mean;
  CHI_SQUARE_NONCENTRAL_SAMPLE samples;
  CHI_SQUARE_NONCENTRAL_VARIANCE computes the variance;

  PDF parameter A =      3
  PDF parameter B =      2

  PDF mean =     5
  PDF variance = 14

  Initial seed =     123456789
  Final seed =       200382020
  Sample size =     1000
  Sample mean =     4.99931
  Sample variance = 13.5745
  Sample maximum =  22.5373
  Sample minimum =  0.0271069

TEST036
  For the Circle PDF:
  CIRCLE_SAMPLE samples;

  PDF parameter A =      10
  PDF parameter B =      4
  PDF parameter C =      3

  Sample size =     1000
  Sample mean =          9.99926       4.06034
  Sample variance =      2.28924       2.19259
  Sample maximum =       12.9218       6.96697
  Sample minimum =       7.04381       1.03574

TEST037
  For the Circular Normal 01 PDF:
  CIRCULAR_NORMAL_01_MEAN computes the mean;
  CIRCULAR_NORMAL_01_SAMPLE samples;
  CIRCULAR_NORMAL_01_VARIANCE computes the variance.

  PDF mean =                0             0
  PDF variance =            1             1

  Sample size =     1000
  Sample mean =       0.00581875     0.0215871
  Sample variance =     0.998375       1.00517
  Sample maximum =       3.32858       3.02853
  Sample minimum =      -3.02975      -2.90483

TEST0375
  For the Circular Normal PDF:
  CIRCULAR_NORMAL_MEAN computes the mean;
  CIRCULAR_NORMAL_SAMPLE samples;
  CIRCULAR_NORMAL_VARIANCE computes the variance.

  PDF mean =                1             5
  PDF variance =         0.75          0.75

  Sample size =     1000
  Sample mean =          1.00436       5.01619
  Sample variance =     0.561586      0.565407
  Sample maximum =       3.49644        7.2714
  Sample minimum =      -1.27232       2.82138

TEST038
  For the Cosine PDF:
  COSINE_CDF evaluates the CDF;
  COSINE_CDF_INV inverts the CDF.
  COSINE_PDF evaluates the PDF;

  PDF parameter A =      2
  PDF parameter B =      1

       X            PDF           CDF            CDF_INV

       1.04663     0.0921411      0.218496       1.04663
       3.93128    -0.0561385      0.956298       3.93128
       3.15509     0.0642729      0.829438       3.15509
       2.19443      0.156156      0.561695       2.19443
       1.73232      0.153487      0.415302       1.73232
      0.258932    -0.0269689      0.066047      0.258932
       1.19619      0.110449      0.257478       1.19619
      0.542718     0.0180276      0.109936      0.542718
     0.0702522      -0.05591     0.0438598     0.0702522
       2.42721      0.144851      0.633937       2.42721

TEST039
  For the Cosine PDF:
  COSINE_MEAN computes the mean;
  COSINE_SAMPLE samples;
  COSINE_VARIANCE computes the variance;

  PDF parameter A =      2
  PDF parameter B =      1

  PDF mean =     2
  PDF variance = 1.28987

  Sample size =     1000
  Sample mean =     2.00654
  Sample variance = 1.29547
  Sample maximum =  4.71208
  Sample minimum =  -0.72435

TEST0395
  COUPON_COMPLETE_PDF evaluates the coupon collector's
  complete collection pdf.


  Number of coupon types is 2

   BOX_NUM      PDF             CDF

         1               0               0
         2             0.5             0.5
         3            0.25            0.75
         4           0.125           0.875
         5          0.0625          0.9375
         6         0.03125         0.96875
         7        0.015625        0.984375
         8       0.0078125        0.992188
         9      0.00390625        0.996094
        10      0.00195312        0.998047
        11     0.000976562        0.999023
        12     0.000488281        0.999512
        13     0.000244141        0.999756
        14      0.00012207        0.999878
        15     6.10352e-05        0.999939
        16     3.05176e-05        0.999969
        17     1.52588e-05        0.999985
        18     7.62939e-06        0.999992
        19      3.8147e-06        0.999996
        20     1.90735e-06        0.999998

  Number of coupon types is 3

   BOX_NUM      PDF             CDF

         1               0               0
         2               0               0
         3        0.222222        0.222222
         4        0.222222        0.444444
         5         0.17284        0.617284
         6        0.123457        0.740741
         7        0.085048        0.825789
         8       0.0576132        0.883402
         9       0.0387136        0.922116
        10       0.0259107        0.948026
        11       0.0173077        0.965334
        12       0.0115497        0.976884
        13      0.00770358        0.984587
        14      0.00513698        0.989724
        15      0.00342507        0.993149
        16      0.00228352        0.995433
        17      0.00152239        0.996955
        18      0.00101494         0.99797
        19     0.000676634        0.998647
        20     0.000451091        0.999098

  Number of coupon types is 4

   BOX_NUM      PDF             CDF

         1               0               0
         2               0               0
         3               0               0
         4         0.09375         0.09375
         5        0.140625        0.234375
         6        0.146484        0.380859
         7        0.131836        0.512695
         8        0.110229        0.622925
         9       0.0884399        0.711365
        10       0.0692368        0.780602
        11       0.0533867        0.833988
        12        0.040771        0.874759
        13       0.0309441        0.905703
        14       0.0233911        0.929094
        15       0.0176349        0.946729
        16       0.0132719        0.960001
        17      0.00997682        0.969978
        18      0.00749406        0.977472
        19      0.00562627        0.983098
        20      0.00422256        0.987321

TEST040:
  COUPON_SIMULATE simulates the couponn  collector's problem.


  Number of coupon types is 5
  Expected wait is about 8.04719

       1      10
       2       8
       3      14
       4       7
       5      10
       6      11
       7      17
       8      11
       9       6
      10      12

  Average wait was 10.6

  Number of coupon types is 10
  Expected wait is about 23.0259

       1      29
       2      31
       3      47
       4      42
       5      27
       6      31
       7      44
       8      23
       9      11
      10      30

  Average wait was 31.5

  Number of coupon types is 15
  Expected wait is about 40.6208

       1      65
       2      31
       3      60
       4      51
       5      46
       6      37
       7      51
       8      40
       9      52
      10      52

  Average wait was 48.5

  Number of coupon types is 20
  Expected wait is about 59.9146

       1      80
       2      80
       3      51
       4      54
       5      58
       6      80
       7     173
       8      69
       9     156
      10      54

  Average wait was 85.5

  Number of coupon types is 25
  Expected wait is about 80.4719

       1     117
       2     188
       3      95
       4      77
       5     168
       6     110
       7     128
       8      77
       9     103
      10      82

  Average wait was 114.5

TEST041
  For the Deranged PDF:
  DERANGED_CDF evaluates the CDF;
  DERANGED_CDF_INV inverts the CDF.
  DERANGED_PDF evaluates the PDF;

  PDF parameter A =             7

       X            PDF           CDF            CDF_INV

             0      0.367857      0.367857             0
             3        0.0625      0.981746             3
             2      0.183333      0.919246             2
             1      0.368056      0.735913             1
             1      0.368056      0.735913             1
             0      0.367857      0.367857             0
             0      0.367857      0.367857             0
             0      0.367857      0.367857             0
             0      0.367857      0.367857             0
             1      0.368056      0.735913             1

TEST042
  For the Deranged PDF:
  DERANGED_CDF evaluates the CDF;
  DERANGED_PDF evaluates the PDF;

  PDF parameter A =             7

       X            PDF           CDF

             0      0.367857      0.367857
             1      0.368056      0.735913
             2      0.183333      0.919246
             3        0.0625      0.981746
             4     0.0138889      0.995635
             5    0.00416667      0.999802
             6             0      0.999802
             7   0.000198413             1

TEST043
  For the Deranged PDF:
  DERANGED_MEAN computes the mean;
  DERANGED_SAMPLE samples;
  DERANGED_VARIANCE computes the variance.

  PDF parameter A =             7
  PDF mean =                    1
  PDF variance =                0.632143

  Sample size =     1000
  Sample mean =     1.004
  Sample variance = 0.984969
  Sample maximum =  5
  Sample minimum =  0

TEST044:
  DIGAMMA evaluates the DIGAMMA or PSI function.
  PSI_VALUES returns some exact values.

      X   Exact F     DIGAMMA(X)

       0.1          -10.4238          -10.4238
       0.2          -5.28904          -5.28904
       0.3          -3.50252          -3.50252
       0.4          -2.56138          -2.56138
       0.5          -1.96351          -1.96351
       0.6          -1.54062          -1.54062
       0.7          -1.22002          -1.22002
       0.8         -0.965009         -0.965009
       0.9         -0.754927         -0.754927
         1         -0.577216         -0.577216
       1.1         -0.423755         -0.423755
       1.2          -0.28904          -0.28904
       1.3         -0.169191         -0.169191
       1.4        -0.0613845        -0.0613845
       1.5           0.03649           0.03649
       1.6          0.126047          0.126047
       1.7          0.208548          0.208548
       1.8          0.284991          0.284991
       1.9          0.356184          0.356184
         2          0.422784          0.422784

TEST045
  For the Cosine PDF:
  DIPOLE_CDF evaluates the CDF;
  DIPOLE_CDF_INV inverts the CDF.
  DIPOLE_PDF evaluates the PDF;

  PDF parameter A =      0
  PDF parameter B =      1

       X            PDF           CDF            CDF_INV

      0.515107      0.573233      0.780988      0.515137
      -1.28591      0.153127      0.056141      -1.28516
      0.467924      0.589867      0.761502      0.467773
      0.295557      0.627128      0.677995       0.29541
      -0.16527      0.635573      0.396656     -0.165283
     -0.219095       0.63352      0.364799     -0.219238
     0.0507089       0.63661      0.532227     0.0507812
      0.883735      0.374656      0.888326      0.883789
     -0.317761      0.624268      0.310195     -0.317871
      0.298513      0.626776      0.679584       0.29834

  PDF parameter A =      0.785398
  PDF parameter B =      0.5

       X            PDF           CDF            CDF_INV

      -2.00376     0.0538127      0.131477      -2.00293
       1.90221      0.060188      0.828708       1.90332
       9.07094    0.00368677      0.964094       9.09375
      0.244458      0.316631      0.501226      0.244629
      0.203988      0.317466      0.487654      0.204102
      -10.6175    0.00288846      0.029192      -10.6211
      -0.86502      0.226546      0.227479     -0.865234
       2.15741     0.0463925      0.847767       2.15674
      -4.81123     0.0129237     0.0619356      -4.81836
      0.646407      0.273715      0.626535      0.646484

  PDF parameter A =      1.5708
  PDF parameter B =      0

       X            PDF           CDF            CDF_INV

     -0.904508      0.175075      0.265947     -0.904297
     -0.843581      0.185969      0.276943      -0.84375
      0.227018      0.302709      0.571058      0.227051
     -0.320266      0.288698      0.401342     -0.320312
     -0.506838      0.253253       0.35068     -0.506836
      0.251535      0.299369      0.578439      0.251465
     -0.177728      0.308563      0.444012     -0.177734
     -0.386329      0.276972       0.38265      -0.38623
    -0.0852594      0.316013      0.472927    -0.0849609
      -1.51135     0.0969218      0.186061      -1.51074

TEST046
  For the Cosine PDF:
  DIPOLE_SAMPLE samples;

  PDF parameter A =      0
  PDF parameter B =      1

  Sample size =     1000
  Sample mean =     0.017141
  Sample variance = 0.728062
  Sample maximum =  4.78718
  Sample minimum =  -5.67547

  PDF parameter A =      0.785398
  PDF parameter B =      0.5

  Sample size =     1000
  Sample mean =     0.28364
  Sample variance = 252.082
  Sample maximum =  245.982
  Sample minimum =  -245.584

  PDF parameter A =      1.5708
  PDF parameter B =      0

  Sample size =     1000
  Sample mean =     -0.179305
  Sample variance = 242.215
  Sample maximum =  119.648
  Sample minimum =  -335.78

TEST047
  For the Dirichlet PDF:
  DIRICHLET_MEAN computes the mean;
  DIRICHLET_SAMPLE samples;
  DIRICHLET_VARIANCE computes the variance;

  Number of components N = 3

  PDF parameter A:

     1            0.25
     2             0.5
     3            1.25

  PDF mean:

     1           0.125
     2            0.25
     3           0.625

  PDF variance:

     1       0.0364583
     2          0.0625
     3        0.078125

  Second moment matrix:

  Col:          1             2             3       
  Row
  ---
    1     0.0520833     0.0208333     0.0520833  
    2     0.0208333         0.125      0.104167  
    3     0.0520833      0.104167       0.46875  

  Sample size =     1000

  Component Mean, Variance, Min, Max:

       0      0.128337     0.0377062      0.975128    4.0796e-11
       1       0.23718     0.0592189      0.976032   1.30377e-06
       2      0.634483     0.0751289      0.999945   0.000245466

TEST048
  For the Dirichlet PDF:
  DIRICHLET_PDF evaluates the PDF;

  Number of components N = 3

  PDF parameter A:

     1            0.25
     2             0.5
     3            1.25

  PDF argument X:

     1             0.5
     2           0.125
     3           0.375

  PDF value = 0.63907

TEST049
  For the Dirichlet Mixture PDF:
  DIRICHLET_MIX_SAMPLE samples;
  DIRICHLET_MIX_MEAN computes the mean;

  Number of elements ELEM_NUM =   3
  Number of components COMP_NUM = 2

  PDF parameters A(ELEM,COMP):

  Col:          1             2       
  Row
  ---
    1          0.25           1.5  
    2           0.5           0.5  
    3          1.25             2  

  Component weights

     1               1
     2               2

  PDF mean

     1        0.291667
     2        0.166667
     3        0.541667

  Sample size =     1000

  Component Mean, Variance, Max, Min:

       0      0.278716     0.0546592      0.986951   3.62858e-10
       1      0.170222     0.0397946      0.993637   5.84186e-08
       2      0.551062      0.062022      0.998934    0.00518575

TEST050
  For the Dirichlet mixture PDF:
  DIRICHLET_MIX_PDF evaluates the PDF.

  Number of elements ELEM_NUM =   3
  Number of components COMP_NUM = 2

  PDF parameters A(ELEM,COMP):

  Col:          1             2       
  Row
  ---
    1          0.25           1.5  
    2           0.5           0.5  
    3          1.25             2  

  Component weights

     1               1
     2               2

  PDF argument X:

     1             0.5
     2           0.125
     3           0.375

  PDF value =           2.12288

TEST051
  BETA_PDF evaluates the Beta PDF.
  DIRICHLET_PDF evaluates the Dirichlet PDF.

  For N = 2, Dirichlet = Beta.

  Number of components N = 2

  PDF parameters A(1:N):

     1             2.5
     2             3.5

  PDF arguments X(1:N):

     1            0.25
     2            0.75

  Dirichlet PDF value =  1.65399
  Beta PDF value =       1.65399

TEST052
  For the Discrete PDF:
  DISCRETE_CDF evaluates the CDF;
  DISCRETE_CDF_INV inverts the CDF.
  DISCRETE_PDF evaluates the PDF;

  PDF parameter A =      6

  PDF parameter B:

     1               1
     2               2
     3               6
     4               2
     5               4
     6               1

       X            PDF           CDF            CDF_INV

             3         0.375        0.5625             3
             6        0.0625             1             6
             5          0.25        0.9375             5
             3         0.375        0.5625             3
             3         0.375        0.5625             3
             2         0.125        0.1875             2
             3         0.375        0.5625             3
             2         0.125        0.1875             2
             1        0.0625        0.0625             1
             4         0.125        0.6875             4

TEST053
  For the Discrete PDF:
  DISCRETE_MEAN computes the mean;
  DISCRETE_SAMPLE samples;
  DISCRETE_VARIANCE computes the variance;

  PDF parameter A =      6

  PDF parameter B:

     1               1
     2               2
     3               6
     4               2
     5               4
     6               1

  PDF mean =     3.5625
  PDF variance = 1.74609

  Sample size =     1000
  Sample mean =     3.559
  Sample variance = 1.73826
  Sample maximum =  6
  Sample minimum =  1

TEST054
  For the Empirical Discrete PDF:
  EMPIRICAL_DISCRETE_CDF evaluates the CDF;
  EMPIRICAL_DISCRETE_CDF_INV inverts the CDF.
  EMPIRICAL_DISCRETE_PDF evaluates the PDF;

  PDF parameter A = 6

  PDF parameter B = 

     1               1
     2               1
     3               3
     4               2
     5               1
     6               2

  PDF parameter C = 

     1               0
     2               1
     3               2
     4             4.5
     5               6
     6              10

       X            PDF           CDF            CDF_INV

             2           0.3           0.5             2
            10           0.2             1            10
            10           0.2             1            10
           4.5           0.2           0.7           4.5
             2           0.3           0.5             2
             0           0.1           0.1             0
             2           0.3           0.5             2
             1           0.1           0.2             1
             0           0.1           0.1             0
           4.5           0.2           0.7           4.5

TEST055
  For the Empirical Discrete PDF:
  EMPIRICAL_DISCRETE_MEAN computes the mean;
  EMPIRICAL_DISCRETE_SAMPLE samples;
  EMPIRICAL_DISCRETE_VARIANCE computes the variance.

  PDF parameter A = 6

  PDF parameter B = 

     1               1
     2               1
     3               3
     4               2
     5               1
     6               2

  PDF parameter C = 

     1               0
     2               1
     3               2
     4             4.5
     5               6
     6              10

  PDF mean =     4.2
  PDF variance = 11.31

  Sample size =     1000
  Sample mean =     4.231
  Sample variance = 11.2023
  Sample maximum =  10
  Sample minimum =  0

TEST056
  For the Empirical Discrete PDF:
  EMPIRICAL_DISCRETE_CDF evaluates the CDF;
  EMPIRICAL_DISCRETE_PDF evaluates the PDF;

  PDF parameter A = 6

  PDF parameter B = 

     1               1
     2               1
     3               3
     4               2
     5               1
     6               2

  PDF parameter C = 

     1               0
     2               1
     3               2
     4             4.5
     5               6
     6              10

       X            PDF           CDF

            -2             0             0
            -1             0             0
             0           0.1           0.1
             1           0.1           0.2
             2           0.3           0.5
             3             0           0.5
             4             0           0.5
             5             0           0.7
             6           0.1           0.8
             7             0           0.8
             8             0           0.8
             9             0           0.8
            10           0.2             1
            11             0             1
            12             0             1

TEST0563
  For the English Sentence Length PDF:
  ENGLISH_SENTENCE_LENGTH_CDF evaluates the CDF;
  ENGLISH_SENTENCE_LENGTH_CDF_INV inverts the CDF.
  ENGLISH_SENTENCE_LENGTH_PDF evaluates the PDF;

       X            PDF           CDF            CDF_INV

             9     0.0329364      0.232179             9
            43    0.00478109      0.957141            43
            30     0.0155962      0.840951            30
            19     0.0333674      0.587303            19
            14     0.0375972      0.415634            14
             5     0.0305008     0.0965039             5
            10     0.0354122      0.267591            10
             6     0.0319642      0.128468             6
             4     0.0255292     0.0660031             4
            21     0.0287367      0.647141            21

TEST0564
  For the English Sentence Length PDF:
  ENGLISH_SENTENCE_LENGTH_MEAN computes the mean;
  ENGLISH_SENTENCE_LENGTH_SAMPLE samples;
  ENGLISH_SENTENCE_LENGTH_VARIANCE computes the variance.

  PDF mean =                    19.1147
  PDF variance =                147.443

  Sample size =     1000
  Sample mean =     19.107
  Sample variance = 144.238
  Sample maximum =  67
  Sample minimum =  1

TEST0565
  For the English Word Length PDF:
  ENGLISH_WORD_LENGTH_CDF evaluates the CDF;
  ENGLISH_WORD_LENGTH_CDF_INV inverts the CDF.
  ENGLISH_WORD_LENGTH_PDF evaluates the PDF;

       X            PDF           CDF            CDF_INV

             3      0.211926      0.413282             3
            10     0.0276608      0.965289            10
             7     0.0772423      0.841075             7
             4      0.156785      0.570067             4
             4      0.156785      0.570067             4
             2      0.169755      0.201356             2
             3      0.211926      0.413282             3
             2      0.169755      0.201356             2
             2      0.169755      0.201356             2
             5      0.108523       0.67859             5

TEST0566
  For the English Word Length PDF:
  ENGLISH_WORD_LENGTH_MEAN computes the mean;
  ENGLISH_WORD_LENGTH_SAMPLE samples;
  ENGLISH_WORD_LENGTH_VARIANCE computes the variance.

  PDF mean =                    4.73912
  PDF variance =                7.05635

  Sample size =     1000
  Sample mean =     4.74
  Sample variance = 6.96737
  Sample maximum =  15
  Sample minimum =  1

TEST057
  For the Erlang PDF:
  ERLANG_CDF evaluates the CDF;
  ERLANG_CDF_INV inverts the CDF.
  ERLANG_PDF evaluates the PDF;

  PDF parameter A =      1
  PDF parameter B =      2
  PDF parameter C =      3

       X            PDF           CDF            CDF_INV

       11.2926     0.0385403      0.887143        11.293
       3.85983      0.122337      0.173777       3.85938
       1.91828     0.0332989     0.0114788       1.91797
       4.33148      0.131139      0.233762       4.33203
       8.02827     0.0919195      0.681759       8.02734
       6.42343      0.122108       0.50924       6.42383
       5.14542      0.135161      0.342996       5.14551
        4.9536      0.135317      0.317044       4.95312
       6.71621      0.117176      0.544281        6.7168
        5.9501      0.128886      0.449771        5.9502

TEST058
  For the Erlang PDF:
  ERLANG_MEAN computes the mean;
  ERLANG_SAMPLE samples;
  ERLANG_VARIANCE computes the variance;

  PDF parameter A =      1
  PDF parameter B =      2
  PDF parameter C =      3

  PDF mean =     7
  PDF variance = 12

  Sample size =     1000
  Sample mean =     7.00341
  Sample variance = 11.491
  Sample maximum =  21.5166
  Sample minimum =  1.22651

TEST059
  ERROR_F evaluates ERF(X).
  ERROR_F_INVERSE inverts ERF(X).

X   -> Y = error_F(X) -> Z = error_f_inverse(Y)

         1.67904        0.982428         1.67904
        -0.56606       -0.576596        -0.56606
         1.21293        0.913719         1.21293
         1.26938        0.927374         1.26938
        -1.66609       -0.981537        -1.66609
        -2.24246       -0.998483        -2.24246
       0.0396749       0.0447449       0.0396749
        0.673068        0.658833        0.673068
       -0.275127        -0.30279       -0.275127
           2.164        0.997789           2.164
        0.297785        0.326341        0.297785
         2.04454        0.996165         2.04454
         1.39882        0.952097         1.39882
        -1.24299       -0.921226        -1.24299
      -0.0670837      -0.0755824      -0.0670837
       -0.794396       -0.738752       -0.794396
       -0.523768       -0.541137       -0.523768
       -0.350567       -0.379948       -0.350567
          0.1317        0.147753          0.1317
         0.53738        0.552727         0.53738

TEST060
  For the Exponential 01 PDF:
  EXPONENTIAL_01_CDF evaluates the CDF;
  EXPONENTIAL_01_CDF_INV inverts the CDF.
  EXPONENTIAL_01_PDF evaluates the PDF;

       X            PDF           CDF            CDF_INV

      0.246436      0.781582      0.218418      0.246436
       3.13081     0.0436824      0.956318       3.13081
       1.76907      0.170491      0.829509       1.76907
      0.824841      0.438305      0.561695      0.824841
      0.536668      0.584693      0.415307      0.536668
      0.068406      0.933881     0.0661187      0.068406
      0.297837      0.742422      0.257578      0.297837
      0.116485      0.890043      0.109957      0.116485
     0.0448185      0.956171      0.043829     0.0448185
       1.00503      0.366034      0.633966       1.00503

TEST061
  For the Exponential 01 PDF:
  EXPONENTIAL_01_MEAN computes the mean;
  EXPONENTIAL_01_SAMPLE samples;
  EXPONENTIAL_01_VARIANCE computes the variance.

  PDF mean =     1
  PDF variance = 1

  Sample size =     1000
  Sample mean =     1.00328
  Sample variance = 0.981133
  Sample maximum =  6.16979
  Sample minimum =  0.00184006

TEST062
  For the Exponential PDF:
  EXPONENTIAL_CDF evaluates the CDF;
  EXPONENTIAL_CDF_INV inverts the CDF.
  EXPONENTIAL_PDF evaluates the PDF;

  PDF parameter A =      1
  PDF parameter B =      2

       X            PDF           CDF            CDF_INV

       1.49287      0.390791      0.218418       1.49287
       7.26162     0.0218412      0.956318       7.26162
       4.53815     0.0852454      0.829509       4.53815
       2.64968      0.219152      0.561695       2.64968
       2.07334      0.292346      0.415307       2.07334
       1.13681      0.466941     0.0661187       1.13681
       1.59567      0.371211      0.257578       1.59567
       1.23297      0.445022      0.109957       1.23297
       1.08964      0.478086      0.043829       1.08964
       3.01006      0.183017      0.633966       3.01006

TEST063
  For the Exponential PDF:
  EXPONENTIAL_MEAN computes the mean;
  EXPONENTIAL_SAMPLE samples;
  EXPONENTIAL_VARIANCE computes the variance;

  PDF parameter A =      1
  PDF parameter B =      10

  PDF mean =     11
  PDF variance = 100

  Sample size =     1000
  Sample mean =     11.0328
  Sample variance = 98.1133
  Sample maximum =  62.6979
  Sample minimum =  1.0184

TEST064
  For the Extreme Values PDF:
  EXTREME_VALUES_CDF evaluates the CDF;
  EXTREME_VALUES_CDF_INV inverts the CDF.
  EXTREME_VALUES_PDF evaluates the PDF;

  PDF parameter A =      2
  PDF parameter B =      3

       X            PDF           CDF            CDF_INV

      0.741219      0.110763      0.218418      0.741219
       11.3257      0.014238      0.956318       11.3257
       7.03121     0.0516842      0.829509       7.03121
        3.6508      0.107994      0.561695        3.6508
       2.38781      0.121649      0.415307       2.38781
     -0.997815     0.0598662     0.0661187     -0.997815
       1.08542      0.116462      0.257578       1.08542
      -0.37581      0.080916      0.109957      -0.37581
      -1.42066     0.0456911      0.043829      -1.42066
       4.35736     0.0963122      0.633966       4.35736

TEST065
  For the Extreme Values PDF:
  EXTREME_VALUES_MEAN computes the mean;
  EXTREME_VALUES_SAMPLE samples;
  EXTREME_VALUES_VARIANCE computes the variance;

  PDF parameter A =      2
  PDF parameter B =      3

  PDF mean =     3.73165
  PDF variance = 14.8044

  Sample size =     1000
  Sample mean =     3.74498
  Sample variance = 14.6723
  Sample maximum =  20.5062
  Sample minimum =  -3.52111

TEST066:
  F_CDF evaluates the cumulative
  distribution function for the F
  probability density function.
  F_CDF_VALUES returns some exact values.

      A     B     X   Exact F     F_CDF(A,B,X)

         1         1         1               0.5               0.5
         1         5     0.528          0.499971          0.499971
         5         1      1.89          0.499603          0.499603
         1         5      1.69          0.749699          0.749699
         2        10       1.6          0.750466          0.750466
         4        20      1.47          0.751416          0.751416
         1         5      4.06          0.899987          0.899987
         6         6      3.05          0.899713          0.899713
         8        16      2.09          0.900285          0.900285
         1         5      6.61          0.950025          0.950025
         3        10      3.71          0.950057          0.950057
         6        12         3          0.950193          0.950193
         1         5     10.01          0.975013          0.975013
         1         5     16.26          0.990002          0.990002
         1         5     22.78          0.994998          0.994998
         1         5     47.18             0.999             0.999
         2         5         1          0.568799          0.568799
         3         5         1          0.535145          0.535145
         4         5         1          0.514343          0.514343
         5         5         1               0.5               0.5

TEST067
  For the F PDF:
  F_CDF evaluates the CDF;
  F_PDF evaluates the PDF;
  F_SAMPLE samples the PDF;

  PDF parameter M = 1
  PDF parameter N = 1

       X            PDF           CDF

       8.79828     0.0109522      0.792993
      0.913042      0.174133      0.485526
      0.552007      0.276048      0.406792
    0.00347467       5.38129      0.037483
     0.0161641       2.46383     0.0805067
     0.0212137       2.14006     0.0920758
       1.26646      0.124798      0.537509
    0.00713115       3.74269     0.0536328
       2.23222     0.0659146      0.624499
      0.060063       1.22522      0.153005

TEST068
  For the F PDF:
  F_MEAN computes the mean;
  F_SAMPLE samples;
  F_VARIANCE computes the variance;

  PDF parameter M = 8
  PDF parameter N = 6

  PDF mean =     1.5
  PDF variance = 3.375

  Sample size =     1000
  Sample mean =     1.65874
  Sample variance = 29.2135
  Sample maximum =  164.816
  Sample minimum =  0.0826478

TEST069
  FACTORIAL_LOG evaluates the log of the factorial function;
  GAMMA_LOG_INT evaluates the log for integer argument.

  I, GAMMA_LOG_INT(I+1) FACTORIAL_LOG(I)

       1             0             0
       2      0.693147      0.693147
       3       1.79176       1.79176
       4       3.17805       3.17805
       5       4.78749       4.78749
       6       6.57925       6.57925
       7       8.52516       8.52516
       8       10.6046       10.6046
       9       12.8018       12.8018
      10       15.1044       15.1044
      11       17.5023       17.5023
      12       19.9872       19.9872
      13       22.5522       22.5522
      14       25.1912       25.1912
      15       27.8993       27.8993
      16       30.6719       30.6719
      17       33.5051       33.5051
      18       36.3954       36.3954
      19       39.3399       39.3399
      20       42.3356       42.3356

TEST070
  FACTORIAL_STIRLING computes Stirling's
  approximate factorial function;
  I4_FACTORIAL evaluates the factorial function;

  N      Stirling     N!

       0             1                     1
       1       1.00227                     1
       2       2.00065                     2
       3        6.0006                     6
       4        24.001                    24
       5       120.003                   120
       6       720.009                   720
       7       5040.04                  5040
       8       40320.2                 40320
       9        362881                362880
      10   3.62881e+06            3.6288e+06
      11   3.99169e+07           3.99168e+07
      12   4.79002e+08           4.79002e+08
      13   6.22703e+09           6.22702e+09
      14   8.71784e+10           8.71783e+10
      15   1.30768e+12           1.30767e+12
      16   2.09228e+13           2.09228e+13
      17   3.55688e+14           3.55687e+14
      18   6.40238e+15           6.40237e+15
      19   1.21645e+17           1.21645e+17
      20    2.4329e+18            2.4329e+18

TEST0705
  For the Fisher PDF:
  FISHER_PDF evaluates the PDF.
  FISHER_SAMPLE samples the PDF.

  PDF parameters:
    Concentration parameter KAPPA = 0
    Direction MU(1:3) =   1  0  0

      X                         PDF

   -0.563163    0.312518    -0.76497       0.0795775
    0.912635    0.127444    0.388401       0.0795775
    0.659018     0.43708    0.612091       0.0795775
    0.123391    -0.99193  -0.0291358       0.0795775
   -0.169386   -0.942369    -0.28853       0.0795775
   -0.867763  0.00574039   -0.496946       0.0795775
   -0.484844    -0.52511   -0.699418       0.0795775
   -0.780086    0.504435    0.370149       0.0795775
   -0.912342    0.229164   -0.339288       0.0795775
    0.267931   0.0823288   -0.959914       0.0795775

  PDF parameters:
    Concentration parameter KAPPA = 0.5
    Direction MU(1:3) =   1  0  0

      X                         PDF

    -0.36265    0.352448   -0.862708       0.0636934
    0.943998    0.102869    0.313505        0.122414
    0.771936    0.369422    0.517342        0.112322
    0.351138    -0.93592  -0.0274906       0.0910105
   0.0772099   -0.953331   -0.291887       0.0793613
   -0.784785  0.00715868   -0.619727       0.0515738
   -0.267118   -0.578584   -0.770642       0.0668096
   -0.653881    0.609991    0.447605       0.0550623
   -0.854781    0.290486   -0.430078          0.0498
    0.473689   0.0752579   -0.877471       0.0967616

  PDF parameters:
    Concentration parameter KAPPA = 10
    Direction MU(1:3) =   1  0  0

      X                         PDF

    0.847866    0.200522   -0.490831        0.347624
    0.995533    0.029434   0.0897036         1.52203
    0.981308    0.111834    0.156614          1.3202
     0.94232   -0.334568  -0.0098272        0.893966
    0.912126   -0.391949   -0.120005        0.660982
     0.72837  0.00791427   -0.685139        0.105231
    0.864357   -0.301929   -0.402153        0.409948
    0.779233    0.505291    0.370778        0.175002
    0.687254    0.406587   -0.601971        0.069756
    0.954424   0.0255038   -0.297363         1.00899

TEST071
  For the Fisk PDF:
  FISK_CDF evaluates the CDF;
  FISK_CDF_INV inverts the CDF.
  FISK_PDF evaluates the PDF;

  PDF parameter A =      1
  PDF parameter B =      2
  PDF parameter C =      3

       X            PDF           CDF            CDF_INV

       2.30758      0.391667      0.218418       2.30758
       6.59494     0.0223993      0.956318       6.59494
       4.38899      0.125191      0.829509       4.38899
       3.17239      0.339985      0.561695       3.17239
       2.78448      0.408233      0.415307       2.78448
       1.82738      0.223887     0.0661187       1.82738
       2.40534      0.408224      0.257578       2.40534
       1.99609       0.29475      0.109957       1.99609
       1.71577      0.175649      0.043829       1.71577
       3.40184      0.289844      0.633966       3.40184

TEST072
  For the Fisk PDF:
  FISK_MEAN computes the mean;
  FISK_SAMPLE samples;
  FISK_VARIANCE computes the variance;

  PDF parameter A =      1
  PDF parameter B =      2
  PDF parameter C =      3

  PDF mean =     3.4184
  PDF variance = 3.82494

  Sample size =     1000
  Sample mean =     3.4112
  Sample variance = 2.91484
  Sample maximum =  16.6277
  Sample minimum =  1.24516

TEST073
  For the Folded Normal PDF:
  FOLDED_NORMAL_CDF evaluates the CDF;
  FOLDED_NORMAL_CDF_INV inverts the CDF.
  FOLDED_NORMAL_PDF evaluates the PDF;

  PDF parameter A =      2
  PDF parameter B =      3

       X            PDF           CDF            CDF_INV

       1.03703      0.205965      0.218421       1.03703
       7.16445     0.0314698      0.956292       7.16364
       4.97681     0.0901798      0.829447       4.97609
       2.86891      0.163148      0.561656       2.86863
       2.03443      0.186808      0.415234       2.03394
      0.310759      0.212331     0.0661153      0.310758
       1.22833      0.203183      0.257565       1.22824
      0.517615      0.211208      0.109931      0.517593
      0.206128      0.212686      0.043879      0.206146
       3.33313      0.147866      0.633889       3.33255

TEST074
  For the Folded Normal PDF:
  FOLDED_NORMAL_MEAN computes the mean;
  FOLDED_NORMAL_SAMPLE samples;
  FOLDED_NORMAL_VARIANCE computes the variance;

  PDF parameter A =      2
  PDF parameter B =      3

  PDF mean =     2.90672
  PDF variance = 4.55099

  Sample size =     1000
  Sample mean =     2.92096
  Sample variance = 4.50179
  Sample maximum =  10.6319
  Sample minimum =  0.00881944

TEST0744
  For the Frechet PDF:
  FRECHET_CDF evaluates the CDF;
  FRECHET_CDF_INV inverts the CDF.
  FRECHET_PDF evaluates the PDF;

  PDF parameter ALPHA =  3

       X            PDF           CDF            CDF_INV

      0.869476       1.14652      0.218418      0.869476
       2.81845     0.0454656      0.956318       2.81845
       1.74896      0.265962      0.829509       1.74896
       1.20132      0.809067      0.561695       1.20132
       1.04403       1.04866      0.415307       1.04403
      0.716705      0.751767     0.0661187      0.716705
      0.903373       1.16028      0.257578      0.903373
       0.76799      0.948247      0.109957       0.76799
      0.683811      0.601365      0.043829      0.683811
       1.29943      0.667067      0.633966       1.29943

TEST0745
  For the Frechet PDF:
  FRECHET_MEAN computes the mean;
  FRECHET_SAMPLE samples;
  FRECHET_VARIANCE computes the variance;

  PDF parameter ALPHA =  3

  PDF mean =     1.35412
  PDF variance = 0.845303

  Sample size =     1000
  Sample mean =     1.35005
  Sample variance = 0.61922
  Sample maximum =  7.81659
  Sample minimum =  0.541476

TEST075
  TGAMMA evaluates the Gamma function;
  GAMMA_LOG evaluates the log of the Gamma function;
  GAMMA_LOG_INT evaluates the log for integer argument;
  I4_FACTORIAL evaluates the factorial function.

  X, TGAMMA(X), Exp(GAMMA_LOG(X)), Exp(GAMMA_LOG_INT(X)) I4_FACTORIAL(X+1)

       1               1               1               1               1
       2               1               1               1               1
       3               2               2               2               2
       4               6               6               6               6
       5              24              24              24              24
       6             120             120             120             120
       7             720             720             720             720
       8            5040            5040            5040            5040
       9           40320           40320           40320           40320
      10          362880          362880          362880          362880

TEST076:
  GAMMA_INC evaluates the normalized incomplete Gamma
  function GAMMA_INC(A,B,X).
  GAMMA_INC_VALUES returns some exact values.

   A      X       Exact F       GAMMA_INC(A,X)

       0.1      0.03            2.4903          0.738235
       0.1       0.3          0.871837          0.908358
       0.1       1.5          0.107921          0.988656
       0.5     0.075           1.23812          0.301465
       0.5      0.75           0.39113          0.779329
       0.5       3.5         0.0144472          0.991849
         1       0.1          0.904837         0.0951626
         1         1          0.367879          0.632121
         1         5        0.00673795          0.993262
       1.1       0.1          0.882797         0.0720597
       1.1         1          0.390833          0.589181
       1.1         5        0.00805146          0.991537
         2      0.15          0.989814         0.0101858
         2       1.5          0.557825          0.442175
         2         7        0.00729506          0.992705
         6       2.5           114.957          0.042021
         6        12           2.44092          0.979659
        11        16            280855          0.922604
        26        25       8.57648e+24          0.447079
        41        45       2.08503e+47          0.744455

TEST077
  For the Gamma PDF:
  GAMMA_CDF evaluates the CDF;
  GAMMA_PDF evaluates the PDF;
  GAMMA_SAMPLE samples the PDF;

  PDF parameter A = 1
  PDF parameter B = 1.5
  PDF parameter B = 3

       X            PDF           CDF

       9.78938     0.0326457      0.931465
       3.52763      0.175509      0.238845
       4.49151      0.176127      0.411287
       7.07259     0.0953344      0.768902
       5.28905      0.156175      0.544577
        14.503     0.0033268      0.993778
       8.13457     0.0648279      0.853273
       10.4424      0.024378       0.94997
        5.8157      0.138588      0.622277
       4.28548      0.178916       0.37469

TEST078
  For the Gamma PDF:
  GAMMA_MEAN computes the mean;
  GAMMA_SAMPLE samples;
  GAMMA_VARIANCE computes the variance;

  PDF parameter A =      1
  PDF parameter B =      3
  PDF parameter C =      2

  PDF mean =     7
  PDF variance = 18

  Sample size =     1000
  Sample mean =     7.13589
  Sample variance = 18.7835
  Sample maximum =  32.6521
  Sample minimum =  1.12016

TEST079
  For the Genlogistic PDF:
  GENLOGISTIC_CDF evaluates the CDF;
  GENLOGISTIC_CDF_INV inverts the CDF.
  GENLOGISTIC_PDF evaluates the PDF;

  PDF parameter A =      1
  PDF parameter B =      2
  PDF parameter C =      3

       X            PDF           CDF            CDF_INV

       1.82954       0.13032      0.218418       1.82954
       9.39944     0.0211989      0.956318       9.39944
       6.48873     0.0751605      0.829509       6.48873
       4.10241      0.147371      0.561695       4.10241
       3.15571      0.158177      0.415307       3.15571
       0.22539     0.0590738     0.0661187       0.22539
       2.11836      0.140536      0.257578       2.11836
      0.832536     0.0859182      0.109957      0.832536
     -0.215463     0.0425639      0.043829     -0.215463
       4.61496       0.13403      0.633966       4.61496

TEST080
  For the Genlogistic PDF:
  GENLOGISTIC_MEAN computes the mean;
  GENLOGISTIC_SAMPLE samples;
  GENLOGISTIC_VARIANCE computes the variance;

  PDF parameter A =      1
  PDF parameter B =      2
  PDF parameter C =      3

  PDF mean =     4
  PDF variance = 8.15947

  Sample size =     1000
  Sample mean =     4.00819
  Sample variance = 8.13473
  Sample maximum =  15.534
  Sample minimum =  -2.93789

TEST081
  For the Geometric PDF:
  GEOMETRIC_CDF evaluates the CDF;
  GEOMETRIC_CDF_INV inverts the CDF.
  GEOMETRIC_PDF evaluates the PDF;

  PDF parameter A =             0.25

       X            PDF           CDF            CDF_INV

             1          0.25          0.25             2
            11     0.0140784      0.957765            12
             7     0.0444946      0.866516             8
             3      0.140625      0.578125             4
             2        0.1875        0.4375             3
             1          0.25          0.25             2
             2        0.1875        0.4375             3
             1          0.25          0.25             2
             1          0.25          0.25             2
             4      0.105469      0.683594             5

TEST082
  For the Geometric PDF:
  GEOMETRIC_MEAN computes the mean;
  GEOMETRIC_SAMPLE samples;
  GEOMETRIC_VARIANCE computes the variance.

  PDF parameter A =             0.25
  PDF mean =                    4
  PDF variance =                12

  Sample size =     1000
  Sample mean =     4.022
  Sample variance = 11.7413
  Sample maximum =  22
  Sample minimum =  1

TEST083
  For the Geometric PDF:
  GEOMETRIC_CDF evaluates the CDF;
  GEOMETRIC_PDF evaluates the PDF;

  PDF parameter A =             0.25

       X            PDF           CDF

             0             0             0
             1          0.25          0.25
             2        0.1875        0.4375
             3      0.140625      0.578125
             4      0.105469      0.683594
             5     0.0791016      0.762695
             6     0.0593262      0.822021
             7     0.0444946      0.866516
             8      0.033371      0.899887
             9     0.0250282      0.924915
            10     0.0187712      0.943686

TEST084
  For the Gompertz PDF:
  GOMPERTZ_CDF evaluates the CDF;
  GOMPERTZ_CDF_INV inverts the CDF.
  GOMPERTZ_PDF evaluates the PDF;

  PDF parameter A =      2
  PDF parameter B =      3

       X            PDF           CDF            CDF_INV

     0.0798917       2.47825      0.218418     0.0798917
      0.785233      0.225843      0.956318      0.785233
      0.494408      0.720533      0.829509      0.494408
      0.251663       1.56551      0.561695      0.251663
      0.168638       1.97158      0.415307      0.168638
     0.0226237       2.84592     0.0661187     0.0226237
     0.0960122       2.38054      0.257578     0.0960122
     0.0383151       2.74199      0.109957     0.0383151
     0.0148627       2.89822      0.043829     0.0148627
      0.301249       1.35309      0.633966      0.301249

TEST085
  For the Gompertz PDF:
  GOMPERTZ_MEAN computes the mean;
  GOMPERTZ_SAMPLE samples;
  GOMPERTZ_VARIANCE computes the variance;

  PDF parameter A =      2
  PDF parameter B =      3

  Sample size =     1000
  Sample mean =     0.279586
  Sample variance = 0.0569063
  Sample maximum =  1.2783
  Sample minimum =  0.000613224

TEST086
  For the Gumbel PDF:
  GUMBEL_CDF evaluates the CDF;
  GUMBEL_CDF_INV inverts the CDF.
  GUMBEL_PDF evaluates the PDF;

       X            PDF           CDF            CDF_INV

     -0.419594      0.332289      0.218418     -0.419594
       3.10856     0.0427141      0.956318       3.10856
       1.67707      0.155053      0.829509       1.67707
      0.550268      0.323983      0.561695      0.550268
       0.12927      0.364946      0.415307       0.12927
     -0.999272      0.179599     0.0661187     -0.999272
     -0.304859      0.349387      0.257578     -0.304859
     -0.791937      0.242748      0.109957     -0.791937
      -1.14022      0.137073      0.043829      -1.14022
      0.785788      0.288936      0.633966      0.785788

TEST087
  For the Gumbel PDF:
  GUMBEL_MEAN computes the mean;
  GUMBEL_SAMPLE samples;
  GUMBEL_VARIANCE computes the variance.

  PDF mean =     0.577216
  PDF variance = 1.64493

  Sample size =     1000
  Sample mean =     0.581659
  Sample variance = 1.63026
  Sample maximum =  6.16874
  Sample minimum =  -1.84037

TEST088
  For the Half Normal PDF:
  HALF_NORMAL_CDF evaluates the CDF;
  HALF_NORMAL_CDF_INV inverts the CDF.
  HALF_NORMAL_PDF evaluates the PDF;

  PDF parameter A =      0
  PDF parameter B =      2

       X            PDF           CDF            CDF_INV

      0.554517      0.383899      0.218418      0.554517
       4.03425     0.0521654      0.956318       4.03425
       2.74126      0.155945      0.829509       2.74126
       1.55012      0.295438      0.561695       1.55012
       1.09309      0.343595      0.415307       1.09309
      0.165925      0.397572     0.0661187      0.165925
      0.657295      0.377969      0.257578      0.657295
      0.276499      0.395148      0.109957      0.276499
      0.109918       0.39834      0.043829      0.109918
       1.80785      0.265145      0.633966       1.80785

TEST089
  For the Half Normal PDF:
  HALF_NORMAL_MEAN computes the mean;
  HALF_NORMAL_SAMPLE samples;
  HALF_NORMAL_VARIANCE computes the variance;

  PDF parameter A =      0
  PDF parameter B =      10

  PDF mean =     7.97885
  PDF variance = 36.338

  Sample size =     1000
  Sample mean =     8.01612
  Sample variance = 35.9155
  Sample maximum =  30.769
  Sample minimum =  0.0230406

TEST090
  For the Hypergeometric PDF:
  HYPERGEOMETRIC_CDF evaluates the CDF.
  HYPERGEOMETRIC_PDF evaluates the PDF.

  Total number of balls L =         1000
  Number of white balls M =         70
  Number of balls taken N =         100
  PDF argument X =                7
  PDF value =                   = 0.162835
  CDF value =                   = 0.599487

TEST091
  For the Hypergeometric PDF:
  HYPERGEOMETRIC_MEAN computes the mean;
  HYPERGEOMETRIC_SAMPLE samples;
  HYPERGEOMETRIC_VARIANCE computes the variance.

  Total number of balls L =         1000
  Number of white balls M =         70
  Number of balls taken N =         100
  PDF mean =                    7
  PDF variance =                1.5656

THIS CALL IS TAKING FOREVER!

TEST092
  R8_CEILING rounds an R8 up.

       X           R8_CEILING(X)

            -1.2      -1
              -1      -1
            -0.8       0
            -0.6       0
            -0.4       0
            -0.2       0
               0       0
             0.2       1
             0.4       1
             0.6       1
             0.8       1
               1       1
             1.2       2

TEST093
  For the Inverse Gaussian PDF:
  INVERSE_GAUSSIAN_CDF evaluates the CDF;
  INVERSE_GAUSSIAN_PDF evaluates the PDF;

  PDF parameter A =      5
  PDF parameter B =      2

       X            PDF           CDF

      0.559532      0.329239     0.0861168
       1.28731      0.251704      0.307572
      0.853592      0.319635       0.18353
       1.35825      0.241176      0.325052
       5.32365     0.0458954      0.744699
      0.226285     0.0933236    0.00436661
      0.366732      0.244354     0.0287975
       2.59887      0.123228      0.539812
      0.741461      0.332202      0.146927
       1.89165      0.176781      0.435385

TEST094
  For the Inverse Gaussian PDF:
  INVERSE_GAUSSIAN_MEAN computes the mean;
  INVERSE_GAUSSIAN_SAMPLE samples;
  INVERSE_GAUSSIAN_VARIANCE computes the variance;

  PDF parameter A =      2
  PDF parameter B =      3

  PDF mean =     2
  PDF variance = 2.66667

  Sample size =     1000
  Sample mean =     1.95731
  Sample variance = 2.26428
  Sample maximum =  12.1368
  Sample minimum =  0.215551

TEST095
  For the Laplace PDF:
  LAPLACE_CDF evaluates the CDF;
  LAPLACE_CDF_INV inverts the CDF.
  LAPLACE_PDF evaluates the PDF;

  PDF parameter A =      1
  PDF parameter B =      2

       X            PDF           CDF            CDF_INV

     -0.656392      0.109209      0.218418     -0.656392
       5.87532     0.0218412      0.956318       5.87532
       3.15185     0.0852454      0.829509       3.15185
       1.26339      0.219152      0.561695       1.26339
       0.62882      0.207654      0.415307       0.62882
      -3.04631     0.0330594     0.0661187      -3.04631
     -0.326573      0.128789      0.257578     -0.326573
      -2.02904     0.0549784      0.109957      -2.02904
      -3.86862     0.0219145      0.043829      -3.86862
       1.62376      0.183017      0.633966       1.62376

TEST096
  For the Laplace PDF:
  LAPLACE_MEAN computes the mean;
  LAPLACE_SAMPLE samples;
  LAPLACE_VARIANCE computes the variance;

  PDF parameter A =      1
  PDF parameter B =      2

  PDF mean =     1
  PDF variance = 8

  Sample size =     1000
  Sample mean =     0.994018
  Sample variance = 8.10829
  Sample maximum =  11.9533
  Sample minimum =  -10.2115

TEST0965
  For the Levy PDF:
  LEVY_CDF evaluates the CDF;
  LEVY_CDF_INV inverts the CDF.
  LEVY_PDF evaluates the PDF;

  PDF parameter A =      1
  PDF parameter B =      2

       X            PDF           CDF            CDF_INV

       2.32036      0.174367      0.218418       2.32036
       667.596   3.27326e-05      0.956318       667.596
       44.1337    0.00194595      0.829509       44.1337
       6.93865      0.032943      0.561695       6.93865
       4.01406     0.0773762      0.415307       4.01406
       1.59227      0.228757     0.0661187       1.59227
       2.56039      0.152493      0.257578       2.56039
       1.78283      0.227065      0.109957       1.78283
       1.49223      0.214227      0.043829       1.49223
       9.82141     0.0192259      0.633966       9.82141

TEST097
  For the Logistic PDF:
  LOGISTIC_CDF evaluates the CDF;
  LOGISTIC_CDF_INV inverts the CDF.
  LOGISTIC_PDF evaluates the PDF;

  PDF parameter A =      1
  PDF parameter B =      2

       X            PDF           CDF            CDF_INV

      -1.54982     0.0853559      0.218418      -1.54982
       7.17229     0.0208871      0.956318       7.17229
       4.16431     0.0707118      0.829509       4.16431
       1.49609      0.123097      0.561695       1.49609
      0.315863      0.121414      0.415307      0.315863
      -4.29579     0.0308735     0.0661187      -4.29579
      -1.11719     0.0956157      0.257578      -1.11719
      -3.18237     0.0489331      0.109957      -3.18237
      -5.16528      0.020954      0.043829      -5.16528
       2.09854      0.116027      0.633966       2.09854

TEST098
  For the Logistic PDF:
  LOGISTIC_MEAN computes the mean;
  LOGISTIC_SAMPLE samples;
  LOGISTIC_VARIANCE computes the variance;

  PDF parameter A =      2
  PDF parameter B =      3

  PDF mean =     2
  PDF variance = 29.6088

  Sample size =     1000
  Sample mean =     2.00703
  Sample variance = 29.8759
  Sample maximum =  20.5031
  Sample minimum =  -16.8911

TEST099
  For the Log Normal PDF:
  LOG_NORMAL_CDF evaluates the CDF;
  LOG_NORMAL_CDF_INV inverts the CDF.
  LOG_NORMAL_PDF evaluates the PDF;

  PDF parameter A =      10
  PDF parameter B =      2.25

       X            PDF           CDF            CDF_INV

       3829.62   3.42207e-05      0.218418       3829.62
   1.03126e+06   3.98836e-08      0.956318   1.03126e+06
        187683   6.00352e-07      0.829509        187683
       31236.9   5.60821e-06      0.561695       31236.9
       13611.8   1.27314e-05      0.415307       13611.8
       744.708   7.66792e-05     0.0661187       744.708
       5093.04    2.8169e-05      0.257578       5093.04
       1393.81   5.99421e-05      0.109957       1393.81
       472.134   8.73521e-05      0.043829       472.134
       47588.4   3.51376e-06      0.633966       47588.4

TEST100
  For the LogNormal PDF:
  LOG_NORMAL_MEAN computes the mean;
  LOG_NORMAL_SAMPLE samples;
  LOG_NORMAL_VARIANCE computes the variance;

  PDF parameter A =      1
  PDF parameter B =      2

  PDF mean =     20.0855
  PDF variance = 21623

  Sample size =     1000
  Sample mean =     18.2209
  Sample variance = 3776.12
  Sample maximum =  835.466
  Sample minimum =  0.00815371

TEST101
  For the Log Series PDF:
  LOG_SERIES_CDF evaluates the CDF;
  LOG_SERIES_CDF_INV inverts the CDF.
  LOG_SERIES_PDF evaluates the PDF;

  PDF parameter A =             0.25

       X            PDF           CDF            CDF_INV

             1      0.869015      0.869015             2
             1      0.869015      0.869015             2
             2      0.108627      0.977642             3
             1      0.869015      0.869015             2
             1      0.869015      0.869015             2
             1      0.869015      0.869015             2
             1      0.869015      0.869015             2
             4    0.00339459      0.999141             5
             1      0.869015      0.869015             2
             2      0.108627      0.977642             3

TEST102
  For the Log Series PDF:
  LOG_SERIES_CDF evaluates the CDF;
  LOG_SERIES_PDF evaluates the PDF;

  PDF parameter A =             0.25

       X            PDF           CDF

             1      0.869015      0.869015
             2      0.108627      0.977642
             3     0.0181045      0.995746
             4    0.00339459      0.999141
             5   0.000678918       0.99982
             6   0.000141441      0.999961
             7   3.03088e-05      0.999991
             8   6.63006e-06      0.999998
             9   1.47335e-06             1
            10   3.31503e-07             1

TEST103
  For the Log Series PDF:
  LOG_SERIES_MEAN computes the mean;
  LOG_SERIES_SAMPLE samples;
  LOG_SERIES_VARIANCE computes the variance.

  PDF parameter A =             0.25
  PDF mean =                    1.15869
  PDF variance =                0.202361

  Sample size =     1000
  Sample mean =     1.165
  Sample variance = 0.213989
  Sample maximum =  4
  Sample minimum =  1

TEST104
  For the Log Uniform PDF:
  LOG_UNIFORM_CDF evaluates the CDF;
  LOG_UNIFORM_CDF_INV inverts the CDF.
  LOG_UNIFORM_PDF evaluates the PDF;

  PDF parameter A =      2
  PDF parameter B =      20

       X            PDF           CDF            CDF_INV

       3.30711      0.131322      0.218418       3.30711
       18.0862     0.0240125      0.956318       18.0862
       13.5064     0.0321547      0.829509       13.5064
       7.28996     0.0595743      0.561695       7.28996
         5.204      0.083454      0.415307         5.204
       2.32889      0.186481     0.0661187       2.32889
       3.61916      0.119999      0.257578       3.61916
       2.57624      0.168577      0.109957       2.57624
       2.21238      0.196302      0.043829       2.21238
       8.60985     0.0504416      0.633966       8.60985

TEST105
  For the Log Uniform PDF:
  LOG_UNIFORM_MEAN computes the mean;
  LOG_UNIFORM_SAMPLE samples;

  PDF parameter A =      2
  PDF parameter B =      20

  PDF mean =     7.8173

  Sample size =     1000
  Sample mean =     7.8421
  Sample variance = 24.5202
  Sample maximum =  19.9039
  Sample minimum =  2.00848

TEST106
  For the Lorentz PDF:
  LORENTZ_CDF evaluates the CDF;
  LORENTZ_CDF_INV inverts the CDF.
  LORENTZ_PDF evaluates the PDF;

       X            PDF           CDF            CDF_INV

       -1.2211       0.12778      0.218418       -1.2211
       7.24111    0.00595711      0.956318       7.24111
       1.68497     0.0829119      0.829509       1.68497
      0.196286      0.306501      0.561695      0.196286
     -0.272532      0.296302      0.415307     -0.272532
      -4.74478     0.0135377     0.0661187      -4.74478
     -0.953486       0.16673      0.257578     -0.953486
      -2.77879     0.0364964      0.109957      -2.77879
      -7.21659     0.0059969      0.043829      -7.21659
      0.447611       0.26518      0.633966      0.447611

TEST107
  For the Lorentz PDF:
  LORENTZ_MEAN computes the mean;
  LORENTZ_SAMPLE samples;
  LORENTZ_VARIANCE computes the variance.

  PDF mean =     0
  PDF variance = inf

  Sample size =     1000
  Sample mean =     -0.111859
  Sample variance = 175.49
  Sample maximum =  152.177
  Sample minimum =  -173.146

TEST108
  For the Maxwell PDF:
  MAXWELL_CDF evaluates the CDF;
  MAXWELL_CDF_INV inverts the CDF.
  MAXWELL_PDF evaluates the PDF;

  PDF parameter A =             2

       X            PDF           CDF            CDF_INV

       4.29456      0.183427      0.768636       4.29492
       6.13704     0.0338961       0.89487       6.13672
       1.45642      0.162283      0.307636       1.45605
       5.98388      0.040642      0.887603       5.98438
       3.74497      0.242317      0.709648       3.74414
        2.0281      0.245322      0.433405       2.02832
        1.7946      0.214758      0.383889       1.79492
       1.95034      0.235816      0.417222        1.9502
       1.49461      0.168514      0.316485       1.49463
       1.35125      0.144944      0.282999       1.35156

TEST109
  For the Maxwell PDF:
  MAXWELL_MEAN computes the mean;
  MAXWELL_SAMPLE samples;
  MAXWELL_VARIANCE computes the variance.

  PDF parameter A =             2
  PDF mean =                    3.19154
  PDF variance =                1.81408

  Sample size =     1000
  Sample mean =     3.15337
  Sample variance = 1.9332
  Sample maximum =  8.32689
  Sample minimum =  0.206015

TEST110
  MULTINOMIAL_COEF1 computes multinomial
  coefficients using the Gamma function;
  MULTINOMIAL_COEF2 computes multinomial
  coefficients directly.

  Line 10 of the BINOMIAL table:

   0  10      1      1
   1   9     10     10
   2   8     45     45
   3   7    120    120
   4   6    210    210
   5   5    252    252
   6   4    210    210
   7   3    120    120
   8   2     45     45
   9   1     10     10
  10   0      1      1

  Level 5 of the TRINOMIAL coefficients:

   0   0   5      1      1
   0   1   4      5      5
   0   2   3     10     10
   0   3   2     10     10
   0   4   1      5      5
   0   5   0      1      1

   1   0   4      5      5
   1   1   3     20     20
   1   2   2     30     30
   1   3   1     20     20
   1   4   0      5      5

   2   0   3     10     10
   2   1   2     30     30
   2   2   1     30     30
   2   3   0     10     10

   3   0   2     10     10
   3   1   1     20     20
   3   2   0     10     10

   4   0   1      5      5
   4   1   0      5      5

   5   0   0      1      1

TEST111
  For the Multinomial PDF:
  MULTINOMIAL_MEAN computes the mean;
  MULTINOMIAL_SAMPLE samples;
  MULTINOMIAL_VARIANCE computes the variance;

  PDF parameter A =      5
  PDF parameter B =      3

  PDF parameter C:

     1           0.125
     2             0.5
     3           0.375

  PDF mean:

     1           0.625
     2             2.5
     3           1.875

  PDF variance:

     1        0.546875
     2            1.25
     3         1.17188

  Sample size =     1000

  Component Mean, Variance, Min, Max:

       1         0.628      0.552168             0             3
       2         2.472       1.23445             0             5
       3           1.9       1.20721             0             5

TEST112
  For the Multinomial PDF:
  MULTINOMIAL_PDF evaluates the PDF;

  PDF parameter A =      5
  PDF parameter B =      3

  PDF parameter C:

     1             0.1
     2             0.5
     3             0.4

  PDF argument X:

     0         0
     1         2
     2         3

  PDF value = 0.16

TEST113
  For the Nakagami PDF:
  NAKAGAMI_CDF evaluates the CDF;
  NAKAGAMI_PDF evaluates the PDF;

  PDF parameter A =      1
  PDF parameter B =      2
  PDF parameter C =      3

       X            PDF           CDF

          1.25   0.000393121   1.65738e-05

TEST114
  For the Nakagami PDF:
  NAKAGAMI_MEAN evaluates the mean;
  NAKAGAMI_VARIANCE evaluates the variance;

  PDF parameter A =      1
  PDF parameter B =      2
  PDF parameter C =      3

  PDF mean =      2.91874
  PDF variance =  0.318446

TEST1145
  For the Negative Binomial PDF:
  NEGATIVE_BINOMIAL_CDF evaluates the CDF;
  NEGATIVE_BINOMIAL_CDF_INV inverts the CDF.
  NEGATIVE_BINOMIAL_PDF evaluates the PDF;

  PDF parameter A =      2
  PDF parameter B =      0.25

       X            PDF           CDF            CDF_INV

             6      0.098877      0.466064             6
             3       0.09375       0.15625             3
             7     0.0889893      0.555054             7
             4      0.105469      0.261719             4
             4      0.105469      0.261719             4
            13     0.0316764      0.873295            13
             8     0.0778656      0.632919             8
             6      0.098877      0.466064             6
            12     0.0387155      0.841618            12
             6      0.098877      0.466064             6

TEST1146
  For the Negative Binomial PDF:
  NEGATIVE_BINOMIAL_MEAN computes the mean;
  NEGATIVE_BINOMIAL_SAMPLE samples;
  NEGATIVE_BINOMIAL_VARIANCE computes the variance;

  PDF parameter A =      2
  PDF parameter B =      0.75

  PDF mean =     2.66667
  PDF variance = 0.888889

  Sample size =     1000
  Sample mean =     2.688
  Sample variance = 0.833489
  Sample maximum =  8
  Sample minimum =  2

TEST115
  For the Normal 01 PDF:
  NORMAL_01_CDF evaluates the CDF;
  NORMAL_01_CDF_INV inverts the CDF.
  NORMAL_01_PDF evaluates the PDF;

       X            PDF           CDF            CDF_INV

         1.679040256736491     0.0974392      0.953428         1.679040256746338
       -0.5660598123302577      0.339884      0.285677       -0.5660598123353983
          1.21293421737931      0.191179      0.887423         1.212934217394378
         1.269380628984426      0.178244      0.897847         1.269380629005457
        -1.666086672831968     0.0995733     0.0478481        -1.666086672843646
        -2.242464038261558     0.0322815     0.0124657        -2.242464038262084
        0.0396749185148341      0.398628      0.515824       0.03967491851894145
        0.6730681958483083      0.318081      0.749548        0.6730681958595057
       -0.2751273507132183      0.384125      0.391609       -0.2751273507160336
         2.164004788036971     0.0383732      0.984768         2.164004788031278

TEST116
  For the Normal 01 PDF:
  NORMAL_01_MEAN computes the mean;
  NORMAL_01_SAMPLE samples;
  NORMAL_01_VARIANCE computes the variance;

  PDF mean =     0
  PDF variance = 1

  Sample size =     1000
  Sample mean =     0.00581875
  Sample variance = 0.998375
  Sample maximum =  3.32858
  Sample minimum =  -3.02975

TEST117
  For the Normal PDF:
  NORMAL_CDF evaluates the CDF;
  NORMAL_CDF_INV inverts the CDF.
  NORMAL_PDF evaluates the PDF;

  PDF parameter A =      100
  PDF parameter B =      15

       X            PDF           CDF            CDF_INV

       125.186    0.00649595      0.953428       125.186
       91.5091     0.0226589      0.285677       91.5091
       118.194     0.0127453      0.887423       118.194
       119.041     0.0118829      0.897847       119.041
       75.0087    0.00663822     0.0478481       75.0087
        66.363     0.0021521     0.0124657        66.363
       100.595     0.0265752      0.515824       100.595
       110.096     0.0212054      0.749548       110.096
       95.8731     0.0256084      0.391609       95.8731
        132.46    0.00255821      0.984768        132.46

TEST118
  For the Normal PDF:
  NORMAL_MEAN computes the mean;
  NORMAL_SAMPLE samples;
  NORMAL_VARIANCE computes the variance;

  PDF parameter A =      100
  PDF parameter B =      15

  PDF mean =     100
  PDF variance = 225

  Sample size =     1000
  Sample mean =     100.087
  Sample variance = 224.634
  Sample maximum =  149.929
  Sample minimum =  54.5537

TEST1184
  For the Truncated Normal PDF:
  NORMAL_TRUNCATED_AB_CDF evaluates the CDF.
  NORMAL_TRUNCATED_AB_CDF_INV inverts the CDF.
  NORMAL_TRUNCATED_AB_PDF evaluates the PDF.

  The parent normal distribution has
    mean =               100
    standard deviation = 25
  The parent distribution is truncated to
  the interval [50,150]

       X            PDF           CDF            CDF_INV

           81.63       0.0127629        0.218418           81.63
         137.962      0.00527826        0.956318         137.962
         122.367       0.0112043        0.829509         122.367
         103.704       0.0165359        0.561695         103.704
          94.899        0.016374        0.415307          94.899
         65.8326      0.00657044       0.0661187         65.8326
         84.5743       0.0138204        0.257578         84.5743
         71.5672      0.00875626        0.109957         71.5672
         62.0654      0.00528716        0.043829         62.0654
         108.155       0.0158521        0.633966         108.155

TEST1185
  For the Truncated Normal PDF:
  NORMAL_TRUNCATED_AB_MEAN computes the mean;
  NORMAL_TRUNCATED_AB_SAMPLE samples;
  NORMAL_TRUNCATED_AB_VARIANCE computes the variance.

  The parent normal distribution has
    mean =               100
    standard deviation = 25
  The parent distribution is truncated to
  the interval [50,150]

  PDF mean      =               100
  PDF variance =                483.588

  Sample size =     1000
  Sample mean =     100.123
  Sample variance = 486.064
  Sample maximum =  149.108
  Sample minimum =  50.7873

TEST1186
  For the Lower Truncated Normal PDF:
  NORMAL_TRUNCATED_A_CDF evaluates the CDF.
  NORMAL_TRUNCATED_A_CDF_INV inverts the CDF.
  NORMAL_TRUNCATED_A_PDF evaluates the PDF.

  The parent normal distribution has
    mean =               100
    standard deviation = 25
  The parent distribution is truncated to
  the interval [50,+oo]

       X            PDF           CDF            CDF_INV

         82.0355       0.0126136        0.218418         82.0355
         143.008      0.00371817        0.956318         143.008
         124.191       0.0102245        0.829509         124.191
         104.515        0.016065        0.561695         104.515
         95.5021        0.016067        0.415307         95.5021
         66.0709      0.00650134       0.0661187         66.0709
         85.0161       0.0136446        0.257578         85.0161
         71.8645      0.00866826        0.109957         71.8645
         62.2618      0.00522585        0.043829         62.2618
         109.115       0.0152792        0.633966         109.115

TEST1187
  For the Lower Truncated Normal PDF:
  NORMAL_TRUNCATED_A_MEAN computes the mean;
  NORMAL_TRUNCATED_A_SAMPLE samples;
  NORMAL_TRUNCATED_A_VARIANCE computes the variance.

  The parent normal distribution has
    mean =               100
    standard deviation = 25
  The parent distribution is truncated to
  the interval [50,+oo]

  PDF mean      =               101.381
  PDF variance =                554.032

  Sample size =     1000
  Sample mean =     101.504
  Sample variance = 555.665
  Sample maximum =  171.782
  Sample minimum =  50.8055

TEST1188
  For the Upper Truncated Normal PDF:
  NORMAL_TRUNCATED_B_CDF evaluates the CDF.
  NORMAL_TRUNCATED_B_CDF_INV inverts the CDF.
  NORMAL_TRUNCATED_B_PDF evaluates the PDF.

  The parent normal distribution has
    mean =               100
    standard deviation = 25
  The parent distribution is truncated to
  the interval [-oo,150]

       X            PDF           CDF            CDF_INV

         80.1372       0.0119094        0.218418         80.1372
         137.766      0.00521699        0.956318         137.766
         122.006       0.0110844        0.829509         122.006
         103.073       0.0162063        0.561695         103.073
         94.0447       0.0158724        0.415307         94.0447
         62.0713      0.00516592       0.0661187         62.0713
         83.2727       0.0130542        0.257578         83.2727
         68.9956      0.00756806        0.109957         68.9956
         57.0318      0.00372825        0.043829         57.0318
         107.607       0.0155905        0.633966         107.607

TEST1189
  For the Upper Truncated Normal PDF:
  NORMAL_TRUNCATED_B_MEAN computes the mean;
  NORMAL_TRUNCATED_B_SAMPLE samples;
  NORMAL_TRUNCATED_B_VARIANCE computes the variance.

  The parent normal distribution has
    mean =               100
    standard deviation = 25
  The parent distribution is truncated to
  the interval [-oo,150]

  PDF mean      =               98.6188
  PDF variance =                554.032

  Sample size =     1000
  Sample mean =     98.7101
  Sample variance = 560.281
  Sample maximum =  149.087
  Sample minimum =  27.2041

TEST119
  For the Pareto PDF:
  PARETO_CDF evaluates the CDF;
  PARETO_CDF_INV inverts the CDF.
  PARETO_PDF evaluates the PDF;

  PDF parameter A =      2
  PDF parameter B =      3

       X            PDF           CDF            CDF_INV

       2.17123       1.07992      0.218418       2.17123
       5.67886     0.0230763      0.956318       5.67886
       3.60686      0.141805      0.829509       3.60686
       2.63292      0.499412      0.561695       2.63292
       2.39178      0.733379      0.415307       2.39178
       2.04613       1.36924     0.0661187       2.04613
       2.20875       1.00838      0.257578       2.20875
       2.07918       1.28422      0.109957       2.07918
        2.0301       1.41299      0.043829        2.0301
       2.79591      0.392754      0.633966       2.79591

TEST120
  For the Pareto PDF:
  PARETO_MEAN computes the mean;
  PARETO_SAMPLE samples;
  PARETO_VARIANCE computes the variance;

  PDF parameter A =      2
  PDF parameter B =      3

  PDF mean =     3
  PDF variance = 3

  Sample size =     1000
  Sample mean =     2.99105
  Sample variance = 2.10266
  Sample maximum =  15.6386
  Sample minimum =  2.00123

TEST123
  For the Pearson 05 PDF:
  PEARSON_05_PDF evaluates the PDF.

  PDF parameter A = 1
  PDF parameter B = 2
  PDF parameter C = 3

  PDF argument X =  5
  PDF value =       0.0758163

TEST124
  For the Planck PDF:
  PLANCK_PDF evaluates the PDF.
  PLANCK_SAMPLE samples the PDF.

  PDF parameter A = 2
  PDF parameter B = 3

       X            PDF

         3.673     0.0788188
        3.0685      0.154193
       2.78714      0.203171
       5.41214    0.00777678
       3.91626     0.0587186
      0.782927      0.312254
       1.68781       0.41945
        2.8936      0.183616
       1.24248      0.429598
       1.20762       0.42572

TEST125
  For the Planck PDF:
  PLANCK_MEAN computes the mean;
  PLANCK_SAMPLE samples;
  PLANCK_VARIANCE computes the variance;

  PDF parameter A =      2
  PDF parameter B =      3
  PDF mean =     3.83223
  PDF variance = 0

  Sample size =     1000
  Sample mean =     1.93308
  Sample variance = 0.99989
  Sample maximum =  6.48678
  Sample minimum =  0.165955

TEST126:
  POISSON_CDF evaluates the cumulative distribution
  function for the discrete Poisson probability
  density function.
  POISSON_CDF_VALUES returns some exact values.

  A is the expected mean number of successes per unit time;
  X is the number of successes;
  POISSON_CDF is the probability of having up to X
  successes in unit time.

   A          X   Exact F     POISSON_CDF(A,X)

      0.02         0          0.980199          0.980199
       0.1         0          0.904837          0.904837
       0.1         1          0.995321          0.995321
       0.5         0          0.606531          0.606531
       0.5         1          0.909796          0.909796
       0.5         2          0.985612          0.985612
         1         0          0.367879          0.367879
         1         1          0.735759          0.735759
         1         2          0.919699          0.919699
         1         3          0.981012          0.981012
         2         0          0.135335          0.135335
         2         1          0.406006          0.406006
         2         2          0.676676          0.676676
         2         3          0.857123          0.857123
         5         0        0.00673795        0.00673795
         5         1         0.0404277         0.0404277
         5         2          0.124652          0.124652
         5         3          0.265026          0.265026
         5         4          0.440493          0.440493
         5         5          0.615961          0.615961
         5         6          0.762183          0.762183

TEST127
  For the Poisson PDF:
  POISSON_CDF evaluates the CDF;
  POISSON_CDF_INV inverts the CDF.
  POISSON_PDF evaluates the PDF;

  PDF parameter A =             10

       X            PDF           CDF            CDF_INV

             7     0.0900792      0.220221             7
            16     0.0216988      0.972958            16
            13     0.0729079      0.864464            13
            10       0.12511       0.58304            10
             9       0.12511       0.45793             9
             5     0.0378333      0.067086             5
             8      0.112599       0.33282             8
             6     0.0630555      0.130141             6
             5     0.0378333      0.067086             5
            11      0.113736      0.696776            11

TEST128
  For the Poisson PDF,
  POISSON_SAMPLE samples the Poisson PDF.
  POISSON_SAMPLE samples the Poisson PDF.
  POISSON_SAMPLE samples the Poisson PDF.

  PDF parameter A =      10

  PDF mean =     10
  PDF variance = 10

  Sample size =     1000
  Sample mean =     10.005
  Sample variance = 10.005
  Sample maximum =  20
  Sample minimum =  2

TEST129
  For the Power PDF:
  POWER_CDF evaluates the CDF;
  POWER_CDF_INV inverts the CDF.
  POWER_PDF evaluates the PDF;

  PDF parameter A =      2
  PDF parameter B =      3

       X            PDF           CDF            CDF_INV

       1.40206      0.311568      0.218418       1.40206
       2.93374      0.651943      0.956318       2.93374
       2.73232      0.607183      0.829509       2.73232
       2.24839      0.499642      0.561695       2.24839
       1.93333      0.429629      0.415307       1.93333
      0.771407      0.171424     0.0661187      0.771407
       1.52256      0.338347      0.257578       1.52256
      0.994792      0.221065      0.109957      0.994792
      0.628061      0.139569      0.043829      0.628061
       2.38866      0.530813      0.633966       2.38866

TEST130
  For the Power PDF:
  POWER_MEAN computes the mean;
  POWER_SAMPLE samples;
  POWER_VARIANCE computes the variance;

  PDF parameter A =      2
  PDF parameter B =      3

  PDF mean =     2
  PDF variance = 0.5

  Sample size =     1000
  Sample mean =     2.00568
  Sample variance = 0.505123
  Sample maximum =  2.99686
  Sample minimum =  0.128629

TEST1304
  For the Quasigeometric PDF:
  QUASIGEOMETRIC_CDF evaluates the CDF;
  QUASIGEOMETRIC_CDF_INV inverts the CDF.
  QUASIGEOMETRIC_PDF evaluates the PDF;

  PDF parameter A = 0.4825
  PDF parameter B = 0.5893

       X            PDF           CDF            CDF_INV

             0        0.4825        0.4825             1
             5     0.0256319      0.963222             6
             3     0.0738088      0.894094             4
             1      0.212537      0.695037             2
             0        0.4825        0.4825             1
             0        0.4825        0.4825             1
             0        0.4825        0.4825             1
             0        0.4825        0.4825             1
             0        0.4825        0.4825             1
             1      0.212537      0.695037             2

TEST1306
  For the Quasigeometric PDF:
  QUASIGEOMETRIC_MEAN computes the mean;
  QUASIGEOMETRIC_SAMPLE samples;
  QUASIGEOMETRIC_VARIANCE computes the variance.

  PDF parameter A = 0.4825
  PDF parameter B = 0.5893
  PDF mean =                    1.26004
  PDF variance =                3.28832

  Sample size =     1000
  Sample mean =     1.267
  Sample variance = 3.21693
  Sample maximum =  11
  Sample minimum =  0

TEST131
  For the Rayleigh PDF:
  RAYLEIGH_CDF evaluates the CDF;
  RAYLEIGH_CDF_INV inverts the CDF.
  RAYLEIGH_PDF evaluates the PDF;

  PDF parameter A =             2

       X            PDF           CDF            CDF_INV

        1.4041      0.274354      0.218418        1.4041
       5.00465     0.0546538      0.956318       5.00465
       3.76199      0.160346      0.829509       3.76199
        2.5688      0.281479      0.561695        2.5688
       2.07204      0.302877      0.415307       2.07204
      0.739762      0.172712     0.0661187      0.739762
        1.5436      0.286501      0.257578        1.5436
       0.96534      0.214799      0.109957       0.96534
      0.598789      0.143136      0.043829      0.598789
       2.83553      0.259475      0.633966       2.83553

TEST132
  For the Rayleigh PDF:
  RAYLEIGH_MEAN computes the mean;
  RAYLEIGH_SAMPLE samples;
  RAYLEIGH_VARIANCE computes the variance.

  PDF parameter A =             2
  PDF mean =                    2.50663
  PDF variance =                1.71681

  Sample size =     1000
  Sample mean =     2.5139
  Sample variance = 1.70827
  Sample maximum =  7.02555
  Sample minimum =  0.121328

TEST133
  For the Reciprocal PDF:
  RECIPROCAL_CDF evaluates the CDF;
  RECIPROCAL_CDF_INV inverts the CDF.
  RECIPROCAL_PDF evaluates the PDF;

  PDF parameter A =      1
  PDF parameter B =      3

       X            PDF           CDF            CDF_INV

       1.27119       0.71605      0.218418       1.27119
       2.85943      0.318329      0.956318       2.85943
       2.48758      0.365914      0.829509       2.48758
       1.85352      0.491087      0.561695       1.85352
       1.57816      0.576771      0.415307       1.57816
       1.07534      0.846465     0.0661187       1.07534
       1.32708      0.685898      0.257578       1.32708
        1.1284      0.806664      0.109957        1.1284
       1.04933      0.867449      0.043829       1.04933
       2.00668      0.453604      0.633966       2.00668

TEST134
  For the Reciprocal PDF:
  RECIPROCAL_MEAN computes the mean;
  RECIPROCAL_SAMPLE samples;
  RECIPROCAL_VARIANCE computes the variance;

  PDF parameter A =      1
  PDF parameter B =      3

  PDF mean =     1.82048
  PDF variance = 0.326815

  Sample size =     1000
  Sample mean =     1.8251
  Sample variance = 0.321955
  Sample maximum =  2.99311
  Sample minimum =  1.00202

TEST1341:
  RIBESL computes values of Bessel functions
  of NONINTEGER order.
  BESSEL_IX_VALUES returns selected values of the
  Bessel function In for NONINTEGER order.

      ALPHA         X             FX                        FX2
                                  (table)                   (RIBESL)

           0.5           0.2                  0.359208                  0.359208
           0.5             1                  0.937675                  0.937675
           0.5             2                   2.04624                   2.04624
           0.5           2.5                   3.05309                   3.05309
           0.5             3                   4.61482                   4.61482
           0.5             5                   26.4775                   26.4775
           0.5            10                   2778.78                   2778.78
           0.5            20               4.32797e+07               4.32797e+07
           1.5             1                  0.293525                  0.293525
           1.5             2                   1.09947                   1.09947
           1.5             5                   21.1844                   21.1844
           1.5            10                   2500.91                   2500.91
           1.5            50               2.86665e+20               2.86665e+20
           2.5             1                 0.0570989                 0.0570989
           2.5             2                  0.397027                  0.397027
           2.5             5                   13.7669                   13.7669
           2.5            10                   2028.51                   2028.51
           2.5            50               2.75316e+20               2.75316e+20
          1.25             1                  0.413942                  0.413942
          1.25             2                    1.3402                    1.3402
          1.25             5                   22.8572                   22.8572
          1.25            10                   2593.01                   2593.01
          1.25            50               2.88663e+20               2.88663e+20
          2.75             1                 0.0359091                 0.0359091
          2.75             2                  0.293111                  0.293111
          2.75             5                    11.994                    11.994
          2.75            10                   1894.58                   1894.58
          2.75            50               2.71691e+20               2.71691e+20

TEST1342
  For the RUNS PDF:
  RUNS_PDF evaluates the PDF;

  M is the number of symbols of one kind,
  N is the number of symbols of the other kind,
  R is the number of runs (sequences of one symbol)

         M         N         R      PDF


         6         0         1               1
         6         0         2               0
         6                                   1

         6         1         1               0
         6         1         2        0.285714
         6         1         3        0.714286
         6         1         4               0
         6                                   1

         6         2         1               0
         6         2         2       0.0714286
         6         2         3        0.214286
         6         2         4        0.357143
         6         2         5        0.357143
         6         2         6               0
         6                                   1

         6         3         1               0
         6         3         2       0.0238095
         6         3         3       0.0833333
         6         3         4        0.238095
         6         3         5        0.297619
         6         3         6        0.238095
         6         3         7        0.119048
         6         3         8               0
         6                                   1

         6         4         1               0
         6         4         2      0.00952381
         6         4         3       0.0380952
         6         4         4        0.142857
         6         4         5        0.214286
         6         4         6        0.285714
         6         4         7        0.190476
         6         4         8       0.0952381
         6         4         9       0.0238095
         6         4        10               0
         6                                   1

         6         5         1               0
         6         5         2        0.004329
         6         5         3       0.0194805
         6         5         4       0.0865801
         6         5         5        0.151515
         6         5         6         0.25974
         6         5         7         0.21645
         6         5         8         0.17316
         6         5         9       0.0649351
         6         5        10        0.021645
         6         5        11       0.0021645
         6         5        12               0
         6                                   1

         6         6         1               0
         6         6         2       0.0021645
         6         6         3       0.0108225
         6         6         4       0.0541126
         6         6         5        0.108225
         6         6         6         0.21645
         6         6         7         0.21645
         6         6         8         0.21645
         6         6         9        0.108225
         6         6        10       0.0541126
         6         6        11       0.0108225
         6         6        12       0.0021645
         6         6        13               0
         6         6        14               0
         6                                   1

         6         7         1               0
         6         7         2       0.0011655
         6         7         3      0.00641026
         6         7         4        0.034965
         6         7         5       0.0786713
         6         7         6        0.174825
         6         7         7        0.203963
         6         7         8          0.2331
         6         7         9        0.145688
         6         7        10       0.0874126
         6         7        11       0.0262238
         6         7        12      0.00699301
         6         7        13     0.000582751
         6         7        14               0
         6                                   1

         6         8         1               0
         6         8         2     0.000666001
         6         8         3        0.003996
         6         8         4         0.02331
         6         8         5       0.0582751
         6         8         6         0.13986
         6         8         7         0.18648
         6         8         8          0.2331
         6         8         9        0.174825
         6         8        10         0.11655
         6         8        11         0.04662
         6         8        12        0.013986
         6         8        13        0.002331
         6         8        14               0
         6                                   1

         6         9         1               0
         6         9         2       0.0003996
         6         9         3       0.0025974
         6         9         4        0.015984
         6         9         5        0.043956
         6         9         6        0.111888
         6         9         7        0.167832
         6         9         8        0.223776
         6         9         9        0.195804
         6         9        10         0.13986
         6         9        11       0.0699301
         6         9        12       0.0223776
         6         9        13      0.00559441
         6         9        14               0
         6                                   1

TEST1344
  For the RUNS PDF:
  RUNS_MEAN computes the mean;
  RUNS_VARIANCE computes the variance

  PDF parameter M = 10
  PDF parameter N = 5
  PDF mean =        7.66667
  PDF variance =    2.69841

  Sample size =     1000
  Sample mean =     7.65
  Sample variance = 2.61011
  Sample maximum =  11
  Sample minimum =  2

TEST135
  For the Sech PDF:
  SECH_CDF evaluates the CDF;
  SECH_CDF_INV inverts the CDF.
  SECH_PDF evaluates the PDF;

  PDF parameter A =      3
  PDF parameter B =      2

       X            PDF           CDF            CDF_INV

      0.941182      0.100839      0.218418      0.941182
       8.35531     0.0217727      0.956318       8.35531
       5.58635     0.0812276      0.829509       5.58635
       3.39009      0.156175      0.561695       3.39009
       2.46147      0.153555      0.415307       2.46147
      -1.52223     0.0328221     0.0661187      -1.52223
        1.3038      0.115187      0.257578        1.3038
     -0.492142     0.0538915      0.109957     -0.492142
      -2.34859     0.0218453      0.043829      -2.34859
       3.86774      0.145266      0.633966       3.86774

TEST136
  For the Sech PDF:
  SECH_MEAN computes the mean;
  SECH_SAMPLE samples;
  SECH_VARIANCE computes the variance;

  PDF parameter A =      3
  PDF parameter B =      2

  PDF mean =     3
  PDF variance = 9.8696

  Sample size =     1000
  Sample mean =     2.99951
  Sample variance = 9.97628
  Sample maximum =  14.4364
  Sample minimum =  -8.69458

TEST137
  For the Semicircular PDF:
  SEMICIRCULAR_CDF evaluates the CDF;
  SEMICIRCULAR_CDF_INV inverts the CDF.
  SEMICIRCULAR_PDF evaluates the PDF;

  PDF parameter A =      3
  PDF parameter B =      2

       X            PDF           CDF            CDF_INV

       2.07408      0.282143      0.216167       2.07422
       2.64915      0.313374      0.388897       2.64941
       4.26118      0.247045      0.872972       4.26123
       3.95508       0.27967      0.792025       3.95508
       2.82894      0.317143      0.445615        2.8291
       3.07844      0.318065      0.524963       3.07861
       2.09106      0.283538      0.220968       2.09082
       4.78579      0.143324      0.979302       4.78516
        3.8562      0.287667      0.763967       3.85645
        3.6144      0.302918      0.692448       3.61426

TEST138
  For the Semicircular PDF:
  SEMICIRCULAR_MEAN computes the mean;
  SEMICIRCULAR_SAMPLE samples;
  SEMICIRCULAR_VARIANCE computes the variance;

  PDF parameter A =      3
  PDF parameter B =      2

  PDF mean =     3
  PDF variance = 1

  Sample size =     1000
  Sample mean =     3.02688
  Sample variance = 0.989554
  Sample maximum =  4.96783
  Sample minimum =  1.05174

TEST139:
  STUDENT_CDF evaluates the cumulative density function
  for the Student's T PDF.
  STUDENT_CDF_VALUES returns some exact values.

   A      B      C     X       Exact F       STUDENT_CDF(A,B,C,X)

         0         1         1     0.325          0.600023          0.600023
         0         1         2     0.289          0.600108          0.600108
         0         1         3     0.277          0.600115          0.600115
         0         1         4     0.271            0.6001            0.6001
         0         1         5     0.267          0.599934          0.599934
         0         1         2     0.816          0.749886          0.749886
         0         1         5     0.727          0.750088          0.750088
         0         1         2      2.92              0.95              0.95
         0         1         5     2.015          0.949997          0.949997
         0         1         2     6.965          0.990001          0.990001
         0         1         3     4.541          0.990002          0.990002
         0         1         4     3.747              0.99              0.99
         0         1         5     3.365          0.990001          0.990001

TEST140
  For the Student PDF:
  STUDENT_CDF evaluates the CDF;
  STUDENT_PDF evaluates the PDF;
  STUDENT_SAMPLE samples the PDF;

  PDF parameter A = 0.5
  PDF parameter B = 2
  PDF parameter C = 6

       X            PDF           CDF

       1.23384      0.331326      0.636863
      0.763175       0.37563      0.550194
      0.320752      0.379419      0.465751
      -2.11984     0.0746224      0.119069
       0.50983      0.382723      0.501881
       3.93888     0.0283131      0.931835
      0.985322      0.359192      0.591825
     -0.714645      0.259709      0.282948
      0.144113       0.36986      0.432312
      0.464835      0.382605      0.493271

TEST141
  For the Student PDF:
  STUDENT_MEAN evaluates the mean;
  STUDENT_SAMPLE samples the PDF;
  STUDENT_VARIANCE computes the variance;

  PDF parameter A = 0.5
  PDF parameter B = 2
  PDF parameter C = 6

  PDF mean =     0.5
  PDF variance = 6

  Sample size =     1000
  Sample mean =     0.472733
  Sample variance = 3.15695
  Sample maximum =  12.2574
  Sample minimum =  -18.5475

TEST142
  For the Noncentral Student PDF:
  STUDENT_NONCENTRAL_CDF evaluates the CDF;

  PDF argument X =              0.5
  PDF parameter IDF =           10
  PDF parameter B =             1
  CDF value =                   0.30528

TEST1425
  TFN evaluates Owen's T function;
  OWEN_VALUES returns some exact values;

      H             A           T(H,A)          Exact

          0.0625            0.25       0.0389119       0.0389119
             6.5          0.4375     2.00058e-11     2.00058e-11
               7         0.96875     6.39906e-13     6.39906e-13
         4.78125          0.0625      1.0633e-07      1.0633e-07
               2             0.5      0.00862508      0.00862508
               1        0.999997       0.0667418       0.0667418
               1             0.5       0.0430647       0.0430647
               1               1       0.0667419       0.0667419
               1               2       0.0784682       0.0784682
               1               3       0.0792995       0.0792995
             0.5             0.5       0.0644886       0.0644886
             0.5               1        0.106671        0.106671
             0.5               2        0.141581        0.141581
             0.5               3        0.151084        0.151084
            0.25             0.5       0.0713466       0.0713466
            0.25               1        0.120129        0.120129
            0.25               2        0.166613        0.166613
            0.25               3         0.18475         0.18475
           0.125             0.5       0.0731727       0.0731727
           0.125               1        0.123763        0.123763
           0.125               2        0.173744        0.173744
           0.125               3        0.195119        0.195119
       0.0078125             0.5       0.0737894       0.0737894
       0.0078125               1        0.124995        0.124995
       0.0078125               2        0.176198        0.176198
       0.0078125               3        0.198777        0.198777
       0.0078125              10        0.234074        0.234089
       0.0078125             100        0.233737        0.247946

TEST143
  For the Triangle PDF:
  TRIANGLE_CDF evaluates the CDF;
  TRIANGLE_CDF_INV inverts the CDF.
  TRIANGLE_PDF evaluates the PDF;

  PDF parameter A =      1
  PDF parameter B =      3
  PDF parameter C =      10

       X            PDF           CDF            CDF_INV

       2.98281      0.220312      0.218418       2.98281
       8.34109     0.0526639      0.956318       8.34109
       6.72267      0.104042      0.829509       6.72267
       4.74517       0.16682      0.561695       4.74517
       3.93076      0.192674      0.415307       3.93076
       2.09093      0.121215     0.0661187       2.09093
       3.16095      0.217113      0.257578       3.16095
       2.40685      0.156316      0.109957       2.40685
       1.88821     0.0986903      0.043829       1.88821
        5.1979      0.152448      0.633966        5.1979

TEST144
  For the Triangle PDF:
  TRIANGLE_MEAN computes the mean;
  TRIANGLE_SAMPLE samples;
  TRIANGLE_VARIANCE computes the variance;

  PDF parameter A =        1
  PDF parameter B =        3
  PDF parameter C =        10

  PDF mean =     4.66667
  PDF variance = 3.72222

  Sample size =     1000
  Sample mean =     4.67684
  Sample variance = 3.70549
  Sample maximum =  9.63699
  Sample minimum =  1.18191

TEST145
  For the Triangular PDF:
  TRIANGULAR_CDF evaluates the CDF;
  TRIANGULAR_CDF_INV inverts the CDF.
  TRIANGULAR_PDF evaluates the PDF;

  PDF parameter A =      1
  PDF parameter B =      10

       X            PDF           CDF            CDF_INV

       3.97421      0.146875      0.218418       3.97421
       8.66991     0.0656834      0.956318       8.66991
       7.37229      0.129764      0.829509       7.37229
       5.78677      0.208061      0.561695       5.78677
       5.10121      0.202529      0.415307       5.10121
        2.6364     0.0808099     0.0661187        2.6364
       4.22985      0.159499      0.257578       4.22985
       3.11027      0.104211      0.109957       3.11027
       2.33232     0.0657935      0.043829       2.33232
       6.14975      0.190136      0.633966       6.14975

TEST146
  For the Triangular PDF:
  TRIANGULAR_MEAN computes the mean;
  TRIANGULAR_SAMPLE samples;
  TRIANGULAR_VARIANCE computes the variance;

  PDF parameter A =      1
  PDF parameter B =      10

  PDF mean =     5.5
  PDF variance = 3.375

  Sample size =     1000
  Sample mean =     5.51035
  Sample variance = 3.38802
  Sample maximum =  9.70895
  Sample minimum =  1.27286

TEST147
  For the Uniform 01 Order PDF:
  UNIFORM_ORDER_SAMPLE samples.

  Ordered sample:

     1       0.0174736
     2       0.0275623
     3        0.131654
     4        0.274807
     5        0.385745
     6        0.664103
     7        0.768848
     8        0.834884
     9        0.854621
    10        0.858873

TEST148
  For the Uniform PDF on the N-Sphere:
  UNIFORM_NSPHERE_SAMPLE samples.

  Dimension N of sphere = 3

  Points on the sphere:

       1      0.781938     -0.263617       0.56487  
       2      0.413678     -0.542961     -0.730797  
       3     0.0544828      0.924277     -0.377813  
       4      0.723278     0.0995291      0.683347  
       5      0.747038     -0.663815     -0.035826  
       6      -0.78339     -0.516512      -0.34571  
       7      0.146773      0.598886      -0.78727  
       8     -0.649577     -0.399299     -0.647001  
       9      0.375237     -0.770087       0.51591  
      10     -0.408985     0.0579096     -0.910702  

TEST1485
  For the Uniform 01 PDF:
  UNIFORM_01_CDF evaluates the CDF;
  UNIFORM_01_CDF_INV inverts the CDF.
  UNIFORM_01_PDF evaluates the PDF;

       X            PDF           CDF            CDF_INV

      0.218418             1      0.218418      0.218418
      0.956318             1      0.956318      0.956318
      0.829509             1      0.829509      0.829509
      0.561695             1      0.561695      0.561695
      0.415307             1      0.415307      0.415307
     0.0661187             1     0.0661187     0.0661187
      0.257578             1      0.257578      0.257578
      0.109957             1      0.109957      0.109957
      0.043829             1      0.043829      0.043829
      0.633966             1      0.633966      0.633966

TEST1486
  For the Uniform 01 PDF:
  UNIFORM_01_MEAN computes the mean;
  UNIFORM_01_SAMPLE samples;
  UNIFORM_01_VARIANCE computes the variance.

  PDF mean =     0.5
  PDF variance = 0.0833333

  Sample size =     1000
  Sample mean =     0.50304
  Sample variance = 0.082332
  Sample maximum =  0.997908
  Sample minimum =  0.00183837

TEST149
  For the Uniform PDF:
  UNIFORM_CDF evaluates the CDF;
  UNIFORM_CDF_INV inverts the CDF.
  UNIFORM_PDF evaluates the PDF;

  PDF parameter A =      1
  PDF parameter B =      10

       X            PDF           CDF            CDF_INV

       2.96576      0.111111      0.218418       2.96576
       9.60686      0.111111      0.956318       9.60686
       8.46558      0.111111      0.829509       8.46558
       6.05526      0.111111      0.561695       6.05526
       4.73776      0.111111      0.415307       4.73776
       1.59507      0.111111     0.0661187       1.59507
        3.3182      0.111111      0.257578        3.3182
       1.98961      0.111111      0.109957       1.98961
       1.39446      0.111111      0.043829       1.39446
       6.70569      0.111111      0.633966       6.70569

TEST150
  For the Uniform PDF:
  UNIFORM_MEAN computes the mean;
  UNIFORM_SAMPLE samples;
  UNIFORM_VARIANCE computes the variance;

  PDF parameter A =      1
  PDF parameter B =      10

  PDF mean =     5.5
  PDF variance = 6.75

  Sample size =     1000
  Sample mean =     5.52736
  Sample variance = 6.66889
  Sample maximum =  9.98117
  Sample minimum =  1.01655

TEST151
  For the Uniform Discrete PDF:
  UNIFORM_DISCRETE_CDF evaluates the CDF;
  UNIFORM_DISCRETE_CDF_INV inverts the CDF.
  UNIFORM_DISCRETE_PDF evaluates the PDF;

  PDF parameter A =      1
  PDF parameter B =      6

       X            PDF           CDF            CDF_INV

             2      0.166667      0.333333             3
             6      0.166667             1             6
             6      0.166667             1             6
             4      0.166667      0.666667             5
             3      0.166667           0.5             4
             1      0.166667      0.166667             2
             3      0.166667           0.5             4
             2      0.166667      0.333333             3
             1      0.166667      0.166667             2
             5      0.166667      0.833333             6

TEST152
  For the Uniform Discrete PDF:
  UNIFORM_DISCRETE_MEAN computes the mean;
  UNIFORM_DISCRETE_SAMPLE samples;
  UNIFORM_DISCRETE_VARIANCE computes the variance;

  PDF parameter A =      1
  PDF parameter B =      6

  PDF mean =     3.5
  PDF variance = 2.91667

  Sample size =     1000
  Sample mean =     3.945
  Sample variance = 2.70068
  Sample maximum =  6
  Sample minimum =  1

TEST153
  For the Uniform Discrete PDF:
  UNIFORM_DISCRETE_CDF evaluates the CDF;
  UNIFORM_DISCRETE_PDF evaluates the PDF;

  PDF parameter A =             1
  PDF parameter B =             6

       X            PDF           CDF

             0             0             0
             1      0.166667      0.166667
             2      0.166667      0.333333
             3      0.166667           0.5
             4      0.166667      0.666667
             5      0.166667      0.833333
             6      0.166667             1
             7             0             1
             8             0             1
             9             0             1
            10             0             1

TEST154
  For the Von Mises PDF:
  VON_MISES_CDF evaluates the CDF;
  VON_MISES_CDF_INV inverts the CDF.
  VON_MISES_PDF evaluates the PDF;

  PDF parameter A =      1
  PDF parameter B =      2

       X            PDF           CDF            CDF_INV

      0.476234      0.394559       0.25232      0.476146
       1.12227       0.50824      0.562764       1.12233
      0.931772       0.51349      0.464857      0.931738
      0.575338       0.43192      0.293305      0.575471
      0.862805      0.506281      0.429664      0.862709
      -1.39044     0.0161849    0.00863675      -1.39301
       2.77511     0.0465295      0.974194       2.77328
      0.193915      0.278813      0.157223      0.193893
      0.786199       0.49292      0.391357       0.78601
      0.790531      0.493818      0.393494      0.790612

TEST155
  For the Von Mises PDF:
  VON_MISES_MEAN computes the mean;
  VON_MISES_SAMPLE samples;
  VON_MISES_CIRCULAR_VARIANCE computes the circular variance;

  PDF parameter A =      1
  PDF parameter B =      2

  PDF mean =              1
  PDF circular variance = 0.302225

  Sample size =              1000
  Sample mean =              1.01316
  Sample circular variance = 0.307398
  Sample maximum =           4.0905
  Sample minimum =           -2.04316

TEST1555:
  VON_MISES_CDF evaluates the von Mises CDF.
  VON_MISES_CDF_VALUES returns some exact values.

  A is the dominant angle;
  B is a measure of spread;
  X is the angle;

      A     B         X   Exact F     Computed F

         0         1  -2.61799         0.0253509         0.0253509
         0         1   -1.5708          0.109754          0.109754
         0         1         0               0.5               0.5
         0         1    1.0472          0.804338          0.804338
         0         1    2.0944          0.941746          0.941746
         1         2         1               0.5               0.5
         1         2       1.2           0.60182           0.60182
         1         2       1.4          0.695936          0.695936
         1         2       1.6          0.776594          0.776594
         1         2       1.8          0.841073          0.841073
         1         2         2          0.889578          0.889578
        -2         3         0          0.996032          0.996032
        -1         3         0          0.940434          0.940434
         0         3         0               0.5               0.5
         1         3         0         0.0595664         0.0595664
         2         3         0        0.00396773        0.00396773
         3         3         0       0.000232195       0.000232194
         0         0  0.785398             0.625             0.625
         0         1  0.785398          0.743841          0.743841
         0         2  0.785398          0.836922          0.836922
         0         3  0.785398          0.894171          0.894171
         0         4  0.785398          0.929106          0.929106
         0         5  0.785398          0.951429          0.951429

TEST156
  For the Weibull PDF:
  WEIBULL_CDF evaluates the CDF;
  WEIBULL_CDF_INV inverts the CDF.
  WEIBULL_PDF evaluates the PDF;

  PDF parameter A =      2
  PDF parameter B =      3
  PDF parameter C =      4

       X            PDF           CDF            CDF_INV

       4.11372      0.364494      0.218418       4.11372
       5.99057      0.137084      0.956318       5.99057
       5.45985      0.348698      0.829509       5.45985
         4.859      0.505816      0.561695         4.859
       4.56772      0.488817      0.415307       4.56772
       3.53425      0.166552     0.0661187       3.53425
       4.21624      0.399093      0.257578       4.21624
       3.75263      0.236621      0.109957       3.75263
       3.38034      0.124184      0.043829       3.38034
       5.00376      0.489885      0.633966       5.00376

TEST157
  For the Weibull PDF:
  WEIBULL_MEAN computes the mean;
  WEIBULL_SAMPLE samples;
  WEIBULL_VARIANCE computes the variance.

  PDF parameter A =      2
  PDF parameter B =      3
  PDF parameter C =      4

  PDF mean =     4.71921
  PDF variance = 0.581953

  Sample size =     1000
  Sample mean =     4.7225
  Sample variance = 0.587748
  Sample maximum =  6.72812
  Sample minimum =  2.62134

TEST158
  For the Weibull Discrete PDF:
  WEIBULL_DISCRETE_CDF evaluates the CDF;
  WEIBULL_DISCRETE_CDF_INV inverts the CDF.
  WEIBULL_DISCRETE_PDF evaluates the PDF;

  PDF parameter A =      0.5
  PDF parameter B =      1.5

       X            PDF           CDF            CDF_INV

             0           0.5           0.5             0
             2      0.113508      0.972723             2
             1      0.359214      0.859214             1
             1      0.359214      0.859214             1
             0           0.5           0.5             0
             0           0.5           0.5             0
             0           0.5           0.5             0
             0           0.5           0.5             0
             0           0.5           0.5             0
             1      0.359214      0.859214             1

TEST159
  For the Weibull Discrete PDF:
  WEIBULL_DISCRETE_CDF evaluates the CDF;
  WEIBULL_DISCRETE_PDF evaluates the PDF;

  PDF parameter A =      0.5
  PDF parameter B =      1.5

       X            PDF           CDF

             0           0.5           0.5
             1      0.359214      0.859214
             2      0.113508      0.972723
             3     0.0233711      0.996094
             4    0.00347534      0.999569
             5   0.000393254      0.999962
             6   3.49916e-05      0.999997
             7   2.50545e-06             1
             8   1.46886e-07             1
             9   7.14817e-09             1
            10   2.91997e-10             1

TEST160
  For the Weibull Discrete PDF:
  WEIBULL_DISCRETE_SAMPLE samples;

  PDF parameter A =      0.5
  PDF parameter B =      1.5

  Sample size =     1000
  Sample mean =     0.676
  Sample variance = 0.621646
  Sample maximum =  4
  Sample minimum =  0

TEST161
  For the ZIPF PDF:
  ZIPF_CDF evaluates the CDF;
  ZIPF_PDF evaluates the PDF;

  PDF parameter A =             2

       X            PDF           CDF

             1      0.607927      0.607927
             2      0.151982      0.759909
             3     0.0675475      0.827456
             4     0.0379954      0.865452
             5     0.0243171      0.889769
             6     0.0168869      0.906656
             7     0.0124067      0.919062
             8    0.00949886      0.928561
             9    0.00750527      0.936067
            10    0.00607927      0.942146
            11    0.00502419       0.94717
            12    0.00422172      0.951392
            13     0.0035972      0.954989
            14    0.00310167      0.958091
            15     0.0027019      0.960792
            16    0.00237472      0.963167
            17    0.00210355      0.965271
            18    0.00187632      0.967147
            19    0.00168401      0.968831
            20    0.00151982      0.970351

TEST162
  For the Zipf PDF:
  ZIPF_MEAN computes the mean;
  ZIPF_SAMPLE samples;
  ZIPF_VARIANCE computes the variance.

  PDF parameter A =             4
  PDF mean =                    1.11063
  PDF variance =                0.286326

  Sample size =     1000
  Sample mean =     1.12
  Sample variance = 0.197798
  Sample maximum =  6
  Sample minimum =  1

PROB_PRB
  Normal end of execution.

18 September 2013 02:50:46 PM