# include # include # include # include # include # include # include using namespace std; int main ( int argc, char *argv[] ); void jacobi_compute ( int order, double alpha, double beta, double x[], double w[] ); void jacobi_recur ( double *p2, double *dp2, double *p1, double x, int order, double alpha, double beta, double b[], double c[] ); void jacobi_root ( double *x, int order, double alpha, double beta, double *dp2, double *p1, double b[], double c[] ); void legendre_compute ( int order, double x[], double w[] ); void pyramid_handle ( int legendre_order, int jacobi_order, string filename ); double r8_epsilon ( ); double r8_gamma ( double x ); void r8mat_write ( string output_filename, int m, int n, double table[] ); void timestamp ( ); //****************************************************************************80 int main ( int argc, char *argv[] ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for PYRAMID_RULE. // // Discussion: // // This program computes a quadrature rule for a pyramid // and writes it to a file. // // The user specifies: // * the LEGENDRE_ORDER (number of points in the X and Y dimensions) // * the JACOBI_ORDER (number of points in the Z dimension) // * FILENAME, the root name of the output files. // // The integration region is: // // - ( 1 - Z ) <= X <= 1 - Z // - ( 1 - Z ) <= Y <= 1 - Z // 0 <= Z <= 1. // // When Z is zero, the integration region is a square lying in the (X,Y) // plane, centered at (0,0,0) with "radius" 1. As Z increases to 1, the // radius of the square diminishes, and when Z reaches 1, the square has // contracted to the single point (0,0,1). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 July 2009 // // Author: // // John Burkardt // { string filename; int jacobi_order; int legendre_order; timestamp ( ); cout << "\n"; cout << "PYRAMID_RULE\n"; cout << " C++ version\n"; cout << "\n"; cout << " Compute a quadrature rule for approximating\n"; cout << " the integral of a function over a pyramid.\n"; cout << "\n"; cout << " The user specifies:\n"; cout << "\n"; cout << " LEGENDRE_ORDER, the order of the Legendre rule for X and Y.\n"; cout << " JACOBI_ORDER, the order of the Jacobi rule for Z,\n"; cout << " FILENAME, the prefix of the three output files:\n"; cout << "\n"; cout << " filename_w.txt - the weight file\n"; cout << " filename_x.txt - the abscissa file.\n"; cout << " filename_r.txt - the region file.\n"; // // Get the Legendre order. // if ( 1 < argc ) { legendre_order = atoi ( argv[1] ); } else { cout << "\n"; cout << " Enter the Legendre rule order:\n"; cin >> legendre_order; } cout << "\n"; cout << " The requested Legendre order of the rule is " << legendre_order << "\n"; // // Get the Jacobi order. // if ( 2 < argc ) { jacobi_order = atoi ( argv[2] ); } else { cout << "\n"; cout << " Enter the Jacobi rule order:\n"; cin >> jacobi_order; } cout << "\n"; cout << " The requested Jacobi order of the rule is " << jacobi_order << "\n"; // // Get the output option or quadrature file root name: // if ( 3 < argc ) { filename = argv[3]; } else { cout << "\n"; cout << " Enter FILENAME, the root name of the quadrature files.\n"; cin >> filename; } pyramid_handle ( legendre_order, jacobi_order, filename ); cout << "\n"; cout << "PYRAMID_RULE:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void jacobi_compute ( int order, double alpha, double beta, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // JACOBI_COMPUTE computes a Jacobi quadrature rule. // // Discussion: // // The integration interval is [ -1, 1 ]. // // The weight function is w(x) = (1-X)^ALPHA * (1+X)^BETA. // // The integral to approximate: // // Integral ( -1 <= X <= 1 ) (1-X)^ALPHA * (1+X)^BETA * F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= ORDER ) W(I) * F ( X(I) ) // // Thanks to Xu Xiang of Fudan University for pointing out that // an earlier implementation of this routine was incorrect! // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 February 2008 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input, int ORDER, the order of the rule. // 1 <= ORDER. // // Input, double ALPHA, BETA, the exponents of (1-X) and // (1+X) in the quadrature rule. For simple Legendre quadrature, // set ALPHA = BETA = 0.0. -1.0 < ALPHA and -1.0 < BETA are required. // // Output, double X[ORDER], the abscissas. // // Output, double W[ORDER], the weights. // { double an; double *b; double bn; double *c; double cc; double delta; double dp2; int i; double p1; double prod; double r1; double r2; double r3; double temp; double x0; if ( order < 1 ) { std::cerr << "\n"; std::cerr << "JACOBI_COMPUTE - Fatal error!\n"; std::cerr << " Illegal value of ORDER = " << order << "\n"; std::exit ( 1 ); } b = new double[order]; c = new double[order]; // // Check ALPHA and BETA. // if ( alpha <= -1.0 ) { std::cerr << "\n"; std::cerr << "JACOBI_COMPUTE - Fatal error!\n"; std::cerr << " -1.0 < ALPHA is required.\n"; std::exit ( 1 ); } if ( beta <= -1.0 ) { std::cerr << "\n"; std::cerr << "JACOBI_COMPUTE - Fatal error!\n"; std::cerr << " -1.0 < BETA is required.\n"; std::exit ( 1 ); } // // Set the recursion coefficients. // for ( i = 1; i <= order; i++ ) { if ( alpha + beta == 0.0 || beta - alpha == 0.0 ) { b[i-1] = 0.0; } else { b[i-1] = ( alpha + beta ) * ( beta - alpha ) / ( ( alpha + beta + ( double ) ( 2 * i ) ) * ( alpha + beta + ( double ) ( 2 * i - 2 ) ) ); } if ( i == 1 ) { c[i-1] = 0.0; } else { c[i-1] = 4.0 * ( double ) ( i - 1 ) * ( alpha + ( double ) ( i - 1 ) ) * ( beta + ( double ) ( i - 1 ) ) * ( alpha + beta + ( double ) ( i - 1 ) ) / ( ( alpha + beta + ( double ) ( 2 * i - 1 ) ) * std::pow ( alpha + beta + ( double ) ( 2 * i - 2 ), 2 ) * ( alpha + beta + ( double ) ( 2 * i - 3 ) ) ); } } delta = r8_gamma ( alpha + 1.0 ) * r8_gamma ( beta + 1.0 ) / r8_gamma ( alpha + beta + 2.0 ); prod = 1.0; for ( i = 2; i <= order; i++ ) { prod = prod * c[i-1]; } cc = delta * std::pow ( 2.0, alpha + beta + 1.0 ) * prod; for ( i = 1; i <= order; i++ ) { if ( i == 1 ) { an = alpha / ( double ) ( order ); bn = beta / ( double ) ( order ); r1 = ( 1.0 + alpha ) * ( 2.78 / ( 4.0 + ( double ) ( order * order ) ) + 0.768 * an / ( double ) ( order ) ); r2 = 1.0 + 1.48 * an + 0.96 * bn + 0.452 * an * an + 0.83 * an * bn; x0 = ( r2 - r1 ) / r2; } else if ( i == 2 ) { r1 = ( 4.1 + alpha ) / ( ( 1.0 + alpha ) * ( 1.0 + 0.156 * alpha ) ); r2 = 1.0 + 0.06 * ( ( double ) ( order ) - 8.0 ) * ( 1.0 + 0.12 * alpha ) / ( double ) ( order ); r3 = 1.0 + 0.012 * beta * ( 1.0 + 0.25 * fabs ( alpha ) ) / ( double ) ( order ); x0 = x0 - r1 * r2 * r3 * ( 1.0 - x0 ); } else if ( i == 3 ) { r1 = ( 1.67 + 0.28 * alpha ) / ( 1.0 + 0.37 * alpha ); r2 = 1.0 + 0.22 * ( ( double ) ( order ) - 8.0 ) / ( double ) ( order ); r3 = 1.0 + 8.0 * beta / ( ( 6.28 + beta ) * ( double ) ( order * order ) ); x0 = x0 - r1 * r2 * r3 * ( x[0] - x0 ); } else if ( i < order - 1 ) { x0 = 3.0 * x[i-2] - 3.0 * x[i-3] + x[i-4]; } else if ( i == order - 1 ) { r1 = ( 1.0 + 0.235 * beta ) / ( 0.766 + 0.119 * beta ); r2 = 1.0 / ( 1.0 + 0.639 * ( ( double ) ( order ) - 4.0 ) / ( 1.0 + 0.71 * ( ( double ) ( order ) - 4.0 ) ) ); r3 = 1.0 / ( 1.0 + 20.0 * alpha / ( ( 7.5 + alpha ) * ( double ) ( order * order ) ) ); x0 = x0 + r1 * r2 * r3 * ( x0 - x[i-3] ); } else if ( i == order ) { r1 = ( 1.0 + 0.37 * beta ) / ( 1.67 + 0.28 * beta ); r2 = 1.0 / ( 1.0 + 0.22 * ( ( double ) ( order ) - 8.0 ) / ( double ) ( order ) ); r3 = 1.0 / ( 1.0 + 8.0 * alpha / ( ( 6.28 + alpha ) * ( double ) ( order * order ) ) ); x0 = x0 + r1 * r2 * r3 * ( x0 - x[i-3] ); } jacobi_root ( &x0, order, alpha, beta, &dp2, &p1, b, c ); x[i-1] = x0; w[i-1] = cc / ( dp2 * p1 ); } // // Reverse the order of the values. // for ( i = 1; i <= order/2; i++ ) { temp = x[i-1]; x[i-1] = x[order-i]; x[order-i] = temp; } for ( i = 1; i <=order/2; i++ ) { temp = w[i-1]; w[i-1] = w[order-i]; w[order-i] = temp; } delete [] b; delete [] c; return; } //****************************************************************************80 void jacobi_recur ( double *p2, double *dp2, double *p1, double x, int order, double alpha, double beta, double b[], double c[] ) //****************************************************************************80 // // Purpose: // // JACOBI_RECUR evaluates a Jacobi polynomial. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 February 2008 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Output, double *P2, the value of J(ORDER)(X). // // Output, double *DP2, the value of J'(ORDER)(X). // // Output, double *P1, the value of J(ORDER-1)(X). // // Input, double X, the point at which polynomials are evaluated. // // Input, int ORDER, the order of the polynomial to be computed. // // Input, double ALPHA, BETA, the exponents of (1+X) and // (1-X) in the quadrature rule. // // Input, double B[ORDER], C[ORDER], the recursion coefficients. // { double dp0; double dp1; int i; double p0; *p1 = 1.0; dp1 = 0.0; *p2 = x + ( alpha - beta ) / ( alpha + beta + 2.0 ); *dp2 = 1.0; for ( i = 2; i <= order; i++ ) { p0 = *p1; dp0 = dp1; *p1 = *p2; dp1 = *dp2; *p2 = ( x - b[i-1] ) * ( *p1 ) - c[i-1] * p0; *dp2 = ( x - b[i-1] ) * dp1 + ( *p1 ) - c[i-1] * dp0; } return; } //****************************************************************************80 void jacobi_root ( double *x, int order, double alpha, double beta, double *dp2, double *p1, double b[], double c[] ) //****************************************************************************80 // // Purpose: // // JACOBI_ROOT improves an approximate root of a Jacobi polynomial. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 February 2008 // // Author: // // Original FORTRAN77 version by Arthur Stroud, Don Secrest. // C++ version by John Burkardt. // // Reference: // // Arthur Stroud, Don Secrest, // Gaussian Quadrature Formulas, // Prentice Hall, 1966, // LC: QA299.4G3S7. // // Parameters: // // Input/output, double *X, the approximate root, which // should be improved on output. // // Input, int ORDER, the order of the polynomial to be computed. // // Input, double ALPHA, BETA, the exponents of (1+X) and // (1-X) in the quadrature rule. // // Output, double *DP2, the value of J'(ORDER)(X). // // Output, double *P1, the value of J(ORDER-1)(X). // // Input, double B[ORDER], C[ORDER], the recursion coefficients. // { double d; double eps; double p2; int step; int step_max = 10; eps = r8_epsilon ( ); for ( step = 1; step <= step_max; step++ ) { jacobi_recur ( &p2, dp2, p1, *x, order, alpha, beta, b, c ); d = p2 / ( *dp2 ); *x = *x - d; if ( fabs ( d ) <= eps * ( fabs ( *x ) + 1.0 ) ) { return; } } return; } //****************************************************************************80 void legendre_compute ( int order, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // LEGENDRE_COMPUTE computes a Legendre quadrature rule. // // Discussion: // // The integration interval is [ -1, 1 ]. // // The weight function is w(x) = 1.0. // // The integral to approximate: // // Integral ( -1 <= X <= 1 ) F(X) dX // // The quadrature rule: // // Sum ( 1 <= I <= ORDER ) W(I) * F ( X(I) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2009 // // Author: // // Original FORTRAN77 version by Philip Davis, Philip Rabinowitz. // C++ version by John Burkardt. // // Reference: // // Philip Davis, Philip Rabinowitz, // Methods of Numerical Integration, // Second Edition, // Dover, 2007, // ISBN: 0486453391, // LC: QA299.3.D28. // // Parameters: // // Input, int ORDER, the order of the rule. // 1 <= ORDER. // // Output, double X[ORDER], the abscissas of the rule. // // Output, double W[ORDER], the weights of the rule. // The weights are positive, symmetric, and should sum to 2. // { double d1; double d2pn; double d3pn; double d4pn; double dp; double dpn; double e1; double fx; double h; int i; int iback; int k; int m; int mp1mi; int ncopy; int nmove; double p; double pi = 3.141592653589793; double pk; double pkm1; double pkp1; double t; double u; double v; double x0; double xtemp; if ( order < 1 ) { std::cerr << "\n"; std::cerr << "LEGENDRE_COMPUTE - Fatal error!\n"; std::cerr << " Illegal value of ORDER = " << order << "\n"; std::exit ( 1 ); } e1 = ( double ) ( order * ( order + 1 ) ); m = ( order + 1 ) / 2; for ( i = 1; i <= m; i++ ) { mp1mi = m + 1 - i; t = ( double ) ( 4 * i - 1 ) * pi / ( double ) ( 4 * order + 2 ); x0 = std::cos ( t ) * ( 1.0 - ( 1.0 - 1.0 / ( double ) ( order ) ) / ( double ) ( 8 * order * order ) ); pkm1 = 1.0; pk = x0; for ( k = 2; k <= order; k++ ) { pkp1 = 2.0 * x0 * pk - pkm1 - ( x0 * pk - pkm1 ) / ( double ) ( k ); pkm1 = pk; pk = pkp1; } d1 = ( double ) ( order ) * ( pkm1 - x0 * pk ); dpn = d1 / ( 1.0 - x0 * x0 ); d2pn = ( 2.0 * x0 * dpn - e1 * pk ) / ( 1.0 - x0 * x0 ); d3pn = ( 4.0 * x0 * d2pn + ( 2.0 - e1 ) * dpn ) / ( 1.0 - x0 * x0 ); d4pn = ( 6.0 * x0 * d3pn + ( 6.0 - e1 ) * d2pn ) / ( 1.0 - x0 * x0 ); u = pk / dpn; v = d2pn / dpn; // // Initial approximation H: // h = -u * ( 1.0 + 0.5 * u * ( v + u * ( v * v - d3pn / ( 3.0 * dpn ) ) ) ); // // Refine H using one step of Newton's method: // p = pk + h * ( dpn + 0.5 * h * ( d2pn + h / 3.0 * ( d3pn + 0.25 * h * d4pn ) ) ); dp = dpn + h * ( d2pn + 0.5 * h * ( d3pn + h * d4pn / 3.0 ) ); h = h - p / dp; xtemp = x0 + h; x[mp1mi-1] = xtemp; fx = d1 - h * e1 * ( pk + 0.5 * h * ( dpn + h / 3.0 * ( d2pn + 0.25 * h * ( d3pn + 0.2 * h * d4pn ) ) ) ); w[mp1mi-1] = 2.0 * ( 1.0 - xtemp * xtemp ) / ( fx * fx ); } if ( ( order % 2 ) == 1 ) { x[0] = 0.0; } // // Shift the data up. // nmove = ( order + 1 ) / 2; ncopy = order - nmove; for ( i = 1; i <= nmove; i++ ) { iback = order + 1 - i; x[iback-1] = x[iback-ncopy-1]; w[iback-1] = w[iback-ncopy-1]; } // // Reflect values for the negative abscissas. // for ( i = 1; i <= order - nmove; i++ ) { x[i-1] = - x[order-i]; w[i-1] = w[order-i]; } return; } //****************************************************************************80 void pyramid_handle ( int legendre_order, int jacobi_order, string filename ) //****************************************************************************80 // // Purpose: // // PYRAMID_HANDLE computes the requested pyramid rule and outputs it. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 July 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int LEGENDRE_ORDER, JACOBI_ORDER, the orders // of the component Legendre and Jacobi rules. // // Input, string FILENAME, the rootname for the files, // write files 'file_w.txt' and 'file_x.txt', and 'file_r.txt', weights, // abscissas, and region. // { # define DIM_NUM 3 string filename_r; string filename_w; string filename_x; int i; int j; double jacobi_alpha; double jacobi_beta; double *jacobi_w; double *jacobi_x; int k; int l; double *legendre_w; double *legendre_x; int pyramid_order; double pyramid_r[DIM_NUM*5] = { -1.0, -1.0, 0.0, +1.0, -1.0, 0.0, -1.0, +1.0, 0.0, +1.0, +1.0, 0.0, 0.0, 0.0, 1.0 }; double *pyramid_w; double *pyramid_x; double volume; double wi; double wj; double wk; double xi; double xj; double xk; // // Compute the factor rules. // legendre_w = new double[legendre_order]; legendre_x = new double[legendre_order]; legendre_compute ( legendre_order, legendre_x, legendre_w ); jacobi_w = new double[jacobi_order]; jacobi_x = new double[jacobi_order]; jacobi_alpha = 2.0; jacobi_beta = 0.0; jacobi_compute ( jacobi_order, jacobi_alpha, jacobi_beta, jacobi_x, jacobi_w ); // // Compute the pyramid rule. // pyramid_order = legendre_order * legendre_order * jacobi_order; pyramid_w = new double[pyramid_order]; pyramid_x = new double[DIM_NUM*pyramid_order]; volume = 4.0 / 3.0; l = 0; for ( k = 0; k < jacobi_order; k++ ) { xk = ( jacobi_x[k] + 1.0 ) / 2.0; wk = jacobi_w[k] / 2.0; for ( j = 0; j < legendre_order; j++ ) { xj = legendre_x[j]; wj = legendre_w[j]; for ( i = 0; i < legendre_order; i++ ) { xi = legendre_x[i]; wi = legendre_w[i]; pyramid_w[l] = wi * wj * wk / 4.0 / volume; pyramid_x[0+l*3] = xi * ( 1.0 - xk ); pyramid_x[1+l*3] = xj * ( 1.0 - xk ); pyramid_x[2+l*3] = xk; l = l + 1; } } } delete [] jacobi_w; delete [] jacobi_x; delete [] legendre_w; delete [] legendre_x; // // Write the rule to files. // filename_w = filename + "_w.txt"; filename_x = filename + "_x.txt"; filename_r = filename + "_r.txt"; cout << "\n"; cout << " Creating quadrature files.\n"; cout << "\n"; cout << " \"Root\" file name is \"" << filename << "\".\n"; cout << "\n"; cout << " Weight file will be \"" << filename_w << "\".\n"; cout << " Abscissa file will be \"" << filename_x << "\".\n"; cout << " Region file will be \"" << filename_r << "\".\n"; r8mat_write ( filename_w, 1, pyramid_order, pyramid_w ); r8mat_write ( filename_x, DIM_NUM, pyramid_order, pyramid_x ); r8mat_write ( filename_r, DIM_NUM, 5, pyramid_r ); delete [] pyramid_w; delete [] pyramid_x; # undef DIM_NUM } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 double r8_gamma ( double x ) //****************************************************************************80 // // Purpose: // // R8_GAMMA evaluates Gamma(X) for a real argument. // // Discussion: // // This routine calculates the gamma function for a real argument X. // // Computation is based on an algorithm outlined in reference 1. // The program uses rational functions that approximate the gamma // function to at least 20 significant decimal digits. Coefficients // for the approximation over the interval (1,2) are unpublished. // Those for the approximation for 12 <= X are from reference 2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2008 // // Author: // // Original FORTRAN77 version by William Cody, Laura Stoltz. // C++ version by John Burkardt. // // Reference: // // William Cody, // An Overview of Software Development for Special Functions, // in Numerical Analysis Dundee, 1975, // edited by GA Watson, // Lecture Notes in Mathematics 506, // Springer, 1976. // // John Hart, Ward Cheney, Charles Lawson, Hans Maehly, // Charles Mesztenyi, John Rice, Henry Thatcher, // Christoph Witzgall, // Computer Approximations, // Wiley, 1968, // LC: QA297.C64. // // Parameters: // // Input, double X, the argument of the function. // // Output, double R8_GAMMA, the value of the function. // { // // Coefficients for minimax approximation over (12, INF). // double c[7] = { -1.910444077728E-03, 8.4171387781295E-04, -5.952379913043012E-04, 7.93650793500350248E-04, -2.777777777777681622553E-03, 8.333333333333333331554247E-02, 5.7083835261E-03 }; double eps = 2.22E-16; double fact; double half = 0.5; int i; int n; double one = 1.0; double p[8] = { -1.71618513886549492533811E+00, 2.47656508055759199108314E+01, -3.79804256470945635097577E+02, 6.29331155312818442661052E+02, 8.66966202790413211295064E+02, -3.14512729688483675254357E+04, -3.61444134186911729807069E+04, 6.64561438202405440627855E+04 }; bool parity; double pi = 3.1415926535897932384626434; double q[8] = { -3.08402300119738975254353E+01, 3.15350626979604161529144E+02, -1.01515636749021914166146E+03, -3.10777167157231109440444E+03, 2.25381184209801510330112E+04, 4.75584627752788110767815E+03, -1.34659959864969306392456E+05, -1.15132259675553483497211E+05 }; double res; double sqrtpi = 0.9189385332046727417803297; double sum; double twelve = 12.0; double two = 2.0; double value; double xbig = 171.624; double xden; double xinf = 1.79E+308; double xminin = 2.23E-308; double xnum; double y; double y1; double ysq; double z; double zero = 0.0;; parity = false; fact = one; n = 0; y = x; // // Argument is negative. // if ( y <= zero ) { y = - x; y1 = ( double ) ( int ) ( y ); res = y - y1; if ( res != zero ) { if ( y1 != ( double ) ( int ) ( y1 * half ) * two ) { parity = true; } fact = - pi / std::sin ( pi * res ); y = y + one; } else { res = xinf; value = res; return value; } } // // Argument is positive. // if ( y < eps ) { // // Argument < EPS. // if ( xminin <= y ) { res = one / y; } else { res = xinf; value = res; return value; } } else if ( y < twelve ) { y1 = y; // // 0.0 < argument < 1.0. // if ( y < one ) { z = y; y = y + one; } // // 1.0 < argument < 12.0. // Reduce argument if necessary. // else { n = ( int ) ( y ) - 1; y = y - ( double ) ( n ); z = y - one; } // // Evaluate approximation for 1.0 < argument < 2.0. // xnum = zero; xden = one; for ( i = 0; i < 8; i++ ) { xnum = ( xnum + p[i] ) * z; xden = xden * z + q[i]; } res = xnum / xden + one; // // Adjust result for case 0.0 < argument < 1.0. // if ( y1 < y ) { res = res / y1; } // // Adjust result for case 2.0 < argument < 12.0. // else if ( y < y1 ) { for ( i = 1; i <= n; i++ ) { res = res * y; y = y + one; } } } else { // // Evaluate for 12.0 <= argument. // if ( y <= xbig ) { ysq = y * y; sum = c[6]; for ( i = 0; i < 6; i++ ) { sum = sum / ysq + c[i]; } sum = sum / y - y + sqrtpi; sum = sum + ( y - half ) * std::log ( y ); res = std::exp ( sum ); } else { res = xinf; value = res; return value; } } // // Final adjustments and return. // if ( parity ) { res = - res; } if ( fact != one ) { res = fact / res; } value = res; return value; } //****************************************************************************80 void r8mat_write ( string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file with no header. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the table data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; return; } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(24) << setprecision(16) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }