# include # include # include # include # include # include using namespace std; # include "pwl_interp_2d_scattered.hpp" # include "r8lib.hpp" //****************************************************************************80 int diaedg ( double x0, double y0, double x1, double y1, double x2, double y2, double x3, double y3 ) //****************************************************************************80 // // Purpose: // // DIAEDG chooses a diagonal edge. // // Discussion: // // The routine determines whether 0--2 or 1--3 is the diagonal edge // that should be chosen, based on the circumcircle criterion, where // (X0,Y0), (X1,Y1), (X2,Y2), (X3,Y3) are the vertices of a simple // quadrilateral in counterclockwise order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 August 2003 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, double X0, Y0, X1, Y1, X2, Y2, X3, Y3, the coordinates of the // vertices of a quadrilateral, given in counter clockwise order. // // Output, int DIAEDG, chooses a diagonal: // +1, if diagonal edge 02 is chosen; // -1, if diagonal edge 13 is chosen; // 0, if the four vertices are cocircular. // { double ca; double cb; double dx10; double dx12; double dx30; double dx32; double dy10; double dy12; double dy30; double dy32; double s; double tol; double tola; double tolb; int value; tol = 100.0 * r8_epsilon ( ); dx10 = x1 - x0; dy10 = y1 - y0; dx12 = x1 - x2; dy12 = y1 - y2; dx30 = x3 - x0; dy30 = y3 - y0; dx32 = x3 - x2; dy32 = y3 - y2; tola = tol * r8_max ( fabs ( dx10 ), r8_max ( fabs ( dy10 ), r8_max ( fabs ( dx30 ), fabs ( dy30 ) ) ) ); tolb = tol * r8_max ( fabs ( dx12 ), r8_max ( fabs ( dy12 ), r8_max ( fabs ( dx32 ), fabs ( dy32 ) ) ) ); ca = dx10 * dx30 + dy10 * dy30; cb = dx12 * dx32 + dy12 * dy32; if ( tola < ca && tolb < cb ) { value = -1; } else if ( ca < -tola && cb < -tolb ) { value = 1; } else { tola = r8_max ( tola, tolb ); s = ( dx10 * dy30 - dx30 * dy10 ) * cb + ( dx32 * dy12 - dx12 * dy32 ) * ca; if ( tola < s ) { value = -1; } else if ( s < -tola ) { value = 1; } else { value = 0; } } return value; } //****************************************************************************80 void i4mat_transpose_print ( int m, int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT prints an I4MAT, transposed. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 January 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, int A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { i4mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void i4mat_transpose_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // I4MAT_TRANSPOSE_PRINT_SOME prints some of an I4MAT, transposed. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of INCX. // for ( i2lo = ilo; i2lo <= ihi; i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); cout << "\n"; // // For each row I in the current range... // // Write the header. // cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << i - 1 << " "; } cout << "\n"; cout << " Col\n"; cout << "\n"; // // Determine the range of the rows in this strip. // j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { // // Print out (up to INCX) entries in column J, that lie in the current strip. // cout << setw(5) << j - 1 << ":"; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(6) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void i4vec_heap_d ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_HEAP_D reorders an I4VEC into a descending heap. // // Discussion: // // An I4VEC is a vector of I4's. // // A heap is an array A with the property that, for every index J, // A[J] >= A[2*J+1] and A[J] >= A[2*J+2], (as long as the indices // 2*J+1 and 2*J+2 are legal). // // Diagram: // // A(0) // // A(1) A(2) // // A(3) A(4) A(5) A(6) // // A(7) A(8) A(9) A(10) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 April 1999 // // Author: // // John Burkardt // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the size of the input array. // // Input/output, int A[N]. // On input, an unsorted array. // On output, the array has been reordered into a heap. // { int i; int ifree; int key; int m; // // Only nodes (N/2)-1 down to 0 can be "parent" nodes. // for ( i = ( n / 2 ) - 1; 0 <= i; i-- ) { // // Copy the value out of the parent node. // Position IFREE is now "open". // key = a[i]; ifree = i; for ( ; ; ) { // // Positions 2*IFREE + 1 and 2*IFREE + 2 are the descendants of position // IFREE. (One or both may not exist because they equal or exceed N.) // m = 2 * ifree + 1; // // Does the first position exist? // if ( n <= m ) { break; } else { // // Does the second position exist? // if ( m + 1 < n ) { // // If both positions exist, take the larger of the two values, // and update M if necessary. // if ( a[m] < a[m+1] ) { m = m + 1; } } // // If the large descendant is larger than KEY, move it up, // and update IFREE, the location of the free position, and // consider the descendants of THIS position. // if ( key < a[m] ) { a[ifree] = a[m]; ifree = m; } else { break; } } } // // When you have stopped shifting items up, return the item you // pulled out back to the heap. // a[ifree] = key; } return; } //****************************************************************************80 int i4vec_min ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_MIN returns the value of the minimum element in an I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the array. // // Input, int A[N], the array to be checked. // // Output, int I4VEC_MIN, the value of the minimum element. This // is set to 0 if N <= 0. // { int i; int value; if ( n <= 0 ) { return 0; } value = a[0]; for ( i = 1; i < n; i++ ) { if ( a[i] < value ) { value = a[i]; } } return value; } //****************************************************************************80 void i4vec_sort_heap_a ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_SORT_HEAP_A ascending sorts an I4VEC using heap sort. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 April 1999 // // Author: // // John Burkardt // // Reference: // // Albert Nijenhuis, Herbert Wilf, // Combinatorial Algorithms, // Academic Press, 1978, second edition, // ISBN 0-12-519260-6. // // Parameters: // // Input, int N, the number of entries in the array. // // Input/output, int A[N]. // On input, the array to be sorted; // On output, the array has been sorted. // { int n1; int temp; if ( n <= 1 ) { return; } // // 1: Put A into descending heap form. // i4vec_heap_d ( n, a ); // // 2: Sort A. // // The largest object in the heap is in A[0]. // Move it to position A[N-1]. // temp = a[0]; a[0] = a[n-1]; a[n-1] = temp; // // Consider the diminished heap of size N1. // for ( n1 = n-1; 2 <= n1; n1-- ) { // // Restore the heap structure of the initial N1 entries of A. // i4vec_heap_d ( n1, a ); // // Take the largest object from A[0] and move it to A[N1-1]. // temp = a[0]; a[0] = a[n1-1]; a[n1-1] = temp; } return; } //****************************************************************************80 int i4vec_sorted_unique ( int n, int a[] ) //****************************************************************************80 // // Purpose: // // I4VEC_SORTED_UNIQUE finds the unique elements in a sorted I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 August 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements in A. // // Input/output, int A[N]. On input, the sorted array. On output, the // unique elements in A. // // Output, int I4VEC_SORTED_UNIQUE, the number of unique elements in A. // { int i; int unique_num; unique_num = 0; if ( n <= 0 ) { return unique_num; } unique_num = 1; for ( i = 1; i < n; i++ ) { if ( a[i] != a[unique_num-1] ) { unique_num = unique_num + 1; a[unique_num-1] = a[i]; } } return unique_num; } //****************************************************************************80 int lrline ( double xu, double yu, double xv1, double yv1, double xv2, double yv2, double dv ) //****************************************************************************80 // // Purpose: // // LRLINE determines where a point lies in relation to a directed line. // // Discussion: // // LRLINE determines whether a point is to the left of, right of, // or on a directed line parallel to a line through given points. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 August 2003 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, double XU, YU, XV1, YV1, XV2, YV2, are vertex coordinates; the // directed line is parallel to and at signed distance DV to the left of // the directed line from (XV1,YV1) to (XV2,YV2); (XU,YU) is the vertex for // which the position relative to the directed line is to be determined. // // Input, double DV, the signed distance, positive for left. // // Output, int LRLINE, is +1, 0, or -1 depending on whether (XU,YU) is // to the right of, on, or left of the directed line. LRLINE is 0 if // the line degenerates to a point. // { double dx; double dxu; double dy; double dyu; double t; double tol = 0.0000001; double tolabs; int value; dx = xv2 - xv1; dy = yv2 - yv1; dxu = xu - xv1; dyu = yu - yv1; tolabs = tol * r8_max ( fabs ( dx ), r8_max ( fabs ( dy ), r8_max ( fabs ( dxu ), r8_max ( fabs ( dyu ), fabs ( dv ) ) ) ) ); t = dy * dxu - dx * dyu + dv * sqrt ( dx * dx + dy * dy ); if ( tolabs < t ) { value = 1; } else if ( -tolabs <= t ) { value = 0; } else if ( t < -tolabs ) { value = -1; } return value; } //****************************************************************************80 int perm_check2 ( int n, int p[], int base ) //****************************************************************************80 // // Purpose: // // PERM_CHECK2 checks that a vector represents a permutation. // // Discussion: // // The routine verifies that each of the integers from 1 // to N occurs among the N entries of the permutation. // // Set the input quantity BASE to 0, if P is a 0-based permutation, // or to 1 if P is a 1-based permutation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries. // // Input, int P[N], the permutation, in standard index form. // // Input, int BASE, the index base. // // Output, int PERM_CHECK, is 1 if the array is NOT a permutation. // { int error; int ifind; int iseek; error = 0; for ( iseek = base; iseek < base + n; iseek++ ) { error = 1; for ( ifind = 1; ifind <= n; ifind++ ) { if ( p[ifind-1] == iseek ) { error = 0; break; } } if ( error ) { cerr << "\n"; cerr << "PERM_CHECK2 - Fatal error!\n"; cerr << " Could not find occurrence of value " << iseek << "\n"; return 1; } } return 0; } //****************************************************************************80 void perm_inverse ( int n, int p[] ) //****************************************************************************80 // // Purpose: // // PERM_INVERSE inverts a permutation "in place". // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 March 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of objects being permuted. // // Input/output, int P[N], the permutation, in standard index form. // On output, P describes the inverse permutation // { int base; int error; int i; int i0; int i1; int i2; int is; int p_min; if ( n <= 0 ) { cerr << "\n"; cerr << "PERM_INVERSE - Fatal error!\n"; cerr << " Input value of N = " << n << "\n"; exit ( 1 ); } // // Find the least value, and shift data so it begins at 1. // p_min = i4vec_min ( n, p ); base = 1; for ( i = 0; i < n; i++ ) { p[i] = p[i] - p_min + base; } // // Check the permutation. // error = perm_check2 ( n, p, base ); if ( error ) { cerr << "\n"; cerr << "PERM_INVERSE - Fatal error!\n"; cerr << " The input array does not represent\n"; cerr << " a proper permutation.\n"; exit ( 1 ); } is = 1; for ( i = 1; i <= n; i++ ) { i1 = p[i-1]; while ( i < i1 ) { i2 = p[i1-1]; p[i1-1] = -i2; i1 = i2; } is = - i4_sign ( p[i-1] ); p[i-1] = abs ( p[i-1] ) * i4_sign ( is ); } for ( i = 1; i <= n; i++ ) { i1 = -p[i-1]; if ( 0 <= i1 ) { i0 = i; for ( ; ; ) { i2 = p[i1-1]; p[i1-1] = i0; if ( i2 < 0 ) { break; } i0 = i1; i1 = i2; } } } // // Now we can restore the permutation. // for ( i = 0; i < n; i++ ) { p[i] = p[i] + p_min - base; } return; } //****************************************************************************80 double *pwl_interp_2d_scattered_value ( int nd, double xyd[], double zd[], int t_num, int t[], int t_neighbor[], int ni, double xyi[] ) //****************************************************************************80 // // Purpose: // // PWL_INTERP_2D_SCATTERED_VALUE evaluates a 2d interpolant of scattered data // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 October 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int ND, the number of data points. // // Input, double XYD[2*ND], the data point coordinates. // // Input, double ZD[ND], the data values. // // Input, int T_NUM, the number of triangles. // // Input, int T[3*T_NUM], the triangle information. // // Input, int T_NEIGHBOR[3*T_NUM], the triangle neighbors. // // Input, int NI, the number of interpolation points. // // Input, double XYI[2*NI], the interpolation point coordinates. // // Output, double PWL_INTERP_2D_SCATTERED_VALUE[NI], the interpolated values. // { double alpha; double beta; double gamma; int edge; int i; int j; int step_num; double *zi; zi = new double[ni]; for ( i = 0; i < ni; i++ ) { triangulation_search_delaunay ( nd, xyd, 3, t_num, t, t_neighbor, xyi+2*i, j, alpha, beta, gamma, edge, step_num ); if ( j == -1 ) { zi[i] = -1.0; } zi[i] = alpha * zd[t[0+j*3]] + beta * zd[t[1+j*3]] + gamma * zd[t[2+j*3]]; } return zi; } //****************************************************************************80 int r8tris2 ( int node_num, double node_xy[], int &triangle_num, int triangle_node[], int triangle_neighbor[] ) //****************************************************************************80 // // Purpose: // // R8TRIS2 constructs a Delaunay triangulation of 2D vertices. // // Discussion: // // The routine constructs the Delaunay triangulation of a set of 2D vertices // using an incremental approach and diagonal edge swaps. Vertices are // first sorted in lexicographically increasing (X,Y) order, and // then are inserted one at a time from outside the convex hull. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 January 2004 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Output, int &TRIANGLE_NUM, the number of triangles in the triangulation; // TRIANGLE_NUM is equal to 2*node_num - NB - 2, where NB is the number // of boundary vertices. // // Output, int TRIANGLE_NODE[3*TRIANGLE_NUM], the nodes that make up each // triangle. The elements are indices of NODE_XY. The vertices of the // triangles are in counterclockwise order. // // Output, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the triangle neighbor list. // Positive elements are indices of TIL; negative elements are used for links // of a counter clockwise linked list of boundary edges; LINK = -(3*I + J-1) // where I, J = triangle, edge index; TRIANGLE_NEIGHBOR[I,J] refers to // the neighbor along edge from vertex J to J+1 (mod 3). // // Output, int R8TRIS2, is 0 for no error. { int base; double cmax; int e; int error; int i; int *indx; int j; int k; int l; int ledg; int lr; int ltri; int m; int m1; int m2; int n; int redg; int rtri; int *stack; int t; double tol; int top; stack = new int[node_num]; tol = 100.0 * r8_epsilon ( ); // // Sort the vertices by increasing (x,y). // base = 0; indx = r82vec_sort_heap_index_a ( node_num, base, node_xy ); r82vec_permute ( node_num, indx, base, node_xy ); // // Make sure that the nodes are "reasonably" distinct. // m1 = 1; for ( i = 2; i <= node_num; i++ ) { m = m1; m1 = i; k = -1; for ( j = 0; j <= 1; j++ ) { cmax = r8_max ( fabs ( node_xy[2*(m-1)+j] ), fabs ( node_xy[2*(m1-1)+j] ) ); if ( tol * ( cmax + 1.0 ) < fabs ( node_xy[2*(m-1)+j] - node_xy[2*(m1-1)+j] ) ) { k = j; break; } } if ( k == -1 ) { cerr << "\n"; cerr << "R8TRIS2 - Fatal error!\n"; cerr << " Fails for point number I = " << i << "\n"; cerr << " M = " << m << "\n"; cerr << " M1 = " << m1 << "\n"; cerr << " X,Y(M) = " << node_xy[2*(m-1)+0] << " " << node_xy[2*(m-1)+1] << "\n"; cerr << " X,Y(M1) = " << node_xy[2*(m1-1)+0] << " " << node_xy[2*(m1-1)+1] << "\n"; exit ( 1 ); } } // // Starting from nodes M1 and M2, search for a third point M that // makes a "healthy" triangle (M1,M2,M) // m1 = 1; m2 = 2; j = 3; for ( ; ; ) { if ( node_num < j ) { cerr << "\n"; cerr << "R8TRIS2 - Fatal error!\n"; delete [] stack; return 225; } m = j; lr = lrline ( node_xy[2*(m-1)+0], node_xy[2*(m-1)+1], node_xy[2*(m1-1)+0], node_xy[2*(m1-1)+1], node_xy[2*(m2-1)+0], node_xy[2*(m2-1)+1], 0.0 ); if ( lr != 0 ) { break; } j = j + 1; } // // Set up the triangle information for (M1,M2,M), and for any other // triangles you created because nodes were collinear with M1, M2. // triangle_num = j - 2; if ( lr == -1 ) { triangle_node[3*0+0] = m1; triangle_node[3*0+1] = m2; triangle_node[3*0+2] = m; triangle_neighbor[3*0+2] = -3; for ( i = 2; i <= triangle_num; i++ ) { m1 = m2; m2 = i+1; triangle_node[3*(i-1)+0] = m1; triangle_node[3*(i-1)+1] = m2; triangle_node[3*(i-1)+2] = m; triangle_neighbor[3*(i-1)+0] = -3 * i; triangle_neighbor[3*(i-1)+1] = i; triangle_neighbor[3*(i-1)+2] = i - 1; } triangle_neighbor[3*(triangle_num-1)+0] = -3 * triangle_num - 1; triangle_neighbor[3*(triangle_num-1)+1] = -5; ledg = 2; ltri = triangle_num; } else { triangle_node[3*0+0] = m2; triangle_node[3*0+1] = m1; triangle_node[3*0+2] = m; triangle_neighbor[3*0+0] = -4; for ( i = 2; i <= triangle_num; i++ ) { m1 = m2; m2 = i+1; triangle_node[3*(i-1)+0] = m2; triangle_node[3*(i-1)+1] = m1; triangle_node[3*(i-1)+2] = m; triangle_neighbor[3*(i-2)+2] = i; triangle_neighbor[3*(i-1)+0] = -3 * i - 3; triangle_neighbor[3*(i-1)+1] = i - 1; } triangle_neighbor[3*(triangle_num-1)+2] = -3 * triangle_num; triangle_neighbor[3*0+1] = -3 * triangle_num - 2; ledg = 2; ltri = 1; } // // Insert the vertices one at a time from outside the convex hull, // determine visible boundary edges, and apply diagonal edge swaps until // Delaunay triangulation of vertices (so far) is obtained. // top = 0; for ( i = j+1; i <= node_num; i++ ) { m = i; m1 = triangle_node[3*(ltri-1)+ledg-1]; if ( ledg <= 2 ) { m2 = triangle_node[3*(ltri-1)+ledg]; } else { m2 = triangle_node[3*(ltri-1)+0]; } lr = lrline ( node_xy[2*(m-1)+0], node_xy[2*(m-1)+1], node_xy[2*(m1-1)+0], node_xy[2*(m1-1)+1], node_xy[2*(m2-1)+0], node_xy[2*(m2-1)+1], 0.0 ); if ( 0 < lr ) { rtri = ltri; redg = ledg; ltri = 0; } else { l = -triangle_neighbor[3*(ltri-1)+ledg-1]; rtri = l / 3; redg = (l % 3) + 1; } vbedg ( node_xy[2*(m-1)+0], node_xy[2*(m-1)+1], node_num, node_xy, triangle_num, triangle_node, triangle_neighbor, ltri, ledg, rtri, redg ); n = triangle_num + 1; l = -triangle_neighbor[3*(ltri-1)+ledg-1]; for ( ; ; ) { t = l / 3; e = ( l % 3 ) + 1; l = -triangle_neighbor[3*(t-1)+e-1]; m2 = triangle_node[3*(t-1)+e-1]; if ( e <= 2 ) { m1 = triangle_node[3*(t-1)+e]; } else { m1 = triangle_node[3*(t-1)+0]; } triangle_num = triangle_num + 1; triangle_neighbor[3*(t-1)+e-1] = triangle_num; triangle_node[3*(triangle_num-1)+0] = m1; triangle_node[3*(triangle_num-1)+1] = m2; triangle_node[3*(triangle_num-1)+2] = m; triangle_neighbor[3*(triangle_num-1)+0] = t; triangle_neighbor[3*(triangle_num-1)+1] = triangle_num - 1; triangle_neighbor[3*(triangle_num-1)+2] = triangle_num + 1; top = top + 1; if ( node_num < top ) { cerr << "\n"; cerr << "R8TRIS2 - Fatal error!\n"; cerr << " Stack overflow.\n"; delete [] stack; return 8; } stack[top-1] = triangle_num; if ( t == rtri && e == redg ) { break; } } triangle_neighbor[3*(ltri-1)+ledg-1] = -3 * n - 1; triangle_neighbor[3*(n-1)+1] = -3 * triangle_num - 2; triangle_neighbor[3*(triangle_num-1)+2] = -l; ltri = n; ledg = 2; error = swapec ( m, top, ltri, ledg, node_num, node_xy, triangle_num, triangle_node, triangle_neighbor, stack ); if ( error != 0 ) { cerr << "\n"; cerr << "R8TRIS2 - Fatal error!\n"; cerr << " Error return from SWAPEC.\n"; delete [] stack; return error; } } // // Undo the sorting. // for ( i = 0; i < 3; i++ ) { for ( j = 0; j < triangle_num; j++ ) { triangle_node[i+j*3] = indx [ triangle_node[i+j*3] - 1 ]; } } perm_inverse ( node_num, indx ); r82vec_permute ( node_num, indx, base, node_xy ); delete [] indx; delete [] stack; return 0; } //****************************************************************************80 int swapec ( int i, int &top, int &btri, int &bedg, int node_num, double node_xy[], int triangle_num, int triangle_node[], int triangle_neighbor[], int stack[] ) //****************************************************************************80 // // Purpose: // // SWAPEC swaps diagonal edges until all triangles are Delaunay. // // Discussion: // // The routine swaps diagonal edges in a 2D triangulation, based on // the empty circumcircle criterion, until all triangles are Delaunay, // given that I is the index of the new vertex added to the triangulation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 September 2003 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, int I, the index of the new vertex. // // Input/output, int &TOP, the index of the top of the stack. // On output, TOP is zero. // // Input/output, int &BTRI, &BEDG; on input, if positive, are the // triangle and edge indices of a boundary edge whose updated indices // must be recorded. On output, these may be updated because of swaps. // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input/output, int TRIANGLE_NODE[3*TRIANGLE_NUM], the triangle incidence // list. May be updated on output because of swaps. // // Input/output, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the triangle neighbor // list; negative values are used for links of the counter-clockwise linked // list of boundary edges; May be updated on output because of swaps. // // LINK = -(3*I + J-1) where I, J = triangle, edge index. // // Workspace, int STACK[MAXST]; on input, entries 1 through TOP // contain the indices of initial triangles (involving vertex I) // put in stack; the edges opposite I should be in interior; entries // TOP+1 through MAXST are used as a stack. // // Output, int SWAPEC, is set to 8 for abnormal return. // { int a; int b; int c; int e; int ee; int em1; int ep1; int f; int fm1; int fp1; int l; int r; int s; int swap; int t; int tt; int u; double x; double y; // // Determine whether triangles in stack are Delaunay, and swap // diagonal edge of convex quadrilateral if not. // x = node_xy[2*(i-1)+0]; y = node_xy[2*(i-1)+1]; for ( ; ; ) { if ( top <= 0 ) { break; } t = stack[top-1]; top = top - 1; if ( triangle_node[3*(t-1)+0] == i ) { e = 2; b = triangle_node[3*(t-1)+2]; } else if ( triangle_node[3*(t-1)+1] == i ) { e = 3; b = triangle_node[3*(t-1)+0]; } else { e = 1; b = triangle_node[3*(t-1)+1]; } a = triangle_node[3*(t-1)+e-1]; u = triangle_neighbor[3*(t-1)+e-1]; if ( triangle_neighbor[3*(u-1)+0] == t ) { f = 1; c = triangle_node[3*(u-1)+2]; } else if ( triangle_neighbor[3*(u-1)+1] == t ) { f = 2; c = triangle_node[3*(u-1)+0]; } else { f = 3; c = triangle_node[3*(u-1)+1]; } swap = diaedg ( x, y, node_xy[2*(a-1)+0], node_xy[2*(a-1)+1], node_xy[2*(c-1)+0], node_xy[2*(c-1)+1], node_xy[2*(b-1)+0], node_xy[2*(b-1)+1] ); if ( swap == 1 ) { em1 = i4_wrap ( e - 1, 1, 3 ); ep1 = i4_wrap ( e + 1, 1, 3 ); fm1 = i4_wrap ( f - 1, 1, 3 ); fp1 = i4_wrap ( f + 1, 1, 3 ); triangle_node[3*(t-1)+ep1-1] = c; triangle_node[3*(u-1)+fp1-1] = i; r = triangle_neighbor[3*(t-1)+ep1-1]; s = triangle_neighbor[3*(u-1)+fp1-1]; triangle_neighbor[3*(t-1)+ep1-1] = u; triangle_neighbor[3*(u-1)+fp1-1] = t; triangle_neighbor[3*(t-1)+e-1] = s; triangle_neighbor[3*(u-1)+f-1] = r; if ( 0 < triangle_neighbor[3*(u-1)+fm1-1] ) { top = top + 1; stack[top-1] = u; } if ( 0 < s ) { if ( triangle_neighbor[3*(s-1)+0] == u ) { triangle_neighbor[3*(s-1)+0] = t; } else if ( triangle_neighbor[3*(s-1)+1] == u ) { triangle_neighbor[3*(s-1)+1] = t; } else { triangle_neighbor[3*(s-1)+2] = t; } top = top + 1; if ( node_num < top ) { return 8; } stack[top-1] = t; } else { if ( u == btri && fp1 == bedg ) { btri = t; bedg = e; } l = - ( 3 * t + e - 1 ); tt = t; ee = em1; while ( 0 < triangle_neighbor[3*(tt-1)+ee-1] ) { tt = triangle_neighbor[3*(tt-1)+ee-1]; if ( triangle_node[3*(tt-1)+0] == a ) { ee = 3; } else if ( triangle_node[3*(tt-1)+1] == a ) { ee = 1; } else { ee = 2; } } triangle_neighbor[3*(tt-1)+ee-1] = l; } if ( 0 < r ) { if ( triangle_neighbor[3*(r-1)+0] == t ) { triangle_neighbor[3*(r-1)+0] = u; } else if ( triangle_neighbor[3*(r-1)+1] == t ) { triangle_neighbor[3*(r-1)+1] = u; } else { triangle_neighbor[3*(r-1)+2] = u; } } else { if ( t == btri && ep1 == bedg ) { btri = u; bedg = f; } l = - ( 3 * u + f - 1 ); tt = u; ee = fm1; while ( 0 < triangle_neighbor[3*(tt-1)+ee-1] ) { tt = triangle_neighbor[3*(tt-1)+ee-1]; if ( triangle_node[3*(tt-1)+0] == b ) { ee = 3; } else if ( triangle_node[3*(tt-1)+1] == b ) { ee = 1; } else { ee = 2; } } triangle_neighbor[3*(tt-1)+ee-1] = l; } } } return 0; } //****************************************************************************80 void triangulation_order3_print ( int node_num, int triangle_num, double node_xy[], int triangle_node[], int triangle_neighbor[] ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_ORDER3_PRINT prints information defining a triangulation. // // Discussion: // // Triangulations created by R8TRIS2 include extra information encoded // in the negative values of TRIANGLE_NEIGHBOR. // // Because some of the nodes counted in NODE_NUM may not actually be // used in the triangulation, I needed to compute the true number // of vertices. I added this calculation on 13 October 2001. // // Ernest Fasse pointed out an error in the indexing of VERTEX_LIST, // which was corrected on 19 February 2004. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], the nodes that make up // the triangles. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the triangle neighbors // on each side. If there is no triangle neighbor on a particular side, // the value of TRIANGLE_NEIGHBOR should be negative. If the // triangulation data was created by R8TRIS2, then there is more // information encoded in the negative values. // { # define DIM_NUM 2 int boundary_num; int i; int j; int k; int n1; int n2; int s; int s1; int s2; bool skip; int t; int *vertex_list; int vertex_num; cout << "\n"; cout << "TRIANGULATION_ORDER3_PRINT\n"; cout << " Information defining a triangulation.\n"; cout << "\n"; cout << " The number of nodes is " << node_num << "\n"; r8mat_transpose_print ( DIM_NUM, node_num, node_xy, " Node coordinates" ); cout << "\n"; cout << " The number of triangles is " << triangle_num << "\n"; cout << "\n"; cout << " Sets of three nodes are used as vertices of\n"; cout << " the triangles. For each triangle, the nodes\n"; cout << " are listed in counterclockwise order.\n"; i4mat_transpose_print ( 3, triangle_num, triangle_node, " Triangle nodes" ); cout << "\n"; cout << " On each side of a given triangle, there is either\n"; cout << " another triangle, or a piece of the convex hull.\n"; cout << " For each triangle, we list the indices of the three\n"; cout << " neighbors, or (if negative) the codes of the\n"; cout << " segments of the convex hull.\n"; i4mat_transpose_print ( 3, triangle_num, triangle_neighbor, " Triangle neighbors" ); // // Determine VERTEX_NUM, the number of vertices. // vertex_list = new int[3*triangle_num]; k = 0; for ( t = 0; t < triangle_num; t++ ) { for ( s = 0; s < 3; s++ ) { vertex_list[k] = triangle_node[s+t*3]; k = k + 1; } } i4vec_sort_heap_a ( 3*triangle_num, vertex_list ); vertex_num = i4vec_sorted_unique ( 3*triangle_num, vertex_list ); delete [] vertex_list; // // Determine the number of boundary points. // boundary_num = 2 * vertex_num - triangle_num - 2; cout << "\n"; cout << " The number of boundary points is " << boundary_num << "\n"; cout << "\n"; cout << " The segments that make up the convex hull can be\n"; cout << " determined from the negative entries of the triangle\n"; cout << " neighbor list.\n"; cout << "\n"; cout << " # Tri Side N1 N2\n"; cout << "\n"; skip = false; k = 0; for ( i = 0; i < triangle_num; i++ ) { for ( j = 0; j < 3; j++ ) { if ( triangle_neighbor[j+i*3] < 0 ) { s = -triangle_neighbor[j+i*3]; t = s / 3; if ( t < 1 || triangle_num < t ) { cout << "\n"; cout << " Sorry, this data does not use the R8TRIS2\n"; cout << " convention for convex hull segments.\n"; skip = true; break; } s1 = ( s % 3 ) + 1; s2 = i4_wrap ( s1+1, 1, 3 ); k = k + 1; n1 = triangle_node[s1-1+(t-1)*3]; n2 = triangle_node[s2-1+(t-1)*3]; cout << " " << setw(4) << k << " " << setw(4) << t << " " << setw(4) << s1 << " " << setw(4) << n1 << " " << setw(4) << n2 << "\n"; } } if ( skip ) { break; } } return; # undef DIM_NUM } //****************************************************************************80 void triangulation_search_delaunay ( int node_num, double node_xy[], int triangle_order, int triangle_num, int triangle_node[], int triangle_neighbor[], double p[2], int &triangle_index, double &alpha, double &beta, double &gamma, int &edge, int &step_num ) //****************************************************************************80 // // Purpose: // // TRIANGULATION_SEARCH_DELAUNAY searches a triangulation for a point. // // Discussion: // // The algorithm "walks" from one triangle to its neighboring triangle, // and so on, until a triangle is found containing point P, or P is found // to be outside the convex hull. // // The algorithm computes the barycentric coordinates of the point with // respect to the current triangle. If all three quantities are positive, // the point is contained in the triangle. If the I-th coordinate is // negative, then (X,Y) lies on the far side of edge I, which is opposite // from vertex I. This gives a hint as to where to search next. // // For a Delaunay triangulation, the search is guaranteed to terminate. // For other triangulations, a cycle may occur. // // Note the surprising fact that, even for a Delaunay triangulation of // a set of nodes, the nearest point to (X,Y) need not be one of the // vertices of the triangle containing (X,Y). // // The code can be called for triangulations of any order, but only // the first three nodes in each triangle are considered. Thus, if // higher order triangles are used, and the extra nodes are intended // to give the triangle a polygonal shape, these will have no effect, // and the results obtained here might be misleading. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 October 2012 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_ORDER, the order of the triangles. // // Input, int TRIANGLE_NUM, the number of triangles in the triangulation. // // Input, int TRIANGLE_NODE[TRIANGLE_ORDER*TRIANGLE_NUM], // the nodes of each triangle. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the triangle neighbor list. // // Input, double P[2], the coordinates of a point. // // Output, int &TRIANGLE_INDEX, the index of the triangle where the search ended. // If a cycle occurred, then TRIANGLE_INDEX = -1. // // Output, double &ALPHA, &BETA, &GAMMA, the barycentric coordinates // of the point with respect to triangle TRIANGLE_INDEX. // // Output, int &EDGE, indicates the position of the point (X,Y) in // triangle TRIANGLE: // 0, the interior or boundary of the triangle; // -1, outside the convex hull of the triangulation, past edge 1; // -2, outside the convex hull of the triangulation, past edge 2; // -3, outside the convex hull of the triangulation, past edge 3. // // Output, int &STEP_NUM, the number of steps. { int a; int b; int c; double det; double dxp; double dxa; double dxb; double dyp; double dya; double dyb; static int triangle_index_save = -1; step_num = - 1; edge = 0; if ( triangle_index_save < 0 || triangle_num <= triangle_index_save ) { triangle_index = ( triangle_num + 1 ) / 2; } else { triangle_index = triangle_index_save; } for ( ; ; ) { step_num = step_num + 1; if ( triangle_num < step_num ) { cerr << "\n"; cerr << "TRIANGULATION_SEARCH_DELAUNAY - Fatal error!\n"; cerr << " The algorithm seems to be cycling.\n"; cerr << " Current triangle is " << triangle_index << "\n"; exit ( 1 ); } // // Get the vertices of triangle TRIANGLE. // a = triangle_node[0+triangle_index*triangle_order]; b = triangle_node[1+triangle_index*triangle_order]; c = triangle_node[2+triangle_index*triangle_order]; // // Using vertex C as a base, compute the distances to vertices A and B, // and the point (X,Y). // dxa = node_xy[0+a*2] - node_xy[0+c*2]; dya = node_xy[1+a*2] - node_xy[1+c*2]; dxb = node_xy[0+b*2] - node_xy[0+c*2]; dyb = node_xy[1+b*2] - node_xy[1+c*2]; dxp = p[0] - node_xy[0+c*2]; dyp = p[1] - node_xy[1+c*2]; det = dxa * dyb - dya * dxb; // // Compute the barycentric coordinates of the point (X,Y) with respect // to this triangle. // alpha = ( dxp * dyb - dyp * dxb ) / det; beta = ( dxa * dyp - dya * dxp ) / det; gamma = 1.0 - alpha - beta; // // If the barycentric coordinates are all positive, then the point // is inside the triangle and we're done. // if ( 0.0 <= alpha && 0.0 <= beta && 0.0 <= gamma ) { break; } // // At least one barycentric coordinate is negative. // // If there is a negative barycentric coordinate for which there exists // an opposing triangle neighbor closer to the point, move to that triangle. // // (Two coordinates could be negative, in which case we could go for the // most negative one, or the most negative one normalized by the actual // distance it represents). // if ( alpha < 0.0 && 0 <= triangle_neighbor[1+triangle_index*3] ) { triangle_index = triangle_neighbor[1+triangle_index*3]; continue; } else if ( beta < 0.0 && 0 <= triangle_neighbor[2+triangle_index*3] ) { triangle_index = triangle_neighbor[2+triangle_index*3]; continue; } else if ( gamma < 0.0 && 0 <= triangle_neighbor[0+triangle_index*3] ) { triangle_index = triangle_neighbor[0+triangle_index*3]; continue; } // // All negative barycentric coordinates correspond to vertices opposite // sides on the convex hull. // // Note the edge and exit. // if ( alpha < 0.0 ) { edge = -2; break; } else if ( beta < 0.0 ) { edge = -3; break; } else if ( gamma < 0.0 ) { edge = -1; break; } else { cerr << "\n"; cerr << "TRIANGULATION_ORDER3_SEARCH - Fatal error!\n"; cerr << " The algorithm seems to have reached a dead end\n"; cerr << " after " << step_num << " steps.\n"; exit ( 1 ); } } triangle_index_save = triangle_index; return; } //****************************************************************************80 void vbedg ( double x, double y, int node_num, double node_xy[], int triangle_num, int triangle_node[], int triangle_neighbor[], int <ri, int &ledg, int &rtri, int &redg ) //****************************************************************************80 // // Purpose: // // VBEDG determines which boundary edges are visible to a point. // // Discussion: // // The point (X,Y) is assumed to be outside the convex hull of the // region covered by the 2D triangulation. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 September 2008 // // Author: // // Original FORTRAN77 version by Barry Joe. // C++ version by John Burkardt. // // Reference: // // Barry Joe, // GEOMPACK - a software package for the generation of meshes // using geometric algorithms, // Advances in Engineering Software, // Volume 13, pages 325-331, 1991. // // Parameters: // // Input, double X, Y, the coordinates of a point outside the convex hull // of the current triangulation. // // Input, int NODE_NUM, the number of nodes. // // Input, double NODE_XY[2*NODE_NUM], the coordinates of the nodes. // // Input, int TRIANGLE_NUM, the number of triangles. // // Input, int TRIANGLE_NODE[3*TRIANGLE_NUM], the triangle incidence list. // // Input, int TRIANGLE_NEIGHBOR[3*TRIANGLE_NUM], the triangle neighbor list; // negative values are used for links of a counter clockwise linked list // of boundary edges; // LINK = -(3*I + J-1) where I, J = triangle, edge index. // // Input/output, int <RI, &LEDG. If LTRI != 0 then these values are // assumed to be already computed and are not changed, else they are updated. // On output, LTRI is the index of boundary triangle to the left of the // leftmost boundary triangle visible from (X,Y), and LEDG is the boundary // edge of triangle LTRI to the left of the leftmost boundary edge visible // from (X,Y). 1 <= LEDG <= 3. // // Input/output, int &RTRI. On input, the index of the boundary triangle // to begin the search at. On output, the index of the rightmost boundary // triangle visible from (X,Y). // // Input/output, int &REDG, the edge of triangle RTRI that is visible // from (X,Y). 1 <= REDG <= 3. // { int a; double ax; double ay; int b; double bx; double by; bool done; int e; int l; int lr; int t; // // Find the rightmost visible boundary edge using links, then possibly // leftmost visible boundary edge using triangle neighbor information. // if ( ltri == 0 ) { done = false; ltri = rtri; ledg = redg; } else { done = true; } for ( ; ; ) { l = -triangle_neighbor[3*(rtri-1)+redg-1]; t = l / 3; e = 1 + l % 3; a = triangle_node[3*(t-1)+e-1]; if ( e <= 2 ) { b = triangle_node[3*(t-1)+e]; } else { b = triangle_node[3*(t-1)+0]; } ax = node_xy[2*(a-1)+0]; ay = node_xy[2*(a-1)+1]; bx = node_xy[2*(b-1)+0]; by = node_xy[2*(b-1)+1]; lr = lrline ( x, y, ax, ay, bx, by, 0.0 ); if ( lr <= 0 ) { break; } rtri = t; redg = e; } if ( done ) { return; } t = ltri; e = ledg; for ( ; ; ) { b = triangle_node[3*(t-1)+e-1]; e = i4_wrap ( e-1, 1, 3 ); while ( 0 < triangle_neighbor[3*(t-1)+e-1] ) { t = triangle_neighbor[3*(t-1)+e-1]; if ( triangle_node[3*(t-1)+0] == b ) { e = 3; } else if ( triangle_node[3*(t-1)+1] == b ) { e = 1; } else { e = 2; } } a = triangle_node[3*(t-1)+e-1]; ax = node_xy[2*(a-1)+0]; ay = node_xy[2*(a-1)+1]; bx = node_xy[2*(b-1)+0]; by = node_xy[2*(b-1)+1]; lr = lrline ( x, y, ax, ay, bx, by, 0.0 ); if ( lr <= 0 ) { break; } } ltri = t; ledg = e; return; }